И. Т. ГОРОНОВСКИЙ Ю. П. НАЗАРЕНКО Е. Ф. НЕКРЯЧ

КРАТКИЙ СПРАВОЧНИК ПО ХИМИИ

Пятое издание, исправленное и дополненное

Под общей редакцией академика АН УССР А. Т. ПИЛИПЕНКО

удк 54 (031)

В справочнике приведены физико-химические характеристики различных веществ, сведения по номенклатуре химических соединений, метрологии, лабораторной технике, технике безопасности и ряду других вопросов, представляющих интерес для химиков различной квалификации.

Для широкого круга работников химических специальностей и смежных профессий, работников производственных, аналитических и научно-исследовательских лабораторий, а также преподавателей, студентов вузов и учащихся техникумов.

Рецензенты член-корреспондент АН УССР C.~B.~Bолков, доктор химических наук $\Pi.~C.~\Pi$ елькис

Редакция справочной литературы

Зав. редакцией кандидат филологических наук В. В. Панюкоб

 $\Gamma \frac{1801000000-532}{M 221(04)-87}$ 518-87

© Издательство «Наукова думка», 1987, с изменениями и дополнениями

СОДЕРЖАНИЕ

	. 13
Предисловие • • • • • • • • • • • • • • • • • • •	. 15
Глава 1. Химические элементы	. 16
о этомные массы элементов	. 19
The annual of the AMMUNICANA STORES	. 21
	24
	. 26
1.4. Электроотрицательность знаможность знаможность 1.5. Сродство атомов к электрону	. 28
A O TTTT HOURSHINN BIOMOD II HOUSE	30
1.6. Потенциалы нописация. 1.7. Атомные и ионные радиусы	. 00
Глава 2. Простые вещества и неорганические соединения	. 35
Frasa 2. Hocime semestro	. 37
2.1. Свойства простых веществ	. 56
2.2. Свойства неорганических состинования состинений	254
2.3. Свойства двойных солен и комплекский простых веществ и н	e•
2.4. Термодинамические величины для про органических соединений некоторых неорганических в	. 288
	e-
2.5. Распространенные названия некоторы	. 301
ществ	200
Глава 3. Химический анализ неорганических веществ	. 309
Глава 3. Химический анализ неорганический залический выдикаторы 3.1. Кислотно-основные индикаторы (кислотно-основные) 3.2. Смещанные индикаторы (кислотно-основные) 3.3. Универсальные индикаторы (кислотно-основные) 3.4. Алсорбционные индикаторы	. 310
3.1. Кислотно-основные индикаторы	. 315
3.2. Смещанные индикаторы (кислотно-основные)	. 318
3.3. Универсальные индикаторы (кислотно основно-	. 319
U.A. TOMETE	•
3.4. Адсороционные индикаторы 3.5. Флу оресцентные индикаторы 3.6. Хемилюминесцентные индикаторы	. 320
3.6. Хемилюминесцентные индикаторы 3.7. Окислительно-восстановительные индикаторы 3.7. Окислительно-восстановительные к изменению т	. 321
3.7. Окислительно-восстановительные индикаторы 3.7.1. Индикаторы, мало чувствительные к изменению т	η
3.7.1. Индикаторы, мало чувствительные к изменению р и ионной силы раствора	. 321
и нонной силы раствора 3.7.2. Индикаторы, чувствительные к изменению рН и ис)H- 201
3.7.2. Индикаторы, чувствительные к помети.	. 321
ной силы раствора 3.8. Индикаторные бумаги	299
3.8. Индикаторные бумаги	322
3.8.1. Иодкрахмальная и уксуппосыния в 3.8.2. Кислотно-щелочная двухцветная	. 323
3 8 3 Кислотно-щелочная многоцветная	. 323
3.8.2. Кислотно-щелочная двухиветная 3.8.3. Кислотно-щелочная многоцветная 3.9. Константы устойчивости комплексных ионов 3.9.1 Константы устойчивости комплексов с неоргани	ue-
3.9. Константы устоичивости комплексия в неоргани 3.9.1. Константы устойчивости комплексов с неоргани	324
3.9.1. Константы устоичивости комплексов с органически	ми
скими лигандами 3.9.2. Константы устойчивости комплексов с органически	. 335
3.9.2. Константы устоичивости комплексов с макроцикли	чe-
	. 343
	. 346
кими лигандами кислот и оснований	. 347
3.10.1. Константы ионизации неорганических оснований	
3.10.2. Константы ионизации неорганических кислот . 3.10.3. Константы ионизации органических кислот .	. 350
3.10.4. Қонстанты ионизация органи органия веще Произведения растворимости труднорастворимых веще	ств
воде	. 35
воде осаждения гидроксидов металлов	. 36
ферные растворы	. 36
Machanie hacrachar	

	3.13.1. Буферные растворы с рH = $1,10 \div 3,50$
3.14. 3.15.	3.13.10. Значения рН стандартных буферных растворов . 375 Нормальные окислительные потенциалы 376 Значения потенциалов полярографических полуволн 387
	а 4. Органические соединения
4.1.	Классификация и номенклатура
4.1.	4 1 1. Основы классификации и номенклатуры
	4.1.2. Органические радикалы и атомные группы
, .	4.1.3. Некоторые важнейшие приставки и окончания
4.2.	Свойства органических соединений
	4.2.1. Плина связей в молекулах, не содержащих сопря-
	женных связей
	4.2.3. Средняя длина главных ковалентных связей (не-
:	сопряженных)
	4.2.4. Ковалентные радиусы
	4.2.5. Инфракрасные частоты основных химических связей 402 4.2.6. Рефракции R_D ковалентных связей для расчета моле-
	кулярных рефракций (линия D натрия)
	4.2.7. Теплоты сгорания алканов, алкенов и первичных
	СПИРТОВ
	4.2.8. Средняя длина водородной связи
	4 9 10 Константы ковалентных связей лля вычисления
	теплоты сгорания несопряженных молекул 400
	4.2.11. Энергия связи
	4.2.12. Энергия диссоциации связи К—Л
	4.2.14. Величины типичных сдвигов протонов
	4.2.15. Энергия стабилизации некоторых органических
	соединений
	4.2.17. Физические константы органических сосынских 4.86
	4.2.18. Название солей некоторых органических кислот . 495
	4.2.19. Термодинамические величины для некоторых ор-
4.3.	ганических соединений
4.0.	4.3.1. Классификация красителей по химическому строению 503
	4.3.2. Классификация красителей по красящим свойствам . 545
	4.3.3. Номенклатура красителей
4.4.	АЛ 1 У иминеская уарактеристика витаминов
-	4.4.2. Свойства и физиологическое действие витаминов. 527
Гла	ва 5. Газы
	. Приведение объема газа к нормальным условиям
0.1	5.1.1. Расчетные формулы

5.2.	Концентрация газов	536
0.2.	5.2.1 Способы определения концентрации	536
	5.9.9 Формулы переспета концентраций	536
E 2		537
5.3.	Идеальные газы	537
5.4		537
	5.4.1. Уравнение состояния идеальных газов	538
	5.4.2. Универсальная газовая постоянная	200
, .	5.4.3. Кинетическая теория газов	538
41	5.4.3. Кинетическая теория газов	539
4		539
5. 5.	Коэффициенты преломления газов и паров	540
5.6.	Диэлектрическая проницаемость газов и паров при нормаль-	
0.0.	ном павлении	540
5.7.	Реальные газы	541
0.7.	Реальные газы	541
	5.7.2. Коэффициенты сжимаемости газов	541
	5.7.3. Основные физические константы некоторых газов .	541
F 6	D.7.5. OCHOBRIDE QUINTERNA KONCTARTINI HEKOTOPINA TASOB	541
5.8.	Вязкость, диффузия и теплопроводность газов и паров .	5/15
5 .9.	Теплоемкость газов	E 46
5.10.	Сжатые и сжиженные газов (р) в жидком состоянии	047
-	- 5.10.1. Плотность газов (р) в жидком состоянии	54/
	5.10.2. Давление паров сжиженных газов	547
	- 5 ты 3 теплоту папопопизовиния тол тжиженных газов	
	при нормальном атмосферном давлении	547
	- 5 10 4 - Улельная теплота папооопазования (V) - Сжижскима	
	газов при различных температурах	549
	5.10.5. Удельная теплоемкость сжиженных газов	549
•	5.10.6. Баллоны для сжатых и сжиженных газов	549
E 11	Татараа размиранна и ризмирсти газов	550
5.11.	Тепловое расширение и влажность газов 5.11.1. Тепловое расширение газов	550
	5.11.1. Гепловое расширение газов	550
	5.11.2. Влажность газа (f), насыщенного водяными парами	550
5.12.	Горючие газы	550
	 5.12.1. Индивидуальные газы 	
	5.12.2. Смеси газов (промышленные газы)	552
	5.12.2. Смеси газов (промышленные газы)	553
	5 19 4. Спелица состав попутных нефтяных газов некоторых	
	месторождений СССР	5 5 3
	вых местопожлений СССР	DD9
5.13.	Hecormectumble 1935	UU-
5.14.		554
		555
Глав	в а 6. Воздух	
6.1	ATMOCTOPHINE BOSTVY	558
0.1.	Атмосферный воздух	558
. —	6.1.2. Изменение давления, температуры и плотности воз-	
	U.1.2. PISMEHENNE HABITENIA, TEMHEPATYPIN IN THIOTHOCTH DOS	555
	духа в зависимости от высоты над уровнем моря	556
0.3	6.1.3. Физические константы воздуха	200
6.2.	Произвеление pV для воздуха	001
	6.2.1. Произведение <i>pV</i> при температурах ниже нуля	SO
	6.2.2. Произведение pV при температурах выше нуля	50
6.3.	Динамическая и кинематическая вязкость воздуха	558
	-631 Bearocts bearway tink temperature of -200 ± 30	1
	1000 °С и давлении 0,1 МПа	558
	1000 °С и давлении 0,1 МПа	
	0,1—20 МПа	558

6.4.	Свойства сжиженного воздуха
	6.4.1. Плотность воздуха в жидкой и газовой фазах, находя-
	щихся в равновесии
	TOURONOMEDO
	нице раздела с сооственным паром при температуре —190,3 °C
6.5.	Плотность возлуха
0.0.	6.5.1. Сухой воздух
	6.5.2. Влажный воздух
6.6.	Теплотехнические свойства воздуха
	6.6.1. Теплопроводность
	6.6.1. Теплопроводность
6.7.	Ruskhout Boshvas
	6.7.1. Содержание водяного пара в воздухе при насыщении . 561
	6.7.2. Солержание водяного пара в сжатом воздухе при
	насыщении
	6.7.3. Определение влажности воздуха по точке росы при
	барометрическом давлении 101325 Па, или 760 мм рт. ст 562 6.7.4. Определение влажности воздуха по показаниям
•	олл.4. Определение влажности воздуха по показаниям
6.8.	психрометра
6.9.	Постоянная влажность
6.10.	Осушка воздуха
6.11.	Растворимость воздуха в воде
	6.11.1. Растворимость при нормальных условиях 567
	Постоянная влажность
Глав	а 7. Твердые вещества и жидкости ,
7.1.	Коэффициенты сжимаемости
	7.1.1. Средний коэффициент сжимаемости ртути
	7.1.2. Средние коэффициенты сжимаемости различных ве-
	ществ
7 .2.	Плотность веществ при давлении 0,1 МПа и различных
	температурах
	7.2.1. Плотность ртути
5 0	7.2.2. Плотность жидких органических веществ 570
7.3.	7.2.2. Плотность жидких органических веществ 570 Критические свойства веществ 571 7.3.1. Критические свойства простых веществ и неорганиче-
	7.3.1. Критические своиства простых веществ и неорганиче-
	739 Критинеские свойства солей 571
	7.3.2. Критические свойства солей
7.4.	ских соединений
7.4. 7.5.	7.3.2. Критические свойства солей
7.4. 7.5.	7.3.2. Критические свойства солей
	Поверхностное натяжение
	Поверхностное натяжение
	Поверхностное натяжение
7. 5.	Поверхностное натяжение
	Поверхностное натяжение
7.5.7.6.	Поверхностное натяжение
7.5.7.6.7.7.	Поверхностное натяжение
7.5. 7.6. 7.7. 7.8.	Поверхностное натяжение
7.5.7.6.7.7.	Поверхностное натяжение
7.5. 7.6. 7.7. 7.8.	Поверхностное натяжение
7.5. 7.6. 7.7. 7.8. 7.9.	Поверхностное натяжение
7.5. 7.6. 7.7. 7.8.	Поверхностное натяжение

	7.10.2. Теплопроводность различных твердых веществ . 5	90
	7 10 3 Теплопроволность пазличных жилкостей	92
7.11.	Тепловое расширение	93
	7 11 1 Личейное расширение металлов	,,,,
	7.11.2. Линейное расширение различных веществ	JJT
лав	а 8. Вода	99
		599
ჭ. I . ა.ი	Пустромиц состояния волы при различных температурах	
3.2.	длаграммы состояния воды при рассии пап	600
	и давлениях	600
	молификаций льда	602
	ХУЗ Гройные точки воды и модификации льда	603
8.3.	Физико-химические константы воды в трех агрегатных	
	состояниях	603
	8.3.1. Лед	603
	8.3.2. Вода — жидкость	604
	8.3.1. Лед	604
8.4.	Пиэлектрические свойства волы	605
	8 4 1 Лиалектрическая проницаемость волы	605
	Q 4 9 Пирпектовиеские свойства волы пои разных частотах	UUU
8.5.	Электрическая проводимость воды	605
	Электрическая проводимость воды	COE
	ROUNT	000
	х 5 х улельния электрических проводимость ласораторног	606
	воды	606
8.6.	Ионное произведение воды	000
	воды	606
	0—200 °C	000
	8.6.2. Пересчет водородного показателя (рН) на активность	607
	ионов водорода $a_{\rm H^+}$ и обратно	607
8.7.	Сжимаемость воды	607
	8.7.1. Изменение объема воды при повышении давления .	608
8.8.	Вязкость воды	609
	8.8.1. Вязкость и текучесть воды при разных температурах	003
	8.8.2. Динамическая (η) и кинематическая (γ) вязкость воды	611
•	при разных температурах и давлениях	٠
	с.о.э. Относительная визмость воды (ф) при высоких дамие	611
8.9.	ниях	612
0.3.	8.9.1. Поверхностное натяжение воды на границе с воздухом	612
	8.9.2. Поверхностное натяжение воды на границе с органиче-	
	скими жилкостями	612
8.10.		614
0	8 10 1 Показатель преломления волы (па) по отношению к	
	возлуху	614
	8 10 2. Показатель преломления воды для разных длин	
	волн при 20°C	614
8.11.	. Упругость паров, плотность и удельный объем воды	014
	8.11.1. Упругость паров воды надо льдом	014
٠.	ΧΙΙ Ο ΙΙποπικόσει υποπειεία οδίζου Βοπεί α ΥΠΟΥΓΟΤΈ ΠΑΙΧ	
	при разных температурах	615
8.12.	Температура кипения воды при различных давлениях	616
8.13.	. Коэффициенты теплопроводности воды и водяного пара	617

8.14.	Удельная теплоемкость воды и водяных паров	19
	давлении до 20 МПа и температуре 0—500 °C 6	19
	8.14.2. Удельная теплоемкость водяного пара при давле-	
	ими по 90 МПа и температуре 520—740 °C	21
	9 14 3 Уледьная теплоемкость воляного пара при давле-	
	выше 20 МПа и температуре 409—740°C	22
8.15.	Упальный объем, масса і м ³ воляного пара, удельная энталь-	
	-же (попросодержание) и удельная теплота папосоразова-	0.4
	ния (тельносодержание) и удельном тельности паравира	2 4 94
	8.15.1. Насыщенный водяной пар	2 4 95
8.16.	Скорость ультразвука в воде при различных температурах 6	26
8.17.		
	6.17.1. Водородные связи	
	8.17.2. Аномальные физические свойства воды	
	8.17.4. Водородные связи в различных соединениях 6	29
8.18.	Tawara 1012	29
0.10.	8.18.1. Изотопные разновидности воды	29
	8.18.2. Свойства тяжелой воды	-
8.19.	Ununotulia Both	
	8 19 1 Спелний состав молской волы	31
	8.19.2. Состав некоторых минеральных вод СССР 6	
,	8.19.3. Химический состав вод некоторых рек СССР о	34
	8.19.4. Химический состав вод некоторых крупных озер	25
	CCP	35
8.20.	Воля на земном шаре	
	8.20.1. Запасы воды на Земле	
		35
	вации 8.20.3. Классификация природных вод по жесткости	36
8 91	Сравнение градусов жесткости	336
8.22.	V воссификация примесей волы по фазово-лисперсному со-	
0.22.	стоянию и систематизация методов их удаления	337
	8.22.1. Классификация примесей воды по фазово-дисперсно-	.07
	WV COCTORHUO	200
	8.22.2. Систематизация методов удаления примесеи воды • ч	39
8.23.	Основные требования к качеству питьевой воды	ЮЭ
Глан	ва у, растворы	641
	Casses Purchage Konnentration Dactropor	641
9.1. 9.2.	Парасиет компентраций растворов	641
9.2.	0.9.1 формулы пересчета концентраций растворов	641
	0 9 9 Honocuer rougeurnagur Rhibamenhbix B i Dammar na 100 1	
	раствора, на концентрацию в граммах на 100 г растворителя	644
	0.9.2 Помазатель предомления волных растворов неорганиче-	
	сину веществ различных концентрации при 1/,5 С	6 46
	о о л. Помаратель преломления волных растворов органических	
	решеств пазличной концентрации при 20 °С	646
9.3.	Формулы и зависимости, используемые при приготовлении	C 477
	DACTRODOR	647 ·
	O 2 1 Dactroneure remectra R DACTRODUTEJE	64 7
	Q 3 9 Разбавление раствора растворителем	OT!
	9.3.3. Концентрирование раствора выпариванием растворы	647
•	теля	O-14

	9.3.4. Смешение двух растворов одного вещества с различ-	-
	ными концентрациями	674
	9.3.5. Смешение двух растворов различных веществ	648
	9.3.6. Правило смешения	648
	Construction of the second of	010
9.4.	Сравнительная характеристика растворимости твердых	C40
	и жидких веществ в различных растворителях	649
9.5.		649
		649
	9.5.2. Растворимость в бинарных системах	670
	9.5.3. Растворимость в тройных системах	681
9.6	Растворимость в воде органических веществ	686
9.0	PACIBO DIMOCTE B BODE OPIAHITECKIX BELLECIB	686
•	9.6.1. Растворимость твердых органических веществ	000
	9.6.2. Взаимная растворимость жидких органических ве-	~~~
	ществ и воды	689
	9.6.3. Распределение органических веществ между водой	
	и органическим растворителем	6 94
9.7.	Раствор имость газов в воде	697
J.7.	9.7.1. Растворимость газов при давлении 101325 Па	697
	0.7.0 Passaura and	697
	9.7.2. Газогидраты	031
9.8.	Растворимость различных веществ в некоторых органиче-	con
	CKMA Pacibophicana	699
9.9.	Давление паров воды над растворами	700
	9.9.1. Давление паров воды над растворами H ₂ SO ₄	700
	9.9.2. Давление паров воды над растворами NaOH и NaCl.	701
	9.9.3. Давление паров воды над насыщенными растворами	
		701
0.10	Na ₂ SO ₄	701
9.10.	ПЛОТНОСТЬ ВОДНЫХ РАСТВОРОВ	701
	J. 10.1. I MOINOCID BOMBIN PREIBOPOD KNEWO MPH	
	9.10.2. Плотность олеума при 20 °С	703
	9.10.3. Пересчет массы олеума в массу моногидрата серной	
•	кислоты	703
	9.10.4. Плотность водных растворов фосфорной и хлорной	
	кислот при 20 °С	704
	9.10.5. Плотность водных растворов некоторых неоргани-	
	9.10.3. IMOTHOCIS BOARDA PACIBOPOS REKOTOPIA REOPEANA	705
	ческих и органических кислот, кг/м3	100
	9.10.6. Плотность водных растворов уксусной и муравьиной	700
	кислот при 20°C	706
	9.10.7. Плотность водных растворов щелочей при 20 °C	707
	9.10.8. Плотность известкового молока при 20 °C	707
	9.10.9. Плотность водных растворов некоторых неоргани-	
	ческих веществ	708
	0 10 10 Tropport portilly partener Methiopore M STATO.	
	9.10.10. Плотность водных растворов метилового и этило-	710
	вого спиртов при 15 °C	, , ,
	9.10.11. Плотность водных растворов органических веществ	711
	при 20 °C	711
9. <u>11.</u>	Вязкость водных растворов	711
The second	9.11.1. Относительная вязкость растворов неорганиче-	
	9.11.1. Относительная вязкость растворов неорганических веществ при 25 °C	711
	9.11.2. Динамическая вязкость растворов органических	
	5.11.2. Annamisectar propose of annicomm	712
	веществ при 20 °С	712
•	9.11.3. Вязкость водных растворов глицерина	
9.12.	Вращение плоскости поляризации	713
9 .13.	ALIOUPISMA D DOMINIA PACIBOPAA	715
	9.13.1. Диффузия неорганических веществ	715
	9.13.2. Диффузия органических веществ	716
	9.13.3. Диффузия газов	716
0.14	5.10.0. Authorized	716
9.14.	Поверхностное натяжение водных растворов веществ	, 10

	9.14.1. Поверхностное натяжение растворов неорганиче-	l		10.5.3. Поправки для приведения барометрических показа-
	ских вешеств	-		ний к показаниям барометра на географической широте 45° 742
	9 14 9 Поверхностное натяжение растворов органических	1 .		10.5.4. Поправки на капиллярное понижение 742
	Remects	i	10.6.	Постоянные термометрические точки
15.	Осмотические коэффициенты водных растворов, применя.			Поправки к показаниям лабораторного термометра на вы-
	емых в качестве стандартов при изостатических измерениях /10	1		ступающий столбик ртути
16	Температура замерзания и кипения растворов /19	ı	10.8	Ареометрические шкалы
	9.16.1. Температура замерзания растворов MgCl ₂ , NaCl	}	10.0.	Бумага хроматографическая
	4 CaCl	1	10.0.	Фильтры
	9.16.2. Температура замерзания водных растворов орга-		10.10.	10.10.1. Средний диаметр пор фильтров
	нических веществ	I .	:	10.10.2. Бумажные фильтры для лабораторных работ 746
	9.16.3. Максимальные температуры кипения водных рас-	Į.	10.11	Ситовые шкалы
	творов солей	l l	10.11.	Термопары
17	Криоскопические и эбулиоскопические константы	į.	10.12.	10 10 1 Terror and the posterior was recovery to proport
9.17.	9.17.1. Криоскопические константы			10.12.1. Термопары из различных металлических проводников и химически чистой платины
	9.17.1. Криоскопические константы			HUROB H XUMMUTECKH UNCTON HAZINADI
	9.17.2. Эбулиоскопические константы	1		10.12.2. Область применения некоторых термопар 749
9.18.	Теплоемкость и теплопроводность водных растворов	1	10.13.	Электропровода
	9.18.1. Теплоемность растворов солей	1		10.13.1. Свойства некоторых проводников
	9.18.2. Коэффициенты теплопроводности растворов солей			10.13.2. Характеристика медных проводов
	при 20 °С	1		10.13.3. Сила тока плавления различных проводов
9.19.	Термодинамические свойства растворов			10.13.4. Химический состав сплавов для проводов 752
	9.19.1. Интегральная теплота растворения кислот и щело-			10.13.5. Характеристика проводов из сплавов высокого
	чей при 25°С	1		сопротивления
	9.19.2. Интегральная теплота растворения солен при 10 С 124	l	10.14.	Нагреватели
	9.19.3. Термодинамические величины для ионов в водных	.1		10.14.1. Карборундовые нагреватели
	растворах	1		10.14.2. Угольные и графитовые нагреватели
9 .20.	Электрохимические свойства растворов	1	10.15.	Температура и цвета каления
	9 20 1 Степень лиссопиании	1	10.16.	Бани. Предельные температуры нагрева на банях
	9 20 2. Коэффициенты активности различных новов	· t	10.17.	Высушивающие вещества
	9.20.3. Коэффициенты активности электролитов	[10.17.1. Высушивающая способность различных веществ . 754
	9 20 4. Активность волы в растворах хлорида натрия и		•	10.17.2. Вещества для обезвоживания жидких органиче-
	хлопива кальния при 25°C	l.		ских веществ
	9.20.5. Числа переноса	1		10.17.3. Вещества для высушивания газов
	9 90 6 Эмвиралентная электрическая проволимость раство-	- {	10.18.	Охлаждающие смеси
	пов электролитов при 25 °C	· • ·		10.18.1. Охлаждающие смеси из воды или снега с одной
	9.20.7. Ионная проводимость при бесконечном разбавлении 733	ŀ	,	солью
	9.20.8. Улельная электрическая проводимость водных рас-	1		10.18.2. Охлаждающие смеси из двух солей с водой и
	творов	1 .		CHETOM
	9.20.9 Улельная электрическая проводимость водных	İ		10.18.3. Охлаждающие смеси солей с кислотами 757
	растворов КСІ	1		10.18.4. Охлаждающие смеси из кислоты и снега
_		}		10.18.5. Охлаждающие смеси с твердой углекислотой 758
Глав	ва 10. Лабораторная техника)	•	
10.1.	Истинная масса тела		Гиав	а 11. Техника безопасности
	10.1.1. Поправочный коэффициент К		11 1	Ядовитые вещества
10.2.	Истинная емкость стеклянных сосудов	1 '		11.1.1. Классификация сильнодействующих ядовитых веществ 759
	$10.2.1$. Поправочные множители C_t и C_{T-t} для вычисления			11.1.2. Сильнодействующие ядовитые вещества с особым
-	истинной емкости стеклянных сосудов			порядком приобретения, сбыта, отпуска, хранения, учета
10.3	Поправки для приведения объема раствора к объему при	ı		и перевозки
10.0.	20 °C	[11.1.3. Токсическое действие химических соединений 760
10 4	Допустимые отклонения от номинальной емкости различных	{		11.1.4. Предельно допустимые концентрации (ПДК) вред-
. U. T.	стеклянных измерительных сосудов			ных веществ в производственных помещениях
10.5	Поправки к показаниям барометра	ŀ		
10.0.	10.5.1. Поправки для приведения барометрических отсче-	1		11.1.5. Предельно допустимые концентрации (ПДК) вредных веществ в воздухе населенных мест
	тов по ртутному барометру при различных температурах	ł		
	KO°C	ĺ		11.1.6. Предельно допустимые концентрации (ПДК) вредных веществ в волоемах санитарно-бытового назначения 766
	10.5.2. Поправки для приведения барометрических показа-	Į.,	119	
	ний к показаниям барометра на высоте уровня моря 742		11.4.	Отне- и взрывоопасные вещества
	nin a nonconstruction in america house, with the	I		11.2.1. Общие сведения

	11.2.2. Огнеопасные вещества, их хранение и способы ту-	
	шения пожара	772
	11.2.3. Огне- и взрывоопасные свойства газов в смеси с воз-	
	IVXOM	114
	11.2.4. Огне- и взрывоопасные органические жидкости	774
	11.2.5. Огне- и взрывоопасные свойства пылевоздушных	
	смесей некоторых веществ	777
	11.2.6. Скорость выгорания некоторых горючих жидкостей	
	со свободной поверхности	777
	со свободной поверхности	
	газов некоторых веществ в смеси с воздухом	778
11.3.	Вещества, причиняющие химические ожоги	7/9
11.4.	Предельно допустимые дозы облучения	780
	11.4.1. Коэффициенты уменьшения дозы	780
	11.4.2. Пробег альфа- и бета-частиц в воздухе и алюминии	
	в зависимости от их энергии	781
	11.4.3. Допустимые дозы облучения	781
	11.4.4. Линейные коэффициенты ослабления узкого пучка	
	гамма-лучей	782
11.5.	Средства общей и индивидуальной защиты обслуживающего	
	персонала	782
	11.5.1. Вентиляция	782
	11.5.2. Спецодежда	783
	11.5.3. Средства индивидуальной защиты	784
11.6.	Оказание первой помощи	784
	11.6.1. Меры первой помощи при отравлении	784
	11.6.2. Меры первой помощи при химических ожогах	791
	11.6.3. Оказание первой помощи при термических ожогах .	793
	11.64 Overavia pappay navous pre passuray	793
	тт. о. ч. Оказание первои помощи при ранениях	193
F = = =	11.6.4. Оказание первой помощи при ранениях	
	а 12. Единицы измерения	794
12.1.	а 12. Единицы измерения	794
12.1.	а 12. Единицы измерения	794 794
12.1.	а 12. Единицы измерения	794 794 794
12.1.	а 12. Единицы измерения	794 794 794 794
12.1.	а 12. Единицы измерения	794 794 794 795
12.1.	а 12. Единицы измерения	794 794 794 795 796
12.1. 12.2.	а 12. Единицы измерения	794 794 794 795 796 796
12.1. 12.2.	а 12. Единицы измерения	794 794 794 795 796 796 806
12.1. 12.2.	а 12. Единицы измерения	794 794 794 795 796 796 806
12.1. 12.2.	а 12. Единицы измерения Метрические системы мер и Международная система единиц 12.1.1. Метрические системы единиц 12.1.2. Международная система единиц СИ 12.1.3. Образование кратных и дольных единиц Единицы измерения СИ 12.2.1. Основные, дополнительные и производные единицы СИ Внесистемные единицы измерения 12.3.1. Единицы, допускаемые к применению наравне с единицами СИ	794 794 794 795 796 796 806
12.1. 12.2. 12.3.	а 12. Единицы измерения Метрические системы мер и Международная система единиц 12.1.1. Метрические системы единиц 12.1.2. Международная система единиц СИ 12.1.3. Образование кратных и дольных единиц Единицы измерения СИ 12.2.1. Основные, дополнительные и производные единицы СИ Внесистемные единицы измерения 12.3.1. Единицы, допускаемые к применению наравне с единицами СИ 12.3.2. Единицы, временно допускаемые к применению	794 794 794 795 796 796 806
12.1. 12.2.	а 12. Единицы измерения	794 794 794 795 796 806 806 807
12.1. 12.2. 12.3.	а 12. Единицы измерения Метрические системы мер и Международная система единиц 12.1.1. Метрические системы единиц 12.1.2. Международная система единиц СИ 12.1.3. Образование кратных и дольных единиц Единицы измерения СИ 12.2.1. Основные, дополнительные и производные единицы СИ Внесистемные единицы измерения 12.3.1. Единицы, допускаемые к применению наравне с единицами СИ 12.3.2. Единицы, временно допускаемые к применению Соотношение метрических и некоторых внесистемных единиц с единицами СИ	794 794 794 795 796 796 806 806 807
12.1. 12.2. 12.3.	а 12. Единицы измерения Метрические системы мер и Международная система единиц 12.1.1. Метрические системы единиц 12.1.2. Международная система единиц СИ 12.1.3. Образование кратных и дольных единиц Единицы измерения СИ 12.2.1. Основные, дополнительные и производные единицы СИ Внесистемные единицы измерения 12.3.1. Единицы, допускаемые к применению наравне с единицами СИ 12.3.2. Единицы, временно допускаемые к применению Соотношение метрических и некоторых внесистемных единиц с единицами СИ	794 794 794 795 796 796 806 806 807 807
12.1. 12.2. 12.3.	а 12. Единицы измерения Метрические системы мер и Международная система единиц 12.1.1. Метрические системы единиц 12.1.2. Международная система единиц СИ 12.1.3. Образование кратных и дольных единиц Единицы измерения СИ 12.2.1. Основные, дополнительные и производные единицы СИ Внесистемные единицы измерения 12.3.1. Единицы, допускаемые к применению наравне с единицами СИ 12.3.2. Единицы, временно допускаемые к применению Соотношение метрических и некоторых внесистемных единиц с единицами СИ	794 794 794 795 796 796 806 806 807 815 815
12.1. 12.2. 12.3.	а 12. Единицы измерения Метрические системы мер и Международная система единиц 12.1.1. Метрические системы единиц 12.1.2. Международная система единиц СИ 12.1.3. Образование кратных и дольных единиц Единицы измерения СИ 12.2.1. Основные, дополнительные и производные единицы СИ Внесистемные единицы измерения 12.3.1. Единицы, допускаемые к применению наравне с единицами СИ 12.3.2. Единицы, временно допускаемые к применению Соотношение метрических и некоторых внесистемных единиц с единицами СИ	794 794 794 795 796 796 806 806 807 815 815 817
12.1. 12.2. 12.3.	а 12. Единицы измерения Метрические системы мер и Международная система единиц 12.1.1. Метрические системы единиц 12.1.2. Международная система единиц СИ 12.1.3. Образование кратных и дольных единиц Единицы измерения СИ 12.2.1. Основные, дополнительные и производные единицы СИ Внесистемные единицы измерения 12.3.1. Единицы, допускаемые к применению наравне с единицами СИ 12.3.2. Единицы, временно допускаемые к применению Соотношение метрических и некоторых внесистемных единиц с единицами СИ	794 794 794 795 796 796 806 807 807 815 815 817 818
12.1. 12.2. 12.3.	а 12. Единицы измерения Метрические системы мер и Международная система единиц 12.1.1. Метрические системы единиц 12.1.2. Международная система единиц СИ 12.1.3. Образование кратных и дольных единиц Единицы измерения СИ 12.2.1. Основные, дополнительные и производные единицы СИ Внесистемные единицы измерения 12.3.1. Единицы, допускаемые к применению наравне с единицами СИ 12.3.2. Единицы, временно допускаемые к применению Соотношение метрических и некоторых внесистемных единиц с единицами СИ	794 794 794 795 796 796 806 807 807 815 815 817 818 820
12.1. 12.2. 12.3. 12.4. 12.5.	а 12. Единицы измерения Метрические системы мер и Международная система единиц 12.1.1. Метрические системы единиц 12.1.2. Международная система единиц СИ 12.1.3. Образование кратных и дольных единиц Единицы измерения СИ 12.2.1. Основные, дополнительные и производные единицы СИ Внесистемные единицы измерения 12.3.1. Единицы, допускаемые к применению наравне с единицами СИ 12.3.2. Единицы, временно допускаемые к применению Соотношение метрических и некоторых внесистемных единиц с единицами СИ	794 794 794 795 796 796 806 807 807 815 817 818 820 821
12.1. 12.2. 12.3.	а 12. Единицы измерения Метрические системы мер и Международная система единиц 12.1.1. Метрические системы единиц 12.1.2. Международная система единиц СИ 12.1.3. Образование кратных и дольных единиц Единицы измерения СИ 12.2.1. Основные, дополнительные и производные единицы СИ Внесистемные единицы измерения 12.3.1. Единицы, допускаемые к применению наравне с единицами СИ 12.3.2. Единицы, временно допускаемые к применению Соотношение метрических и некоторых внесистемных единиц с единицами СИ	794 794 794 795 796 806 806 807 815 815 818 820 821 821
12.1. 12.2. 12.3. 12.4. 12.5.	а 12. Единицы измерения Метрические системы мер и Международная система единиц 12.1.1. Метрические системы единиц 12.1.2. Международная система единиц СИ 12.1.3. Образование кратных и дольных единиц Единицы измерения СИ 12.2.1. Основные, дополнительные и производные единицы СИ Внесистемные единицы измерения 12.3.1. Единицы, допускаемые к применению наравне с единицами СИ 12.3.2. Единицы, временно допускаемые к применению Соотношение метрических и некоторых внесистемных единиц с единицами СИ Национальные системы мер 12.5.1. Русская система мер 12.5.2. Английская система мер 12.5.3. Производные английской системы мер 12.5.4. Американская система мер 12.5.5. Перевод доймов в миллиметры Другие единицы измерения 12.6.1. Пробы драгоценных металлов	794 794 794 795 796 796 806 807 815 817 818 821 821 821
12.1. 12.2. 12.3. 12.4. 12.5.	а 12. Единицы измерения Метрические системы мер и Международная система единиц 12.1.1. Метрические системы единиц 12.1.2. Международная система единиц СИ 12.1.3. Образование кратных и дольных единиц Единицы измерения СИ 12.2.1. Основные, дополнительные и производные единицы СИ Внесистемные единицы измерения 12.3.1. Единицы, допускаемые к применению наравне с единицами СИ 12.3.2. Единицы, временно допускаемые к применению Соотношение метрических и некоторых внесистемных единиц с единицами СИ Национальные системы мер 12.5.1. Русская система мер 12.5.2. Английская система мер 12.5.3. Производные английской системы мер 12.5.4. Американская система мер 12.5.5. Перевод доймов в миллиметры Другие единицы измерения 12.6.1. Пробы драгоценных металлов 12.6.2. Оценка коррозионной стойкости	794 794 794 795 796 796 806 807 815 817 818 820 821 821 821 821 821 822
12.1. 12.2. 12.3. 12.4. 12.5.	а 12. Единицы измерения Метрические системы мер и Международная система единиц 12.1.1. Метрические системы единиц 12.1.2. Международная система единиц СИ 12.1.3. Образование кратных и дольных единиц Единицы измерения СИ 12.2.1. Основные, дополнительные и производные единицы СИ Внесистемные единицы измерения 12.3.1. Единицы, допускаемые к применению наравне с единицами СИ 12.3.2. Единицы, временно допускаемые к применению Соотношение метрических и некоторых внесистемных единиц с единицами СИ Национальные системы мер 12.5.1. Русская система мер 12.5.2. Английская система мер 12.5.3. Производные английской системы мер 12.5.4. Американская система мер 12.5.5. Перевод доймов в миллиметры Другие единицы измерения 12.6.1. Пробы драгоценных металлов	794 794 794 795 796 796 806 807 815 817 818 821 821 821
12.1. 12.2. 12.3. 12.4. 12.5.	Метрические системы мер и Международная система единиц 12.1.1. Метрические системы единиц 12.1.2. Международная системы единиц СИ 12.1.3. Образование кратных и дольных единиц Единицы измерения СИ 12.2.1. Основные, дополнительные и производные единицы СИ 12.2.1. Основные единицы измерения	794 794 794 795 796 806 806 807 815 815 817 818 820 821 821 821 822 823
12.1. 12.2. 12.3. 12.4. 12.5.	Метрические системы мер и Международная система единиц 12.1.1. Метрические системы единиц 12.1.2. Международная системы единиц СИ 12.1.3. Образование кратных и дольных единиц Единицы измерения СИ 12.2.1. Основные, дополнительные и производные единицы СИ Внесистемные единицы измерения 12.3.1. Единицы, допускаемые к применению наравне с единицами СИ 12.3.2. Единицы, временно допускаемые к применению Соотношение метрических и некоторых внесистемных единиц с единицами СИ Национальные системы мер 12.5.1. Русская система мер 12.5.2. Английская система мер 12.5.3. Производные английской системы мер 12.5.4. Американская система мер 12.5.5. Перевод дюймов в миллиметры Другие единицы измерения 12.6.1. Пробы драгоценных металлов 12.6.2. Оценка коррозионной стойкости 12.6.3. Минералогическая шкала твердости ожение. Уточненные относительные атомные массы элементов	794 794 794 795 796 806 806 807 815 815 817 818 820 821 821 821 822 823

Ускоренное развитие химической науки и промышленности в нашей стране значительно увеличило потребности в химической литературе. Особенно ощущалась необходимость в кратком однотомном издании, содержащем справочные данные об основных химических и физических свойствах элементов, простых веществ, химических соединений и другие сведения, требующиеся в повседневной деятельности как специалистам химических производств и лабораторий, так и работникам многих отраслей народного хозяйства, в которых используются химические продукты и материалы.

В 1962 г. вышло в свет первое издание настоящего справочника. Кроме общих сведений, имеющихся в однотипных изданиях, но изложенных шире, в этом справочнике были приведены более полные сведения по химическому анализу неорганических веществ, лабораторной технике, свойствам воды, системам единиц измерения и др.

В дальнейшем справочник был значительно переработан и дополнен. Особенно большая работа выполнена по приведению данных в соответствие с новой углеродной шкалой атомных масс и Международной системой единиц (СИ).

Согласно пожеланиям рецензентов и читателей в пятое издание справочника внесен ряд изменений — исключен материал о высокомолекулярных соединениях, выделен раздел, посвященный воздуху. Исправлены замеченные ошибки, неточности и опечатки, допущенные в предыдущем издании. Большое внимание уделено выбору наиболее достоверных данных среди многочисленных и часто разноречивых сведений, опубликованных в периодической и справочной литературе. Большинство величин, характеризующих химические и физические свойства простых веществ и химических соединений, приведено в единицах СИ. Однако ряд данных выражен также в метрических и внесистемных единицах. Это отражает существующее в настоящее время положение в практике применения систем измерения, поскольку процесс замены других единиц измерения единицами СИ оказался весьма медленным. В гл. 12, а иногда и в других главах приведены множители для перевода различных единиц в единицы СИ и наоборот.

Главы 5, 6, 8, 9, 11 и 12 написаны И. Т. Гороновским, 1—3, 7 и 10— Ю. П. Назаренко, 4— Е. Ф. Некрячем. Первые четыре издания справочника опубликованы под общей редакцией члена-корреспондента АН УССР О. Д. Куриленко.

Авторы справочника выражают искреннюю благодарность всем лицам, высказавшим свои замечания, которые помогли в работе над настоящим переизданием, особенно академику АН УССР А. Т. Пилипенко, доктору химических наук Н. С. Фортунатову и доценту КГУ В. Л. Павлову. Авторы также глубоко признательны своим постоянным помощницам в оформлении всех изданий справочника А. Б. Забарило и Л. Я. Репетюк.

Все указания на замеченные погрешности, а также рекомендации и пожелания в отношении содержания и порядка расположения материала справочника будут приняты с благодарностью и учтены в дальнейшей работе.

Авторы

химические элементы

Все огромное разнообразие химических соединений обусловлено различным сочетанием атомов в молекулах.

Атом — мельчайшая частица химического элемента, сохраняющая все химические свойства этого элемента. Атомы могут существовать в свободном состоянии и в соединениях с атомами того же или других элементов. Совокупность атомов, имеющих одинаковые химические свойства, называется химическим элементом.

Атом состоит из положительно заряженного ядра и отрицательно заряженных электронов, движущихся в его кулоновском поле. Суммарный заряд электронов в атоме по абсолютной величине равен заряду ядра. Атом электронейтрален. Объем ядра (около 10^{-36} см³) представляет собой очень малую часть общего объема атома (примерно 10^{-24} см³). Ядро состоит из протонов и нейтронов.

Заряд, масса ядра, а также число электронов различны у разных атомов. Заряд ядра выражается числом, кратным элементарному положительному электрическому заряду e, и равен +Ze, где Z — порядковый номер химического элемента в периодической системе элементов Д. И. Менделеева. Порядковый номер элемента равен числу протонов в ядре его атома. Массы ядер атомов одного и того же элемента могут различаться в зависимости от числа нейтронов, находящихся в ядре. Атомы элемента, имеющие различные количества нейтронов в ядре, называются изотопами этого элемента (занимающими одно и то же место в периодической системе). Для изотопов сохраняются названия и символы элементов и указывается их массовое число. Исключением являются изотопы водорода: 1_1H — протий, 2_1H (D) — дейтерий, 3_1H (T) — тритий.

Цифровые индексы при символах элементов означают: левый верхний — массовое число; левый нижний — порядковый номер элемента; правый верхний — заряд иона; правый нижний — число атомов, над самим символом — степень окисления.

Некоторые элементы принято объединять в семейства:

щелочные металлы — литий, натрий, калий, рубидий, цезий, франций;

щелочноземельные металлы — кальций, стронций, барий, радий; лантаноиды — лантан, церий, празеодим, неодим, прометий, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций:

актиноиды — актиний, торий, протактиний, уран, нептуний, плутоний, америций, кюрий, берклий, калифорний, эйнштейний, фермий, менделевий, нобелий, лоуренсий;

семейство железа — железо, кобальт, никель; семейство платины — рутений, родий, палладий, осмий, иридий, платина;

калькогены — кислород, сера, селен, теллур, полоний;

галогены — фтор, хлор, бром, нод, астат;

инертные элементы (благородные газы) — гелий, неон, аргон, криптон, ксенон, радон.

Элементы, у атомов которых заполняется d-подуровень, называют d-элементами (переходными элементами). Аналогично применяют

названия s-, p- и f-элементы.

Инертные элементы, галогены, а также кислород, серу, селен, теллур, азот, фосфор, мышьяк, углерод, кремний, бор и водород называют неметаллами; все остальные элементы носят название металлов.

1.1. ОТНОСИТЕЛЬНЫЕ АТОМНЫЕ МАССЫ ЭЛЕМЕНТОВ

(см. Приложение)

Международный союз по чистой и прикладной химии и Международный союз по чистой и прикладной физике предложили заменить термин «атомные веса» термином «относительные атомные массы» и приняли новую единую шкалу атомных масс вместо двух ранее применявшихся шкал — физической и химической. В основу физической шкалы была положена масса изотопа кислорода 16О, которую принимали за 16; в основу химической — атомная масса природной смеси изотопов кислорода (99,759 % ¹⁶O; 0,037 % ¹⁷O; 0,204 % ¹⁸O), который также принимали равным 16. Числовые значения атомной массы по химической шкале в 1,000275 раза ниже, чем по физической.

В основу новой шкалы относительных атомных масс положена масса изотопа углерода 12C, которая принята равной 12. Числовые значения относительных атомных масс элементов по углеродной шкале, как правило, меньше, чем числовые значения по химической кислород-

ной шкале, в 1,000043 раза.

В таблице приведены рекомендуемые значения относительных атомных масс элементов, как существующих в земных условиях, так и полученных искусственно. Для многих элементов атомные массы зависят от происхождения и способа обработки исходного вещества. Поэто-

му в графе «Примечание» отмечены:

буквой «а» — элементы, для которых известные вариации изотопного состава в веществах различного происхождения препятствуют установлению более точного значения относительной атомной массы; таким образом, для этих элементов приведенные в таблице значения относительных атомных масс применимы для всех веществ земного происхождения;

буквой «б» — элементы, для которых известны геологические образцы с аномальным изотопным составом, поэтому разница между относительной атомной массой элемента в таких образцах и приведен-

ной в таблице может быть значительной;

буквой «в» — элементы, для которых значения относительной атомной массы, приведенные в таблице и в веществах, используемых в промышленности, могут существенно различаться;

буквой «г» — радиоактивные элементы, для которых приведена относительная атомная масса наиболее долгоживущего изотопа;

буквой «д» — радиоактивные элементы, для которых приведено. массовое число наиболее долгоживущего изотопа (массовое число общее число протонов и нейтронов в атомном ядре изотопа).

Порядко- вый номер элемента	Символ элемента	Название элемента	Относительная атомная масса элемента	Примеч ние
1	Н	Водород	$1,0079 \pm 0,0001$	a
2	He	Гелий	$4,00260 \pm 0,00001$. 6
, 2 3	Li	Литий	$6,941 \pm 0,003$	а, б, в
	Be	Бериллий	$9,01218 \pm 0,00001$	
4 5	В	Бор	10.81 ± 0.01	а, в
6	Č	Углерод	12.011 + 0.001	а
7	Ň	Азот	$14,0067 \pm 0,0001$	
8	Ö	Кислород	$15,9994 \pm 0,0003$	а
. 9	F	Фтор	$18,999403 \pm 0,000001$	
	Ne	Неон	$20,179 \pm 0,003$	В
10	Na	Натрий	$22,98977 \pm 0,00001$	_
11		Магний	$24,305 \pm 0,001$	б
12	Mg	Алюминий	$26,98154 \pm 0,00001$	
13	Al	Кремний	$28,0855 \pm 0,0003$	
14	Si		$30,97376 \pm 0,00001$	
15	P	Фосфор	$32,06 \pm 0.01$	a
16	S	Cepa V rop	$35,453 \pm 0,001$	
17	Cl	Хлор	$39,948 \pm 0,003$	а, б
. 18	Ar	Аргон	39.0983 ± 0.0003	
19	K	Калий	$40,08 \pm 0,01$	б
20	Ca.	Кальций	$44,9559 \pm 0,0001$	
21	Sc	Скандий	$47,90 \pm 0,03$	
22	Ti	Титан	$50,9415 \pm 0,0001$	
23	V	Ванадий	51.996 ± 0.001	
24	Cr	Хром	$54,9380 \pm 0,0001$	
25	Mn	Марганец	$55,847 \pm 0,003$	
26	Fe	Железо	$58,9332 \pm 0,0001$	
27	Co	Кобальт	$58,70 \pm 0.01$	
28	Ni	Никель	$63,546 \pm 0,003$	а
29	Сu	Медь	65 38 10.01	
30	Zn	Динк *	$65,38 \pm 0,01$ $69,72 \pm 0,01$	
31	Ga	Галлий	$72,59 \pm 0,03$	
32	Ge	Германий	$74,9216 \pm 0,0001$	
33	As	Мышьяк	78.96 + 0.03	
34	Se	Селен	$79,904 \pm 0,001$	
35	Br	Бром	83.80 ± 0.001	б, в
36	Кr	Криптон	$85,4678 \pm 0,0003$	б
37	Rb	Рубидий	87.62 ± 0.01	б
3 8	Şr	Стронций	$88,9059 \pm 0,0001$	
39	Y	Иттрий	$91,22 \pm 0,00$	б
40	Zr	Цирконий	$92,9064 \pm 0,0001$	
41	Nb	Ниобий	$95,94 \pm 0,0001$	
42	Mo	Молибден	95,54 ± 0,01 . 98	Д
43	Tc	Технеций		б
44	Ru	Рутений	$101,07 \pm 0,03$	**
45	Rh	Родий	$102,9055 \pm 0,0001$	б
46	Pd	Палладий	106.4 ± 0.1	б
47	Ag	Серебро	$107,868 \pm 0,001$	6
48	Cď	Кадмий	$112,41 \pm 0,01$. б
49	In	Индий	$114,82 \pm 0.01$	U
50	Sn	Олово	$118,69 \pm 0,03$	

n	родолжение	таб лицы

Порядко- вый номер элемента	Символ элемента	Название элемента	Относительная атомная масса элемента	Примеча- ние
51	Sb	Сурьма	$121,75 \pm 0,03$	
52	TI	Теллур	$127,60 \pm 0,03$	б
53	I	Иод	$126,9045 \pm 0,0001$	
54 [*] 55	Xe Ca	Ксенон	$131,30 \pm 0,01$	б, в
	Cs Ba	Цезий	$132,9054 \pm 0,0001$	e ·
56 57	Da La	Барий	$137,33 \pm 0.01$	6
58	Ce	Лантан Церий	$\begin{array}{c} 138,9055 \pm 0,0003 \\ 140,12 \pm 0,01 \end{array}$	б б
59	Pr	Празеодим	$140,12 \pm 0,01$ $140,9077 \pm 0,0001$	O
60	Nd	Неодим Неодим	$144,24 \pm 0.03$	б
61	Pm	Прометий	145	
62	Sm	Самарий	150.4 ± 0.1	д б
63	Eu	Европий	$151,96 \pm 0,01$	6
64	Gď	Гадолиний	$157,25 \pm 0,03$	ő
65	Тb	Тербий	$158,9254 \pm 0,0001$	•
66	Ďу	Диспрозий	$162,50 \pm 0,03$	
67	Ho	Гольмий	$164,9304 \pm 0,0001$	
68	Er	Эрбий	$167,26 \pm 0,03$	
69	Tm	Тулий	$168,9342 \pm 0,0001$	
70	Yb	Иттербий	$173,04 \pm 0,03$	
71	Lu	Лютеций	$174,967 \pm 0,003$	
72	Hf	Гафний	$178,49 \pm 0.03$	
73	Ta	Тантал	$180,9478 \pm 0,0003$	
74	. W	Вольфрам	$183,85 \pm 0.03$	
75	Re	Рений	$186,207 \pm 0,001$	
76	Os	Осмий	190.2 ± 0.1	б
77	Ir	Иридий	$192,22 \pm 0,03$	
78	Pt	Платина	$195,09 \pm 0.03$	
79	Au	Золото	$196,9665 \pm 0,0001$	
80	Hg	Ртуть	$200,59 \pm 0,03$	
81	T!	Таллий	$204,37 \pm 0.03$	
82	Pb	Свинец	$207,2 \pm 0,1$	а, б
83	Bi	Висмут	$208,9804 \pm 0,0001$	
84 85	Po At	Полоний	209	Д
86		Астат	210	Д
87	Rn Fr	Радон	222	Д
- 88	r r Ra	Франций	223	Д
89	Ac	Радий Актиний	$226,0254 \pm 0,0001$	б, г
90	Th	Торий	$227,0278 \pm 0,0001$	г б, г
91	Pa	Протактиний	$232,0381 \pm 0,001$ $231,0359 \pm 0,0001$	о, г
92	Ü	Уран	$238,029 \pm 0,0001$	· _
93	Np	Нептуний 📑	$237,0482 \pm 0,0001$	б, в, г г
94	Pu	Плутоний	237,0402 ± 0,0001 244	
95	Am	Америций	243	Д Д
96	Cm	Кюрий	247	Д
97	Bk	Берклий	247	Д
98	Cf	Калифорний	251	Д
99	Es	Эйнштейний	252	Д
			-3 -	

Порядко- вый номер элемента	Символ элемента	Название элемента	Относительная атомная масса элемента	Примеча- ни с
100 101 102 103 104 105 106 107	Fm Md No Lr Ku Ns	Фермий Менделевий Нобелий Лоуренсий Курчатовий Нильсборий (Экавольфрам) (Экарений)	257 258 259 260 261 262 (263) (262)	Д Д Д Д Д

1.2. РАСПРОСТРАНЕННОСТЬ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ

-	- 1		Массовая д	оля, %	
Порядковый номер эле- мента	Символ элемента	в земной коре	в воде океанов	в атмосфере (сухой воздух)	в биосфере
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 6 27 28 30	H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Cas Ti V Cr Mn Fe Co Ni Cu Zn	1,00 1 · 10 ⁻⁶ 0,0032 0,00038 0,0012 0,023 0,0019 47,0 0,066 5 · 10 ⁻⁷ 2,50 1,87 8,05 29,0 0,093 0,047 0,917 4 · 10 ⁻⁴ 2,5 2,96 0,001 0,45 0,009 0,0083 0,10 4,65 0,0018 0,0058 0,0047 0,0083	5 · 10 ⁻¹⁰ 1,5 · 10 ⁻⁵ 6 · 10 ⁻¹¹ 4,6 · 10 ⁻⁴ 2,8 · 10 ⁻³ 5 · 10 ⁻⁵ 1,3 · 10 ⁻⁴ 1 · 10 ⁻⁶ 1,03554 0,1297 1 · 10 ⁻⁶ 3 · 10 ⁻⁴ 7 · 10 ⁻⁶ 0,089 1,93534 6 · 10 ⁻⁵ 0,03875 0,0408 4 · 10 ⁻⁹ 1 · 10 ⁻⁷ 2 · 10 ⁻⁹ 2 · 10 ⁻⁷ 1 · 10 ⁻⁶ 5 · 10 ⁻⁸ 2 · 10 ⁻⁷ 1 · 10 ⁻⁶ 5 · 10 ⁻⁸ 2 · 10 ⁻⁷ 1 · 10 ⁻⁶	0,000033 0,000072 0,0151 75,510 23,1811 0,00125 1,2800	10,5 Следы 1 · 10 ⁻⁵ Следы 1 · 10 ⁻³ 18,0 0,3 70,0 5 · 10 ⁻⁴ Следы 0,02 0,04 5 · 10 ⁻³ 0,2 0,07 0,05 0,02 Следы 0,3 0,5 Следы 8 · 10 ⁻⁴ 10 ⁻⁴

				11 росолжени	е тиолицы
	1	1 .	Массовая	доля, %	
Порядковый номер эле-	Символ	в земной коре	в воде океанов	в атмосфере (сухой воздух)	в биосфере
31 32 33 34 35 36 37 38 39 40 41 42 44 45 46 47 48 49 50 51 52 53 54 55 66 67 77 77 78 79 77 78 79	Gae As Ser La Robert Again and	$0,0019$ $1,4 \cdot 10^{-4}$ $1,7 \cdot 10^{-4}$ $5 \cdot 10^{-6}$ $2,1 \cdot 10^{-4}$ $2 \cdot 10^{-8}$ $0,015$ $0,034$ $0,0029$ $0,017$ $0,002$ $1,1 \cdot 10^{-6}$ $1,3 \cdot 10^{-6}$ $1,3 \cdot 10^{-6}$ $1,3 \cdot 10^{-5}$ $2,5 \cdot 10^{-5}$ $2,5 \cdot 10^{-5}$ $3 \cdot 10^{-5}$ $3 \cdot 10^{-5}$ $3 \cdot 10^{-5}$ $3 \cdot 10^{-3}$ $3,7 \cdot 10^{-3}$ $3,7 \cdot 10^{-3}$ $3,7 \cdot 10^{-4}$ $3,7 \cdot 10^{-5}$ $3,3 \cdot 10^{-4}$ $1,7 \cdot 10^{-5}$ $1 \cdot 10^{-4}$ $1,7 \cdot 10^{-5}$ $1 \cdot 10^{-6}$ $1 \cdot 10^{-6}$ $1 \cdot 10^{-6}$ $1 \cdot 10^{-5}$	3 · 10 ⁻⁹ 6 · 10 ⁻⁹ 1 · 10 ⁻⁷ 1 · 10 ⁻⁸ 6 · 6 · 10 ⁻³ 3 · 10 ⁻⁸ 2 · 10 ⁻⁵ 8 · 10 ⁻⁴ 3 · 10 ⁻⁸ 5 · 10 ⁻⁹ 1 · 10 ⁻⁶ · · · · · · · · · · · · · · · · · · ·	0,00029	Следы 10-4 3 · 10-5 10-6 1,5 · 10-4 2 · 10-3 Следы 3 · 10-5 Следы 3 · 10-5 Следы 3 · 10-5 Следы 3 · 10-5 Следы 1 · 10-5 3 · 10-3 Следы 3 · 1

		Массовая доля, %								
Порядковый номер эле- мента	Символ элемента	в земн ой коре	в воде океанов	в атмосфере (сухой воздух)	в биосфере					
80 81 82 83 84 86 88 89 90 91	Hd Tl Pb Bi Po Rn Ra Ac Th Pa	8,3 · 10 ⁻⁶ 1 · 10 ⁻⁴ 1,6 · 10 ⁻³ 9 · 10 ⁻⁷ 2 · 10 ⁻¹⁴ 7 · 10 ⁻¹⁶ 2 · 10 ⁻¹⁰ 6 · 10 ⁻¹⁴ 1,3 · 10 ⁻³ 7 · 10 ⁻¹¹ 2,5 · 10 ⁻⁴	$3 \cdot 10^{-8}$ $1 \cdot 10^{-9}$ $3 \cdot 10^{-9}$ $2 \cdot 10^{-8}$ $$ $6 \cdot 10^{-20}$ $1 \cdot 10^{-14}$ $2 \cdot 10^{-20}$ $1 \cdot 10^{-9}$ $5 \cdot 10^{-15}$ $3 \cdot 10^{-7}$		10 ⁻⁷ Следы Следы Следы 					

1.3. РАСПРЕДЕЛЕНИЕ ЭЛЕКТРОНОВ В АТОМАХ

Положение электрона в атоме и строение электронной оболочки опреде-

ляются значениями квантовых чисел.

Электронные слои K, L, M, N, O, P, Q отвечают соответственно значениям главного квантового числа n, равного 1, 2, 3, 4, 5, 6, 7, оболочки электронов в слоях s, p, d, f — значениям побочного (орбитального) квантового числа l, равного 0, 1, 2, 3.

Элементы одного периода периодической системы элементов Д. И. Менделеева отделены от элементов другого интервалами.

й во- та	емента	K	L	•		М			۸	,			o				P		Q
Порядковый и мер элемента	Символ эле	1s	25	2 <i>p</i>	3s	3р	3d	4 s	4 <i>p</i>	4 d	41	5 s	5 <i>p</i>	5d	5)	6s	6 <i>p</i>	6 <i>d</i>	7s.

1 H 2 He	2		
3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne	2 2 2 2 2 2 2 2 2 2 2	1 2 2 2 2 2 2 2 2 2	1 2 3 4 5 6

овый но- жента элемента	К	· 1	 -		М		N			0				P			Q	
Порядковый мер элемента Символ элеме	ts	2s	2p	3s	3 <i>p</i>	3 <i>d</i>	4s	4 <i>p</i>	4d	41	5s	5 <i>p</i>	5 <i>d</i>	5/	6s	6 <i>p</i>	6 <i>d</i>	7\$

48 Cd 49 In 50 Sn 51 Sb 52 T1 53 I 54 Xe	2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2	6 6 6	2 2 2 2 2			2 2	6 6 6 6	10 10 10 10 10 10	0	2 2 2 2 2 2 2 2	1 2 3 4 5 6
54 Xe	2	2	О	Z	Ð	10	۲.	U	IJ	U	Z	υ

	55 Cs 56 Ba	2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6	2 2 2	6 6	10 10 10	2 2 2	6 6 6	10 10 10	0 0 0	2 2 2	6 6 6	0 0 1	0 0 0	122222222222222222222222222222222222222	
	57 La 58 Ce	2	2	6		6	10	2	6	10	2	2	6	ô	Ö	2	
	50 Ce	$\frac{2}{2}$	2	6	2 2 2 2	6	01	2	6	10	3	2	6	ŏ	ŏ	$\bar{2}$	
	59 Pr 60 Nd	2	5	6	2	6	10	2	6	10	4	$\bar{2}$	ŏ	Ŏ	ŏ	2	
,	61 Pm	9	2	6	2	6	10	$\overset{2}{2}$	6	10	5	2 2	6	ŏ	ŏ	2	
	62 Sm	2	2	6		6	01	2	6	10	6	2	6	Ŏ	Ō	2	
	63 Eu	2	2	6	$\frac{2}{2}$	6 6 6	iŏ	9	6	10	7	2	ŏ	0	0	2	
	64 Gd	$\bar{2}$	$\tilde{2}$	6	2	6	10	5	6	10	7	2	6	1	0	2	
	65 Tb	2	2	6	2	6	-10	2 2 2 2	6	10	9	2	6	0	0	-2	-
	66 Dv	2	2	6	2	6 6	10	$\bar{2}$	6	10	10	2	6	0	0	2	
	67 Ho 68 Er	2 2 2 2 2 2 2 2 2 2 2	2	6	2 2 2 2 2 2 2 2 2 2 2 2 2 2	6	10	2	6	10	11	2 2 2 2 2 2 2 2	6	0	0	2	
	68 Er	$\frac{2}{2}$. 2	6	2	6	10	2 2 2 2	6	10	12	2	6	0	0	2	
	69 Tm	2	2	6	2	6	10	2	6	10	13	2	6	0	0	2	
	70 Y b	2	2	6 6	2	6	10	2	6	10	14	2	6	0	0	2	
	71 Lu	2	2	6	2	6	10	2	6	10	14	2	6	1 2 3	0	2	
	72 Hf	2	2	6	2	6	10	2	6	10	14	2	6	2	0	2	
	73 Ta	2 2 2	2	6	2	6	10	2 2 2 2 2	6	10	14	2	6		0	2	
	74 W	2	$\frac{2}{2}$	6	2	6	10	2	6	10	14	2	6	4 5	0	2	
	72 Hf 73 Ta 74 W 75 Re	2	2	6	2	6	10	2	6	10	14	2	6	5	0	2	
	76 Os	2	2	6	.2	6	10	2 2	6	10	14	2	6	6.	0	2	
	76 Os 77 Ir 78 Pt	2	2 2 2 2	6	2 2 2 2 2 2 2 2 2 2	6	10	2	6	10	14	2	6	7'		z	
	78 Pt	2	2	6	2	6	10	2	6	10	14	2	6	9	0	1 1	
	79 Au	2	2	6	. 2	6	10	2 2	6	10	14	2	6	10	0	1	
	80 Hg 81 Ti	. Z	2	6	Z	6	10	Z	6	10	14	2	6	10	0	2	1
	1118	2	2	6	Z	6	10	2	6	10	14 14	2	6	10	0	$\frac{2}{2}$	2
	82 Pb	2	2	6 6	2	6	10	2	6 6	10	14	2 2	6	10	0	2	$\tilde{3}$
	83 Bi	2	2 2 2 2	6	2	6	10	2 2		10 10	14	2	9	10	0	2	A
	84 Po 85 At	2 2	2	6	2 2 2 2	6	10 10	2	6 6	10	14	2 2	6 6	10	0	2 2	4 5
	00 At	Z	2	0	2	6	10	2	0	10	17	2	e	10	O O	9	6

						11 розолжен	ие таолиц	ы
7 НО• Та	лента	K	L	M	N	О .	P	[
дковы ^р лемент	л эле	<u> </u>						-

11 Na	2	2	6	1	
12 Mg	2	2	6	-2	
13 A Ï	2	2	6	2	1
14 Si	2	2	6	2	2 3
15 P	2	2	6	2	3
16 S	2	2	6	2	4
17 CI	2	2	6	2	5
18 Ar	2	2	6	2	6

26 V - 0 0 6 0 6 10 0 6	19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mr 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 A Se 35 Br	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	666666666666666666666666666666666666666	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 1 2 3 5 6 7 8 10 10 10 10 10 10	1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 3 4 5
30 A F Z Z O Z O 10 Z O	35 Br 36 Kr	2 2	2 2	6 6	2 2	6	10	2 2 2	5

37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo	2 2 2 2 2 2	2 2 2 2 2 2	6 6 6 6 6	2 2 2 2 2 2	6 6 6 6 6	10 10 10 10 10	2 2 2 2 2 2	6 6 6 6 6	0 0 1 2 4 5	0 0 0 0 0	1 2 2 2 1 1
					_					-	
			-	2	-			6		0]
	2	2	6	2	_	10	2	6	5	0	1
43 Tc	2	2	6	2	6	10	2	6	5	0	2
44 Ru	2	2	6	2	6	10	2	6	7	0	1
45 Rh	2	2	6	2	6	10	2	6	8	0	1
46 Pd	2	2	6	2	6	10	2	6	10	0	0
47 Ag	2	2	6	2	6	10	2	6	10	0	1

													17 no	20.00	wan	*	паб	A1111	.,
й но- га	элемента	К		L	М			N				0			ие таблиць Р			Q	
Порядковый и мер элемента	Символ элег	1s	2s	2р	3s	3 <i>p</i>	3 <i>d</i>	48	4 <i>p</i>	44	- 4 <i>f</i>	5 <i>s</i>	5 <i>p</i>	5 <i>d</i>	5/	6s	6р	6 <i>d</i>	78
87	Fr	2	2	6	2	6	10	2	6	10	14	2	6	10	0	2	6	0	1
88	Ra	2	2	6	2	6	10	2	6	10	14	2	6	10	0	2	6	0	2
89	Ac	2	2	6	2	6	10	2	6	10	14	2	6	10	0	2	6	1	2
90	Th	2	2	6	2	6	10	2.	6	10	14	2	6	10	0	2	6	2	2
91	Pa	2	2	6	2	6	10	2	6	10	14	2	6.	10	2	2	6	1	2
92	U	2	2	6	2	6	10	2	6	10	14	2	6	10	3	2	6	1	2
93	Np	2	2	6	2	6	10	2	6	10	14	2	6	10	4	2	6	1	2
94	Pu	2	2	6	2	6	10	2	6.	10	14	2	6	10	6	2	6	0	_2
95	Am	2	2	6	2	6	10	2	6	10	14	2	6	10	7	2	6	0	2
96	Cm	2	2	6	2	6	10	2	6	10	14	2	6	10	7	2	6	1	2
97	Bk	2	2	6	2	6	10	2	6	10	14	2	6	10	8	2	. 6	1	2
98	Cf	2	2	6	2	6	10	2	6	10	14	2	6	10	10	2	6	0	. 2
9 9		2	2	6	2	6	10	2	6	10	14	2	6	10	11	2	6	0	2
100	Fm	2	2	6	2	6	10	2	6	10	14	2	6	10	12	2	6	0	2
101	Md	2	2	6	2	6	10	2	6	10	14	2	6	10	13	2	6	0	2
102	Nο	2	2	6	2	6	10	2	6	10	14	2	6	10	14	2	6	0	2

1.4. ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ ЭЛЕМЕНТОВ

Электроотрицательность элемента представляет собой энергию притяжения атомом данного элемента валентных электронов атомов других элементов при образовании химического соединения. Она характеризует силовое поле атомного ядра и зависит как от заряда ядра, так и от степени экранирования ядра электронами. Электроотрицательност в элементов позволяет судить о полярности валентных связей, о их химическом поведении в реакциях, о степени основности или кислотисти в соединениях с ОН-группой, о возможности реализации водоройной связи и других химических свойствах.

2 6 10 14 2 6 10 14 2 6 10 14 2 6 10 14

6 2 6 10 2 6 10 14 2 6 10 14 2 6 4 2

Значения электроотрицательности элементов даны в относительных единицах.

vep.			Элект	роотрицательнос	ть	
Порядко- вый номер элемента	Символ элемента	по Полингу	по Некрасову	по Сандерсону	по Гордону и Форду	по Баца- нову
1 3 4 5 6 7 8 9 1 1 2 1 3 1 4 1 5 6 6 7 8 9 1 1 2 2 2 3 2 4 4 2 5 6 2 7 8 8 9 1 1 2 2 2 3 2 4 4 4 5 6 4 6 7 8 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	H Lieb C N O F Nag Si P S C K C Sc T V C M F C N C Z G G A S B R B T Y Z N M C Z R R P A C I n n b e C S T I C	2,1 1,0 1,5 2,5 3,5 4,0 9,2 1,5 1,5 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6	1,00 0,40 0,67 0,93 1,19 1,71 2,03 2,32 0,38 0,56 0,70 0,83 1,14 1,30 1,43 0,32 0,44 0,53 0,61 (0,61) (0,70) (0,65) 0,57 0,66 0,75 0,84 1,08 1,22 1,37 0,31 0,41 0,48 0,57 	3,55 0,74 1,54 2,64 3,79 4,68 5,02 5,75 0,65 1,09 1,60 2,22 2,96 3,85 4,78 0,60 1,05 1,88 2,48 3,30 3,50 3,57 3,52 3,77 3,93 3,25 3,12 3,32 3,60 4,15 4,53 0,58 1,01 1,73 2,41 3,30 4,50 3,91 3,91 3,91 3,91 3,91 3,91 3,91 3,91	2,20 0,97 1,47 2,01 2,50 3,07 3,50 4,10 1,01 1,23 1,47 1,74 2,06 2,44 2,83 0,91 1,04 1,20 1,32 1,45 1,56 1,60 1,64 1,70 1,75 1,75 1,66 1,82 2,02 2,20 2,48 2,44 2,83 0,91 1,01 1,01 1,01 1,01 1,01 1,01 1,01	2,155 0,55 2,06 3,59 1,59 2,16 1,03 1,69 2,16 1,03 1,16 1,03 1,03 1,03 1,04 2,15 1,17 1,18 2,18 1,03 1,03 1,03 1,03 1,03 1,03 1,03 1,03

103 Lr

106

Продолжение таблицы

- 0 -	1 1	Электроотрицательность										
Порядко- вый номер элемента	Символ элемента	по Полингу	по Некрасову	по Сандерсону	по Гордону и Форду	по Баца- нову						
56 57 58 59 60 62 63 64 65 66 67 68 69 70 71 72 73	Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf	0,9 1,1 	0,37 0,43 (0,5)	0,90 1,95 3,21 4,18								
73 74 75 76 77 78 80 81 82 83 84 85 87 88 89 90 91 92 93 94	Re Os Ir Pt Aug Tl Pb Bi Po At Fr Ac Th Pu NPu	1,7 1,9 2,2 2,2 2,2 2,3 1,9 1,8 1,8 1,9 2,0 2,2 0,7 0,7 1,1 1,3 1,5 1,7 1,3	0,68 0,69 0,73 0,78 0,98	4,39 4,95 4,73 4,63 4,43 3,34 3,19 2,89 2,90 2,96 0,50 0,60 1,77 2,60 2,96 3,67 3,79 	1,40 1,46 1,52 1,55 1,44 1,42 1,44 1,55 1,67 1,76 1,96 0,86 0,97 1,00 1,11 1,14 1,22 1,22	2,0 2,2 2,1 2,1 2,2 2,3 1,8 1,9 1,8 2,0 2,7 0,9 1,1 1,4 1,7 1,9 1,9						

1.5. СРОДСТВО АТОМОВ К ЭЛЕКТРОНУ

Сродством атомов к электрону называется энергия, выделяющаяся при образовании отрицательного иона ∂^- из нейтрального невозбужденного атома элемента ∂^0 и электрона e^- :

 $3^0 + e^- \rightarrow 3^-$.

эр я дковый		Сродство атомов к электрону, эВ							
Торядковый номер элемента	Символ , элемента	по Гурвичу и Карачевцеву	по Гордону и Форду	по другим источникам					
1	Н	0,7542	0,747	0,75					
$\dot{2}$	Нe	-0,22	0,19	-0,53					
	Li	0,591	0,82	0,54					
4	Be	-0.19	-0.19	-0.6					
5	B	0,30	0,33	0,3					
6	č	1,27	1,2	2,1					
7	Ň	-0.21	• • •	-0,69					
8	ö	1,469	1,47	2,33					
ğ	ř	3,448	3,45	3,62					
10	Ne	-0,57	0,10	-0.8					
iĭ	Na Na	0,34	0,47	1,21					
12	Mg	-0,22	-0,32	-0.4					
13	Al	0,5	0,52	0,09					
14	Si	1,84	1,5 ·	2,0					
15	P	0,8	0,7	0.9					
16	s	2,077	2,07	1,04					
17	Čl	3,614	3,61	3,82					
18	Ār	-0.37	0,01	-1,0					
19	ĸ	0,5	• • •	0,69					
20	Ca	—1,93 •		0,03					
21	, Sc	-0.73		• • • •					
22	Ti	0,39	•	• • • •					
23	v	0,65	• • •	• • • •					
24	Čr .	0,98							
25	Mn	-0.97							
26	Fe	0,58		•••					
27	Co	0,94	• • •	• • • •					
29	Cu	1,226		• • • •					
30	Zn	0,09							
31	Ga	0,39							
32	Ge	1,74							
33	As	•,• •	0.6						
34	Se	2,02	1,7						
35	Br	3,37	3,36	3,54					
36	Κr	-0,42	• • • •	• • • •					
37	Ŕb	0,6	•••						
38	Sr	-1,51	• • •						
39	Ϋ́	0,4	• • •						
40	Źr	0.45							
41	Nb	1,13							
42	Mo	1,18		• • •					
43	Tc	1,0	•••	• • •					
45	Rh	1,68	• • •	• • •					
46 ·	Pd	1,02		•••					
47	Ag	1,301	• • •						
48	Ĉď	-0.27							
51	Sb	0,99	• • •						
52	Te	2	2,2	• • •					
	Ĩ	3,08	3,06	3,23					

Порядковый		Сродство атомов к электрону, эВ							
номер элемента	Символ элемента	по Гурвичу и Карачевцеву	по Гордону и Форду	по другим источникам					
54	Xe	-0,45							
55	Cs	0.39	•••	•••					
56	Ba	-0.48	• • •						
57	La	0,55		•••					
72	Hf	-0,63	• • •						
73	Ta	0,15		• • •					
74	\mathbf{W} .	0,5	•••						
7 5	Re	0,15	• • •	• • •					
76	Os	1,44	• • •	•••					
77	Ir	1,97	. • • •	•,••					
78	Pt	2,218	• • •	• • •					
7 9	Au	2,309	• • •						
80	Hg	-0,19	1,54	1,53					
81	TI	0,5	• • •	• • •					
84	Po	1,32	•••	•••					
85 86	At Rn	2,81 1,5	•••	•••					

1.6. ПОТЕНЦИАЛЫ ИОНИЗАЦИИ АТОМОВ И ИОНОВ

 $\mathfrak{S}^0 o \mathfrak{I}^+$ — энергия, необходимая для отделения электрона от нейтрального невозбужденного атома элемента \mathfrak{I}^0 ; $\mathfrak{I}^{n+} o \mathfrak{I}^{(n+1)+}$ — энергия, необходимая для отделения электрона от n-зарядного положительного невозбужденного иона \mathfrak{I}^{n+} .

ндко- номер ента	82		По	тенциалы и	онизации, э	В	
Порядко- вый номер элемента	Симеол	30 → 31+	31+ → 32+	92+ → 93+	.Э14 → Э1+	34+ → 36+	95+ → 96+
1 2 3	H He	13,599 24,588	54,418		- -		_
3 4	Li Be	5,392 9,323 8,298	75,641 18,211	122,42 153,85	217,66 259,30	340,13	_
4 5 6 7	B C N	11,260 14,534	25,156 24,383 29,602	37,92 47,87 47,43	64,48 77,45	391,99 97,86	489,84 551,93
8 9	Ö F	13,618 17,423	35,118 34,987	54,89 62,65	77,39 87,23	113,87 114,21	138,08 157,12
10 11	Ne Na	21,565 5,139	41,08 47,304	63,5 71,65	97,16 98,88	126,4 138.6	157,9 172,4
12 13	Mg. Al Si	7,646 5,986 8,152	15,035 18,828	80,12 28,44	109,03 119,96	141,23 153,8	186,8 190,42
14 15 16	. P S	10,487 10,360	16,342 19,73 23,35	33,46 30,16 35,0	45,13 51,35 47,29	166,73 65,01 72,5	205,1 220,41 88,0
17	Cl	12,968	23,80	39,9	53,3	67,8	96,6

					11 pood	лжение п	<i>паолицы</i>
- 0 a	-		П	отенциалы и	юнизации, э1	3	
Порядко- вый номер элемента	Символ элемента				<u> </u>		
POC IN IEM	HW I I I I I I I I I I I I I I I I I I I	30 → 31+	91+ → 92+	32+ → 33+	91+ → 94+	34+ → 35+	30+ - 30+
Ľ ff g ε	28						
18	Ar w	15,760	27,63	40,90	59,79	75,0	91,3
19	K	4,341	31,820	46	61,1	82,6	99,4
20	Ca	6,113	11,871	51,21	67,3	84	109
21	Sc	6,562	12,80	24,75	73,9	91,8	111
22	Ţi	6,82	13,58	27,5	43,24	99,8	119
23	V	6,740 6,765	14,21	29,3	48,0	65,2	128,9
24	Cr	0,700 7.425	16,50	31,0	(51)	73	90,6
25	Mn	7,435 7,893	15,640	39,69	(53)	(76)	100
26	Fe Co	7,833 7,87	16,183 17,06	30,64 39,49	(56)	(79)	103
27	Ni	7,635	18,15	35,16	(53) (56)	(82)	(109)
.28 29	Cu	7,000 7,726	20,292	36,83	(50) (59)	(79) (83)	(113)
30	Zn	9,394	17,964	39,70	(62)	(86)	(109) (114)
31	Ga	5,998	20,514	30,70	64.2	(90)	(114)
32	Ge	7,90	15,935	34,21	45,7	93.4	(123)
33	As	9,82	18,62	28,34	50,1	62,9	127,5
34	Se	9,752	21,19	32,0	42.9	68.3	82,1
35	Br	11,84	21,80	35,9	47,3	59,7	88,6
36	Κ̈́r	14,00	24,37	36,9	52,5	64,7	78,5
37	Rb	4,177	27,5	40	52.6	71.0	84.4
38	Sr	5,694	11,030	43,6	57,1	71,6	90,8
39	\mathbf{Y}	6,217	12,24	20,5	61,8	77,0	93,0
40	Zr	6,837	13,13	22,98	33,97	82,3	99,4
4 i	Nb	6,882	14,32	25	38,3	50	110,4
4 2	Mo	7,10	16,15	27,13	46,6	61,2	67
43	Tc	7,28	15,26	32	(43)	(59)	(76)
44	Ru	7,366	16,76	28,46	(47)	(63)	(81)
45	Rh	7,46	18,08	31,05	(46)	(67)	(85)
46	Pd	8,336	19,43	32,9	(49)	(66)	(90)
47	Ag	7,576	21,487 .	32,82	(52)	(70)	(89)
48	Cď	8,994	16,908	37,5	(55)	(73)	(94)
49	In	5,786	18,870	28,0	58	(77)	(98)
50 51	Sn Sb	7,344 8,64	14,632 16,5	30,49	46,4	91	(103)
52	Te	9,010	10,5 18,6	25,3 31	44,1 38	63,8 66	119 83
53	Ī	10,451	19,100	33	36 (42)	71	83
54	Xe	12,130	21,25	32,1	(42) (45)	(57)	89
55	Cs	3.894	25,1	34,6	(46)	(62)	(7 4)
56	Ba	5,211	10,004	37	(49)	(62)	(80)
57	La	5,577	11,06	19,17	(52)	(66)	(80)
58	ĈΪ	5,47	10.85	19,5	36,7	(70)	(85)
59	Pr	5,42	10,55		•••		(89)
60	Nd	5,49	10.72		• • •		
61	Pm	5,55	10,90		9		
62	Sm	5,63	11,07		•.• •		
63	Eu	5,664	11,25			• • •	
64	Gd	6,16	12,1	• • •	• • •	• • • •	• • •
65	Tb	5,85	11,52	•••	• • •	• • •	
66	Dy	5,93	11,67	•••	•••	• • •	• • •

Продолжение таблицы

o de l	. 65		п	отенциалы	ионизации, з	В	
Порядко- вый номер элемента	Символ	3º + 3º+	31+ + 31+	3²+ → 3³+	93+ → 94+	94+ → 95+	35+ + 34+
67	Но	6,02	11,80		• • •	•••	
68	Er	6.10	11,93	• • •	• • •	• • •	• • •
69	Tm	6,181	1 2, 05	•••	• • • •	• • •	• • •
70	Ϋ́b	6,25	12,18	• • .•	• • •	• • •	• • •
71	Lu	5,426	13,9	(19)		• • •	• • •
72	Hf	7.5	14,9	(21)	(31)	• • •	,
73	Ta	7,89	16,2	(22)	(3 3)	(45)	
74	W	7.98	17,7	(24)	(35)	(48)	(61)
75	Re	7,88	16,6	(26)	(38)	(51)	(65)
76	Os	8,5	17	(25)	(40)	(54)	(68)
- 77	Ir	9,1	17,0	(27)	(39)	(57)	(72)
78	Ρt	8.9	18,563	(29)	(41)	(55)	(75)
79	Au	9.226	20,5	(30)	(44)	(58)	(73)
80	Hg	10,438	18,756	34,2	(46)	(6 1)	(77)
81	ΤΪ	6,108	20,428	29 ,8	50	(64)	(81)
82	Pb	7.417	15,032	31,93	39,0	69,7	(84)
83	Bi	7,287	16,74	25 ,6	45,3	56,0	94,4
84	Po	8,43	19.4	27 ,3	(38)	(61)	(73)
85	At	9,2	20,1	29 ,3	(41)	(51)	(78)
86	Rn	10,749	21,4	29,4	(44)	(55)	(67)
87	Fr	3,98	22,5	33,5	(43)	(59)	(71)
88	Ra	5.279	10,147	(34)	(46)	(59)	(76)
89	Ac	5,1	12,06		(49)	(62)	(76)
90	Th	6,i	11,5	20,0	28, 7	(65)	(80)
91	Pa	5,9				• • •	(84)
92	บั	6.19	11.6			•••	• • •
93	Ñр	6,16		• • •		• •	
94	Pu	5,71		• • •		• • •	
95	Am	5,99				• • •	
96	Cm	6,09	• • •			•••	• • •
97	Bk	6,30				•••	• • •
98	Cf	6,41	• • •			• • •	• • •
. 99	Es	6,52			• • •	• • •	• • •
100	Fm	6.63			• • •	•••	
101	Md	6,74		• • •	***	•••	•••
102	No	6.84	• • •		• • •	•••	•••
.02					- •		

1.7. АТОМНЫЕ И ИОННЫЕ РАДИУСЫ

Значение атомных радиусов приведено для координационного числа 12. Атомные радиусы уменьшаются с уменьшением координационного числа: при координационных числах 8, 6 и 4 на 2, 4 и 12 % соответственно.

ственно. Значения ионных радиусов приведены для координационного числа 6. Поправки для ионных радиусов при координационных числах 4, 8 и 12 составляют —6, +3 и +12 % соответственно.

о Радиус атома, пм			пм		F	Радиус и	она, пм		
Порядковый но- мер элемента	Символ элемента	по Полингу	по Мелвину Хьюзу	по Белову и Бокию	Заряд иона	по Гольд- шмидту	по Полингу	по Мелвину	по Белову и Бокию
1 2 3 4 5 6	H He Li— Be B C	31 134 107 89 77	37,07 53 152,0 111,3 79,5 77,1	46 122 155 113 91 77	$ \begin{array}{c} -1 \\ \cdots \\ +1 \\ +2 \\ +3 \\ +4 \\ -4 \end{array} $	154 78 34 20	208 60 31 20 15 260	75,8 31,4 20 19,5	136 68 34 20 26 26
7	N	. 70	54,7	71	+5 -3	15	11 171	32 202	15 1 48
8	0	66	60,37	•••	$-3 \\ +6 \\ -2$	9 132	9	135,0	136
9	F	64	70,9	•••	$+7 \\ -1$	133	7 136	129,4	133
10 11 12 13 14	Ne Na Mg Al Si	154 140 126 117	160 185,8 159,9 143,2 117,6	160 189 160 143 134	 +1 +2 +3 +4	98 78 57 39	95 65 50 41	101,2 78,0 55 40	98 74 57 39
15	P	110	94,7	130	$-4 \\ +5 \\ -3$	198 35	271 34 212	66 256	35 186
16	S	104	102	•••	$^{-3}_{+6}$ $^{-2}$	34 174	29 184	178,6	29 182
17	Cl	99	99,4	• • • •	+7 -1	181	26 181	181,1	26 181
18 19 20 21 22	Ar K Ca Sc Ti	• • •	192 227,2 197,4 	192 236 197 164 146	+1 $+2$ $+3$ $+4$ $+3$ $+2$	133 106 83 64 69	133 99 81 68 69	134,1 105,1 60	133 104 83 64 69 78
2 3	V	•••	132	134	+2 +5 +4 +3 +2 +6	80 40 61 65 72	59 66	82 57	40 61 67
24	Cr	125	124,9	127	+3	35	52 64	65	35 64 83
25	Mn		136,6	130	+2 +7 +4 +3 +2 +3	52 70 91	84 46 50 62 80	52 83	46 52 70 91
26	Fe		124,1	126	+3 +3	67 83	60 75	67 80	67
27	Со	125	125,3	125	+2 +3 +2	64 82	72	65 78	64 78
_28	Ni	124	124,6	124	+2	78	69	74	74

аблицы										nue mao.	лицы
пм	_ [ģ.	HTS	Ради	ус атома.	ПМ].	I	Радиус н	она, пм	· ·
по Белову и Бокию		Порядковый но- мер элемента	Символ элемента	пф. Полингу	по Мелвину Хьюзу	по Белову и Бокию	Заряд иона	по Гольд- шмидту	по Полингу	ло Мелвину— Хьюзу	по Белову и Бокию
. 80	-	55	Cs		265,5	268	+1	165-	169	167,8	165
- 98		56	Ba		217,4	221	+2	143	135	139,5	138
6 83 (2		57	La		187,0	187	+3	122	115	114	104
44		58	Ce		182,5	183	+4	102	101	97	88
€5						e.	+3	118	•••	118	102
47	ξ.·	59	Pr	• • • •	•••	182	+4	100	92	• • • •	• • •
69 191				•			+3	116	• • •	•••	100
35 69		60	Nd	•••	•••	182	+3	115	• • •	•••	99
69		61	Pm	• • • •	• • •		+3	•••	• • •	•••	98
193 39 3 196		62	Sm		• • •	181	+3	113	• • •	•••	97
3 196		63	Eu		•••	202	+3	113		• • •	97
8 149	· .*	64	Gd	• • • •		179	+3	111		•••	, 94
5 120 97		65	Tb		•••	177	+3.	109	•••	•••	89
97 82 - 66 67	1	66	Dу	•••	•••	177	+3	107	•••	• • •	88
· 66	į	67	Но			176	+3	105	•••	• • •	86
65 68	į.	68	Er		186	175	+3	104	• • •	104	85
68		69	Tm		• • •	174	+3	104	• • •	• • •	8 5
62	7,444	70	Yb	4 ***	- 111	193	+3	100		• • •	81
62 65 75	1	71	Lu	•••		174	+3	99		• • •	80
64		72	Hf	•••	161	159	+4		• • •	• • •	82
 L 113		73	Ta			146	+5			•••	66
l 113 99	4	74	. W		137,1	140	+6			• • • •	65
92 130	i.	•					+4	68	66	68	68
67		75	Re			137	+6	• • •	•••		52
102		76	Os	•••	133,8	135	+4	67	65	65	65
62		77	Ir ·	,,,		135	+4	66	64	65	65
90		78	Pt	138	138,8	138	+4	• • •	•••	55	64
56							+2			52	
89 211		79	Au	150	144,2	144	+1	•••	137	•••	137
50		80	Hg	148	150,3	160	+2	112	110	• • •	112
3 220		81	Tl	•••	170,4	171	+3 +1	105 149	95 144	105 149	105 136
3 220	-	- 01			170,1		<u>+ĭ</u>	149	144	149	13

·					•	Пр	одолже	ние таб	лицы
ģ	нта	Pa,	днус атома	, DM ′			Радиус	иона, пм	
Порядковый но-	Символ элемента	по Полингу	по Мелвину— Хьюзу	по Белову и Бокию	Заряд нойз	По Гольд- шмидту	по Полингу	по Мелвину— Хъюзу	по Белову и Бокию
29	Cu	135	127,8	128	+2 +1	101		47	80
30 31 32	Zn Ga Ge	131	133,3 122,1 114,9	139 139 139	$^{+2}_{+3}_{+4}_{+2}$	83 62 44	96 74 62 53	47 56,6 65 55	98 83 62 44 65
33	As	121	124,8	148	$ \begin{array}{r} -4 \\ +5 \\ +3 \end{array} $	69	272 47 		47 69
34	Se	•••	116	160	$ \begin{array}{r} -3 \\ +6 \\ +4 \\ -2 \end{array} $		222 42	262 35 	191 35 69
35	Br	114	114,15	•••	2 +7 1	191 196	198 39 195	193 197,3	193 39 196
36 37 38 39 40 41	Kr Rb Sr- Y Zr Nb	140	197 247,5 215,1 159,0 	198 248 215 181 160 145	+1 +2 +3 +4 +5 +4 +6 +4	149 127 ~ 106 87 69 	148 113 93 80 70 62 66	148,8 117,5 80 68	149 120 97 82 66 67 65 68
43 44 45	Tc Ru Rh		134 135	136 134 134	+4 +4 +3	65 68	63	60 65	62 65 75
46 47 48 49	Pd Ag Cd In	137 153 148	137,6 144,5 149,0 162,6	137 144 156 166	+4 +2 +1 +2 +3	113 103 92	126 97 81	50 101,1 99 95	64 113 99 92
50	Sn	140	140,5	158	+1 +4 +2	74	71	65	130 67 102
51	Sb	141	145	161	$^{+4}_{+5}_{+3}$	215 90	294 62	• • •	62 90
52	Te	•••	135	170	-3 + 6 + 4	 89	245 56 81	84	56 89
53	I	133	133,33	•••	-2 + 7 + 5	211 94	221 50	212	211 50
54	Xe	• • •	218	•••	<u>-1</u>	220	216	222,8	220

	13	Рад	нус атома,	ПМ		1	Радиус и	юна, лм	
Порядковый но- мер элемента	Символ элемента	по Полингу	по Мелвину— Хъюзу	по Белову и Бокию	Заряд нона	по Гольд- шмидту	по Полингу	по Мелвину— Хьюзу	по Белову и Бокию
82	Pb	146	175,0	175	$^{+4}_{+2}$	84 132	84 121	70 128	76 126
83	Bi	151	154,8	182	$\begin{array}{c} +2 \\ +5 \\ +3 \\ -3 \\ \cdots \\ +2 \\ +3 \end{array}$	• • • • • • • • • • • • • • • • • • • •	74 116	120	74 120 213
87 88 89 90 91 92 93	Fr Ra Ac Th Pa U Np	•••	149	280 235 203 180 162 153 150	+2 +3 +4 +4 +3 +4 +3 +4 +3 +4	152 110 105	97	102	144 111 95 91 106 89 104 88 102 86
95	Am	.4.	***	•••	+3 +4 +3	•••	•••	•••	101 85 100

ПРОСТЫЕ ВЕЩЕСТВА И НЕОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

Химические вещества, состоящие из атомов одного вида, являются простыми. Простые вещества называются так же, как и соответствующие элементы. Названия аллотропических видоизменений простых веществ образуют из названий элементов и соответствующих прилагательных, например белый фосфор, красный фосфор и т. п. Только для аллотропических видоизменений кислорода и углерода применяются собственные названия — озон, графит, алмаз.

Химические вещества, состоящие из атомов разных видов, являются сложными. Сложные химические вещества разделяются на орга-

чические (соединения углерода) и неорганические.

Названия сложных веществ, согласно их формуле, читаются справа налево, т. е. в начале называется электроотрицательная составляющая формулы в именительном падеже, а затем — электроположительная составляющая формулы в родительном падеже. Названия соединений двух элементов состоят из двух слов. Первым ставится слово, образованное из корня латинского названия неметаллического более электроотрицательного элемента с суффиксом ид в именительном падеже (например, фторид, оксид, гидрид, сульфид, борид и т. п.), вторым — название менее электроотрицательного элемента в родительном падеже. Если данная пара элементов образует несколько соединений, то непосредственно за названием электроположительного элемента в скобках ставится римская цифра, соответствующая формальной степени окисления данного элемента. Например, КН — гидрид калия; SiC — карбид кремния; Cu₂S — сульфид меди (I); CuS — сульфид меди (II); P₂O₅ — оксид фосфора (V).

Фториды, хлориды, бромиды, иодиды и астатиды объединяются под общим названием «галогениды». Кроме собственно галогенидов, существуют соединения, в которых роль аниона играют группы атомов, обладающих галогеноподобными свойствами. Групповое название таких соединений — псевдогалогениды: NaCN — цианид натрия;

HCN — цианид водорода (циановодород).

Названия оснований строятся аналогично названиям бинарных соединений, при этом группа ОН называется «гидроксид»: NaOH — гидроксид натрия; Fe(OH)₂ — гидроксид железа (II); Fe(OH)₃ — гид-

роксид железа (III).

Многие водородные соединения элементов главных подгрупп IV-VI групп периодической системы имеют следующие собственные названия: H_2O- вода; H_2S- сероводород; H_2Se- селеноводород; H_2Te- теллуроводород; NH_3- аммиак; PH_3- фосфин; AsH_3- арсин; SbH_3- стибин; BiH_3- висмутин; CH_4- метан; SiH_4- силан; GeH_4- герман; SnH_4- станнан. Также имеют собственные названия соединения бора с водородом — бораны. Соединения с водородом элементов главной подгруппы VII группы носят название «галогеноводороды»; HF- фтороводород; HCI- хлороводород; HBr- бромоводород; HI- иодоводород.

Водные растворы сероводорода, селеноводорода, теллуроводорода, галогеноводородов и псевдогалогеноводородов принято рассматривать

как бескислородные кислоты. Названия этих кислот образуют добавлением к названиям этих соединений окончания ная и группового слова «кислота»: раствор HBr — бромоводородная кислота; раствор H_2S — сероводородная кислота; раствор HCN — циановодородная кислота.

Названия кислородных кислот состоят из слова «кислота» (стоит на втором месте) и прилагательного (стоит на первом месте), которое образуется от корня латинского названия кислотообразующего элемента с помощью префикса и суффикса, характеризующих степень

окисления элемента, и окончания ная.

Суффикс -ат- применяют для высших (или единственной) степеней окисления кислотообразующего элемента, суффикс- ит- — для низших степеней окисления. Префикс пер- добавляют для самой высокой степени окисления; префикс гипо- для самой низкой положительной степени окисления. Префиксы пер- и гипо- применяют, только если число степеней окисления кислотообразующего элемента больше двух. Например, $HClO_4$ — перхлоратная кислота; $HClO_3$ — хлоратная кислота; HNO_3 — нитратная кислота; HNO_2 — нитритная кислота; $HClO_2$ — хлоратная кислота.

Названия кислот с различной степенью гидратации кислотообразующего оксида образуют с помощью приставки мета (для кислот с минимальной степенью гидратации) и орто (для максимальной степени гидратации): HPO₃ — метафосфатная кислота; H₃PO₄ — орто-

фосфатная кислота.

Названия солей кислородных кислот образуются из прилагательного, входящего в название соответствующей кислоты, без окончания -ная (название аниона) и названия металла или другой электроположительной составляющей соли (катиона) в родительном падеже:

КСІО₄ — перхлорат калия; СаSО₄ — сульфат кальция.

При наличии нескольких электроотрицательных (анионов) или электроположительных (катионов) составляющих их названия перечисляют по формуле справа налево и пишут через дефис: KAl(SO₄)2 — сульфат алюминия-калия; BaClF — фторид-хлорид бария. Отсюда названия основных солей строятся по правилам наименования солей с несколькими анионами: Cd(OH)Cl — гидроксид-хлорид кадмия; BiOCl — оксид-хлорид висмута.

В названии кислых солей многоосновных кислот к прилагательному, означающему название аниона соответствующей средней соли, добавляется префикс гидро-; если число атомов водорода (в расчете на один анион) больше единицы, то это число указывают в названии с помощью числового префикса — греческого числительного; NaHCO₃—

гидрокарбонат натрия; КН₃Р₂О₇ — тригидродифосфат калия.

Существует несколько принципов образования названий комплексных соединений. Согласно А. Вернеру, к названиям кислотных остатков, находящихся во внутренней координационной сфере комплекса, прибавляется окончание -е, а количество их определяется греческим числительным, например: дибромо-; тетрахлоро-, гексанитро-. Кислород определяется термином оксо-, гидроксил-, гидроксо-. Названия воды (акво- или аква-) и аммиака (аммин-). Названия кислотных остатков, находящихся во внешней координационной сфере комплекса, остаются без изменений — сульфат, нитрат, хлорид и т. п. Название центрального атома дает возможность понять, в состав какого комплекса он входит — комплексного катиона, комплексного аниона или комплексной нейтральной молекулы. В комплексного аниона званию центрального атома добавляется суффикс, определяющий степень его окисления: 1 — -а (аргента); 2 — -о (купро); 3 — -и (хроми);

4 — -е (плате); 5 — -ан (антимонан); 6 — -он (уранон); 7 — ин- (манганин); 8 — -ен (осмен). Если центральный атом входит в состав комплексного аниона, то к его названию, которое уже определяет степень его окисления, прибавляется окончание -ат: аргентаат, купроат, ферроат, платеат, осменат. Степень окисления центрального атома в нейтральных комплексах не определяется, ее дает полное название комплекса — подсчет зарядов всех присоединенных ионов. При построении названия молекулы комплексного соединения сначала называют кислотные остатки, потом нейтральные молекулы, центральный атом и, наконец, ионы внешней координационной сферы (анионы внешней координационной сферы (анионы внешней координационной сферы; хлоропентамминхроми-хлорид; гексахлораплатеат калия.

Применяют также несколько модифицированные названия координационных соединений. Вместо окончаний, определяющих степень окисления центрального атома, пишут в скобках число. Анионы внешней координационной сферы ставят отдельным словом перед названием

комплексного катиона.

2.1. СВОЙСТВА ПРОСТЫХ ВЕЩЕСТВ

Простые вещества в таблице расположены в алфавитном порядке символов элементов. Приведены данные о модификациях, существующих в стабильном и метастабильном состоянии при низких температурах. Модификации, существующие только при высоких температурах,

пропущены.

Для твердых и жидких веществ в таблице приведена относительная плотность (т. е. плотность вещества, отнесенная к плотности воды при 4 °C) при 20 °C или температуре, указанной в верхнем индексе. Для газов приведена плотность в килограммах, деленных на метр в кубе, при нормальных условиях, т. е. при температуре 0 °C и давлении 101325 Па (760 мм рт. ст.).

Температуры плавления и кипения приведены для давления

101325 Па или для давлений, указанных в скобках.

В графе «Мольная теплоемкость» истинная мольная теплоемкость (в верхнем индексе указана температура ее измерения в градусах Цельсия) и средняя мольная теплоемкость (в верхнем индексе указан диапазон температур в градусах Цельсия) приведены в расчете на одноатомную молекулу.

Удельное электрическое сопротивление (в омах, умноженных на сантиметр), соответствует температурам (в градусах Цельсия), укаванным в верхних индексах. Число, в которое входит множитель 10

(в какой-либо степени), заключено в скобки.

Растворимость, т. е. количество вещества, насыщающего 100 г растворителя, для твердых и жидких веществ приведена в граммах, для газов — в сантиметрах кубических. Температура указана в верхнем индексе. В большинстве случаев растворимость характеризуется только качественно.

Принятые сокращения:

Ам. — аморфный Бел. — белый Бэл. — бензол Бл. — бледный, бледно-Бур. — бурый Би. — беспветный Возг. — возгоняется

Г. — газ, газообразный Гекс. — гексагональный Голуб. — голубой Ж. — жидкий, жидкость Желт. — желтый, желто-3. — зеленый (Продолжение со кращений см. на с. 56)

-			e e		Kas		Темпер	атура,
№ n/n	Символ элемента	Название	Агрегатное состояние	Формула вещества	Цвет, кристаллическая форма	Плотность	плавления	кипения
1	Ac ·	Актиний	Тв.	•••	Серебр., кб.	10,07	1040	. 7.
2	Ag	Серебро	Ж. Тв.	•••	Бел., кб.	10,5 9,4 ^{960,8}	960,8	2477 — 2184
3	Αl	Алюминий	Ж. Тв.	•••	Серебр., кб.	2,702	660,1	_
	As	Мышьяк	Ж.	•••		2,4660	· 	2486
4		кристалли- ческий	Тв.	As ₄	Сер., ром- боэдр.	5,72714	814 (36 ат)	Возг. (615)
5		черный	Тв. Тв.	As ₄	Черн., ам. Желт.,	4, 7 1,97	•••	<u> </u>
6		желтый	Ж.	As ₄	кб.	•••		_
		*	Γ.	Аs ₄ и Аs ₂	Бц.	•••	· ·	-
7	Am	Америций	Тв.	• • •	Серебр., гекс.	11,9	995	-
. , 8	Ar	Аргон	Ж. Тв. Ж. Г.	Ar	 Би.	1,65 ⁻²³³ 1,402 ^{-185,7} 1,7839 ⁰	-189,3 -	2606 — —1:5,9
9	Αt	Астат	Тв.		• • •	•••	•••	
10	Au	Золото	Тв. Ж.	•••	Желт., кб.	19,32 17 ¹⁰⁶³	1063	2947
11	В	Бор	Тв.	•••	Кор. или желт.,	2,34	2300	-
12	Ва	Барий	Ж. Тв.	•••	мн. Серебр.,	3,76	- 710	2550 —
12	Da	Барии	ж.		кб.	•••	_	1640
13	Be	Бериллий	Τв.	•••	Свсер.,	1,85	1285	-
		_	Ж.	•••	• • •	0.00	071.2	2970
14	Bi	Висмут	Тв.	•••	Серебр. с роз. отт., ром-	9,80	271,3	·
			Ж.		боэдр.	• • •		1560

\neg		ытая			P	астворим	ость	1
	тепл кДж	тота, /моль			в вс	оде		
	плавления	парообразования при температуре кипения	Мольная теплоемкость, Дж/(моль · К)	Удельное электрическое сопрот ивление, 10-6 Ом см	при 20 °С	при 100 °С	в органических растворителях	№ п/п
	10,5		•••				•••	1
	11,3	295 20 9	25,5 ²⁵ 331 000 0	1,49 ⁰ 11,3 ¹⁰⁰⁰	H. p.	H. p.	H. p.	2
,	10,5	•••	2420	2,4120	Н. р.	Н. р.	Н. р.	3
	. —	272	28660					
	6,9	•••	23,5 ^{от 0} до 100	3520	Н. р.	Н. р.	Н. р.	4
	•••	•••	***		H. p.	Н. р.	Н. р.	5
	•••	•••	•••	• • •	Н. р.	Н. р.	P. CS ₂	6
	, -	30	•••	•••	_		_	
	10	• • •	•••	•••	•••	•••	• • •	
	1,12	239 6,8	25,9-223	***		<u>_</u> ,	_	8
	` —	. = =	20,825	• • •	5,6° см³	2,250 cm ³	Р. сп., бэл.	,
-	13,0	342	25,2 ²⁵ 271100	2,19 ²⁰ 30,8 ¹⁰ 63	Н. р.	Н. р.	н. р.	9 10
	22, 2	•••	120т 0 до 100	$(1,8 \cdot 10^{12})^{0}$	Н. р.	Н. р.	Н. р.	11
	6,7	590	26,4 ^{от} —185 до 90	 36	— Н. р.	<u> </u>	— Н. р.	12
	10,5	149	 17,8 ²⁷	 3,58	— Н. р.	— Н. р.	H. p.	13
		224	•••	•••	_	_		
_	M,i	***	2629	106,80	Н. р.	Н. р.	H. p.	14
	1 -	193	31400				<u>.</u>	

			eg.		E BE		Темпер	атура,
N e n/n	Символ элемента	Название	Агрегатное состояние	Формула вещества	Цге, кристалли≒еска⊈ ф.ры.а	Плотность	плавления	кипения
15	Br	Бром	Тв.	••••	Ярко-кр. с мет. блеском	3,4 ^{-7,3}	—7, 2	, -
	,		ж.	Br ₂	Темно-	3,102325		58,8
	С	Verence	Γ.,	Br_2	Крбур.	• • •		_
16	U ,	Углерод Алмаз	Тв.	•••	Бц., кб.	3,515	* •••	Возг. 3700
17	•	Графит	Тв.	•••	Серо- черн. с мет.	2,265	• • •	
18	Ca	Кальций	T _B .	•••	блеском Серебр., кб.	1,54	851	
19	Cd	Кадмий	Ж. Тв.	****	Сер., reкс.	8,64	321,03	1482
20	Се	Церий	Ж. Тв.	•••	Сер., кб. (гекс.)	8,0 ³²¹ 6,768	804	767 —
21	Cl	Хлор	Ж. Тв. Ж. Г.	Cl_2 Cl_2	 Желто-з.	$1,9^{-102}$ $1,6552^{-70}$ $3,214^{0}$		3470 .—33,6 —
22 23	Cm Co	Кюрий Кобальт	Тв. Тв.	•••	Серебр. Сер. с син. отт.,	13,5 8,84	1340 1493	=
24	Cr	Хром	Ж. Тв.	• • •	гекс. Сер., кб.	7,19	<u>:-</u> 1890	31 0 0
25	Cs	Цезий	Ж. Тв.	•••	желт.,	1,90	28,5	248 0
26	Cu	Медь	Ж. Тв. Ж.	•••	кб. Кр., кб	1,84 ^{23,5} 8,96 8,3 ¹⁰⁸³	1083	705 — 2600
27	Dy	Диспрозий	Тв. Ж.	•••	Серебр., гекс.	8,559	1380	233)

	Скр	ытая юта,			P	аств о ри:	мость	
	кДж	/моль		•	В	воде		
•	плавления	парообразования при температуре кипевия	Мольная теплоемкость, Дж/(моль · К)	Удельное электрическое сопротивление, 10-4 Ом · см	при 20 °C	при 100 °С	в органических растворителях	№ п/п
	5,4	****	230т —191 до —108	•••	•••	•••	•••	15
	-	15,1	36 ^{от 13} до 45	•••	3,53	Реаг.	Р. сп., эф., бэл.	
	_		•••	•••	•••	:	и др.	
:	• • •	•••	6,0725	$(5 \cdot 10^{20})^{16}$	Н. р.	Н. р.	Н. р.	16
	•••	•••	8,6625	140020	Н. р.	H. p.	Н. р.	17
				•			. `	
	13,3	•••	26,325	4,30	Н. р.	Н. р.	Н. р.	18
	6,36	153	2625	6,83°	— Н. р.	H. p.	Н. р	19
	5,18	100	36 ³²¹ 26,70	75,3 ²⁵	Pear	Pear.	<u> —</u> Н. р.	20
	3,4 —	::: 10,2 —	28-113 33 17 ¹⁵	(10 ¹⁶) ⁻⁷⁰	0,729			21
	16,1	•••	25,3°	5,060	см ³ Н. р.	ем ³ Н. р.	и др. «Н. р.	22 23
	16,4	380 291	23,325	14,1	H. p.	H. p.	H. p.	24
	2,09	•••	$31,05^{25}$. 18,830	Pear.	Pear.	Реаг. сп.	25
	13 15,9	68,2 305	32 ⁵⁰ 24,5 ²⁰ 27 ¹⁰⁸⁴ 28,14 ⁰	1,55° 56 ²⁵	H. p. Pear.	H. p. Pear.	— Н. р. — Н р.	26 27
. 4	_	286	•••					

		· · · · · · · · · · · · · · · · · · ·						-
№ п/п	Символ элемента	Название	Агрегатное состояние	Формула вещества	Цвет, кристаллическая форма	Плотность	Темпер °(кинавива шва шва шва шва шва шва по по по по по по по по по по по по по	ат ура, винэцих
28	Er	Эрбий	Тв.	•••	Серебр., гекс.	9,062	15 25	`
29	Eu	Европий	Ж. Тв. Ж.	•••	Сер., кб.	5,24 5	826 —	2390 1430
30	F	Фтор	Тв. Ж. Г.	F ₂ F ₂	 Блжелт. Блз	1,5127 ⁻¹⁸⁸ 1,693 ⁰	-219,61 -	—188,13 —
31	Fe	Железо	Тв.	•••	желт. Серебр., кб.	7,874	1539	_
32 33	Fr Ga	Франций Галлий	Ж. Тв. Тв.	•••	 Серебр., ромб.	6,9 ¹⁵³⁹ 2,1—2,4 5,904	15—23 29,8	3200 — —
34	Gd	Гадолиний	Ж. Тв.	,	Серебр.,	6,095 ²⁹ ,8 7,886	1312	2230
35	Ge	Германий	Ж. Тв.	•••	 Свсер., кб.	5,323 ²⁵	936	2830 —
36	Н	Водород	Ж. Тв.	 H ₂	KU.	0,0807-262	-259,1	2700 —
			Ж.	H ₂ H ₂	Бц. Бц.	0,708 ^{-252,8} 0,08987 ⁰		-252,6 -
37	He	Гелий •	Тв.	•••	Бц., прозр., гекс.	•••	€272,2 (2,5 M∏a)	 -
			Ж. Г.	He He	Бц. Бц.	0,126 ^{-268,9} 0,17847 ⁰	<u>:</u>	<u>-268,9</u>
3 8	Hi	Гафний	Тв.	•••	Серебр.,	13,09	2222	 -
39	Hg	Ртуть	Ж. Тв.	•••	 Серебр., гекс.	14,193 ^{—38,9}		5400 —
40	Но	Гольмий	Ж. Тв.	Hg	Серебр.,	13,5461 8,779	1500	357,25
			Ж.	•••	гекс.	•••		2380

	Скрі тепл				Pa	астворим	ость	
		моль			ВВ	оде	i	
	плавления	парообразования при температуре кипения	Мольная теплоемкость, Дж/(моль · К)	Удельное электрическое сопротивление, 10-6 Ом · см	при 20 ° С	при 100 °С	в органических растворителях	n/n
	17,2	•••	27,90	10725	Pear.	Pear.	Н. р.	28
	8,4	271 173	26,00	81,325	Pear.	Pear.	Н. р.	29
	0,8		•••	•••			• • • • • • • • • • • • • • • • • • • •	30
	_	3,22 —	14,418	•••	— Pear.	Pear.	Pear.	
	15	•••	2520	8,70	H. p.	Н. р.	Н. р.	31
	· <u>-</u>	350		•••			_	
	2,1 5,66	•••	2320	53,40	Н. р.	н. р.	Н. р.	32 33
	8,8	257 	23 ¹¹⁹ 40 ⁰	27 ³⁰ 140,5 ²⁵	Pear.	Pear.	н. р.	34
	32	324	22,5 ^{от 0} до 100	 (46 · 10°)	— Н. р.	— Н. р.	H. p.	35
	0,06	328	2,4 ^{-260,6}	•••	-	-	· —	36
•		0,4 56	0,98 ^{-252,8} 14,4 ²⁵	•••	 1,82 см ³	 1.6 см ³	Р. сп. (6,9° см ³)	
	0,014	•••	• • •	•••	: · · ·	• • •	(0,5° Cm°)	37
		0,1		•••	_			
	_		20,9418	•••	0,97° см ³	1,21 ⁷⁶ см ³	•••	
	21,8	•••	25,3-63	300	См° Н. р.	см ³ Н. р.	Н. р.	38
	<u> </u>	650	•••	•••	·			
	2,34	•••	28,0-40	21,3-50	• • • •	•••	•••	39
	17,2	59,4	27,9 ²⁰ 29,9 ⁰	94,070 87 ²⁵	H. p. Pear.	H. p. Pear.	Н.`р. Н. р.	40
;	_	281	•••	•••		-	· —	
_								

	·		ние		еская		Темпер	ратура, С
№ n/n	Символ элемента	Название	Агрегатное состояние	Формула вещества	Цвет, кристаллическая форма	Плотность	плавления	Кипения
41	I	Иод	Тв.		Фиол	4,94	113,5	_
			÷		черн. с мет.			
					блеском,			
			Ж.		ромб.	3,96120		184,35
	٠.		Γ.	I ₂	Фиол.	• • •	 .	_
. 42	In -	Индий	Тв.	•••	Серебр., тетраг.	7,31	156,4	. —
			Ж.	•••		• • •	_	2000
43	Ir	Иридий	Тв.	•••	Серебр., кб.	22,42	2450	
			Ж.	• • •	кo.		_	5300
44	K	Калий	Тв.	. • • •	Серебр., кб.	0,862	63,55	_
•		-	Ж.		KU.	0,82664		760
45	Kr	Криптон	Тв.	•••	•••		-157,1	-
	• • •	- (F	Ж.	Kr		2,155-153,2	_	-152,3
			Γ.	Kr	Бц.	3,7450	-,	_
46	La	Лантан	Тв.	•••	Серебр.,	6,162	920	
			Ж.	. •••	· · ·	0,534	179	3470
47	Li	Литий	Тв.	•••	Серебр., гекс.		113	- - - -
			Ж.	• • •		0,507200	<u> </u>	1370
48	Lu	Лютеций	Тв.	•••	Серебр., гекс.	9,849	1675	- .
		-	Ж.		• • •		_	2680
49	Mg	Магний	TB.	•••	Серебр.,	1,74	651	
			Ж.		гекс.	1,57651		1107
50	Mn	Марганец	Тв.	•••	Серебр.,	7,44	1244	· —
	٠		ж.	•••	к б	•••	. –	2095
51	Mo	Молибден	TB.	•••	Свсер.,	10,2	2620	-
			Ж.		к б.			4800
5 2	N	Азот	Ťв.		Гекс.	0,8792-210	-209,86	; <u>-</u>
			Ж.	N ₂	Бц.	0,808-195,8	. —	-195,8
			Γ.	N ₂	Бц.	1,2506		_
	-							

10.7		ытая			P	астворим	ИОСТЬ	
	кДж	лота, Умоль			ВВ	оде		
	плавлення	парообразования при температуре кипения	Мольная теплоемкость, Дж/(моль К)	Удельное электрическое сопротивление, 10-6 Ом см	при 20 °С	при 100 °С	в органических растворителях	№ п/п
	7,8	• • •	27,820	$(1,3 \cdot 10^{15})^{20}$	0,028	0,45	Р. сп. (20,5 ⁵),	41
•							эф. (20,6 ¹⁷) идр.	
	<i>y</i> —	22		$(78 \cdot 10^6)^{114}$	_	_	_	
	3,3		27 ^{от 0} до 100	8,370	Н. р.	Н. р.	Н. р.	42
	 26,4	232	26,1 ^{от 18} до 100	4,580	<u> </u>	Н. р.	— - Н. р.	43
	2,4	629	2925	6,15°	Pear.	Pear.	Pear. cm.	44.
	 1,6	79 · · ·	3063	$13^{62,3}$	Pear.	Pear.	Реаг. сп.	45
	_	9,6	• • •	•••	6,0 ²⁵	4,67 ⁵⁰	Р. сп., бзл.	
	6,7	•••	26,250	56,825	Pear.	Pear.	Н. р.	46
	4,6	393	230	8,550	Pear	Pear.	Pear	47
	18,8	134,7	34,9 ³⁰⁰ 26,1 ⁶	45230 79 ²⁵	Pear.	Pear.	H. р.	48
	7,32	282	24^{20}	4,180	— Н. р.	— Pear.	H. p.	49
	14,9	136	296 51 2625	1850	H. p.	H. p.	H. p.	50
	27, 9	231	26 ^{от 20} до 100	5,17º	— Н. р.	— Н. р.	Н. р.	51
	0,356	506	23-212	***	_	<u>-</u>		52
		2,79	27,8 ⁻²⁰⁰	•••	2,33 ³ см ³	1,3260 CM ³	Р. сп., гексан	

							,	
			яние	eg.	веская		Темпе	ратура, С
№ 11/11	Символ элемента	Название	Агрегатное состояние	Формула вещества	Цвет, кристаллическая форма	Плотность	ения	818
	Символ		Arper	Форму	Цвет, форма		плавления	жипения
5 3	Na	Натрий	Тв.	• • • •	Серебр., кб.	0,97250	97,83	<u> </u>
54	Nb	Ниобий	Ж. Тв.	•••	 Свсер., кб.	0,926 ¹⁰⁰ 8,57	2500	8 82, 9
55	Nd	Неодим	Ж. Тв.	•••	 Серебр. с желт.	7,007	1024	4927 —
56	Ne	Неон	Ж. Тв.	•••	ott., rekc.	•••	 248,6	3210
	ive	пеон	Ж. Г.	Ne Ne	Бц. Бц.	1,205 ^{-245,9} 0,900 ⁰		—24 5,9
57	Ni	Никель	Тв.	• • •	Серебр.,	8,90	1453	
			Ж.	•••	•••	• • ′• _		2900
5 8	Νp	Нептуний	TB.	•••	Серебр.	20,45	640	
59	О	Кислород	Тв.	• • •	Син., гекс.	1,426 ^{-252,7}	-218,7	-
			Ж.	O ₂	Бл голуб.,	1,1321-182,98		-182,98
			Γ.	O ₂	Бц.	1,428970		
6 0		Озон	Тв.	•••	Темно- фиол. призмы	•••	← 192,7	
			Ж.	O_3	Темно- син.	1,46-112	-	111,9
			Γ.	Og	Голуб.	2,144		
61	Os	Осмий	Тв.	•••	Серебр. с голуб. отт.,	22,5	3000	
6 2	P	Фосфор	Ж.	•••	гекс.	•••	. —	5500
	F.	фосфор белый (желтый)	Тв.	.P ₄	Бел., кб.	1,828	44,1	- - -

	Скр	RSTU			P	аствори	мость	
٠.	тепл кДж	юта, /моль			ВЕ	юде		
	плавления	парообразования при температуре кипения	Мольная теплоемкость, Дж/(моль · К)	Удельное электрическое сопротивленне, 10-6 Ом · см	при 20 °С	при 100 °С	в органических растворителях	№ 11/П
	2,65	•••	28,420	4,340	<u>-</u>			5 3
:	26, 8	98	31 100 2520	9,7 ¹⁰⁰ 15,24	Реаг. Н. р.	Pear. H. p.	Pear. сп. Н. р.	54
	7,14	69 6	27,3°	64,3 ²⁵	Pear.	Pear.	Pear.	55
45				-				
	0,33	296	•••	•••	_	_	· =	56
		1,74	•••	•••	1,23° см³	0,9874 см ³	Р. сп., бзл.	
	18		25,820	6,050	Н. р.	Н. р.		57
	9,6 0,22	344	32 ¹⁴⁵³ 22,5 ⁻²²²	•••	H. p.		H. p.	58 59
÷	·	3,4	26,4-200	•••				
	. –	-	14,615.	•••	4,9 ⁰ см ³	2,09 ⁵⁰ CM ³	$(2,78^{25})$	
	•••	• • •	•••	•••		-	см ³) —	60
	_		•••	•••		_	- .	
			• • •		45,17 см ³	•••	P. CCl ₄	
	•••	•••	24,920	9,520	Н. р.	Н. р.	Н. р.	61
	<u>,</u>	• • • •	•••		-	·	-	
	0,653	•••	23,225	(1010)	Н. р.	Н. р.	Р. CS ₂ , NH ₃ , SO ₂ , эф., бзл.	62
				1				

			ние	_	ская		Температура, °С	
№ n/n	Символ элемента	Название	Агрегатное состояние	Формула вещества	Цвет, кристаллическая форма	Плотность	плавления	кипения
63	P	Фосфор красный	Тв.	•••	Темно- кр. до	2,0-2,4	585 (4,2	
64	P	черный	Тв.	•••	кор., ам. Черн., ромб.	2,69	МПа)	
			Ж. Г.	P_4		•••	_	280,5
65	Pa	Протакти-	Тв.		Серебр., тетраг.	15,37	143)	 .
66	Pb	ний Свинец	Тв.	•••	Сер., кб.	11,336 10,686 ^{327,4}	327,4	1740
67	Pd	Палладий	Ж. Тв.	•••	Серебр., кб.	12,02	1552	1740
68	Рm	Прометий	Ж. Тв.	•••	Серебр.,	 7,26	1300	3980
69	Po	Полоний	Тв.		гекс. Серебр.,	9,4	254	
-		2.00.0	ж.		кб.		<u>.</u>	962
7 0	Pr	Празеодим	Ťв.	•••	Серебр. с желт.	6,769	935	=
		*	Ж.	• • •	отт., гекс.	•••	_	3017
71	Pt	Платина	Тв.	•••	Серебр., кб.	21,45	1769	
7 2	Pu	Плутоний	Ж. Тв.	•••	Серебр., орторомб.	19,816	637	4530 —
7 3	Ra	Радий	Ж. Тв.		Серебр.	 ~6	960	3235
74	Rb	Рубидий	Ж. Тв.	• • •	: Серебр.,	1,532	38,5	1140
75	Re	Рений	Ж. Тв.	•••	кб. Серебр.,	21,04	3180	696
10	ηe	гении	тв. Ж.	•	гекс.	21,04	_	5900
7 6	Rh	Родий	Тв.	•••	Серебр., кб.	12,44	1960	
			Ж.		ĸU.	• • •	—	4500
7 7	Ru	Рутений	Тв.	. •••	Серебр., гекс.	12,4	2250	_
			Ж.	• • •	•••	• • • •		490 0

1	Скры				P	астворим	ость	
	тепл кДж/	моль		• 	B 8	оде		٠.
	плавления	парообразования при температуре кипения	Мольная теплоемкость, Дж/(моль · К)	Удельное электрическое сопротивление, 10-6 Ом • см	при 20 °С	при 100 °С	в органических растворителях	№ п/ п
		. • . •	23,425	4 • •	* • •		•••	63
						•		
	•••.	•••	• • •	* ***	. • • •	•••	• • •	64
		• • •	•••	•••	•••	•••	•••	
	16,8	<u> </u>	•••	1,0820	H. p.			6 5
_	5,19		26,520	18,80	Н. р.	Н. р.	Н. р.	6 6
		176	32,6340	98400				0.7
	17,2	•••	26,218	10,80	Н. р.	H. p.	Н. р.	6 7 .
• •	_	394	•••	•••	Door	Pear.	— Н. р.	6 8
	••••	. • • •	•••	•••	Pear.	Pear.	и. р.	
	10	: • •	•••	~ 42	•••	•••	•••	6 9
	_	103		68 ²⁵	. —	Pear.	<u>_</u>	70
	6,9	•••	26,79	0025	Pear.	real.	Н. р.	
	•	333		•••		-	_	
	19,7	•••	26,5	9,810	Н. р.	Н. р.	Н. р.	71
	•••	469	•	•				
	•••	•••	•••	145	Реаг.	Pear.	• • •	72
		•••	•••	• • •	Door	— Реаг.	_	73
•	9,63	147	• • • · · · · · · · · · · · · · · · · ·	•••	Pear.		_	
	2, 22		28,7	11,30	Pear.	Pear.	Pear. cn	i. 7 4
	_	7 5	32,550	19,640	Реаг.	Pear.	Pear., cn	l. 72
	83,1	. • • •	25,40	19,80	Н. р.	Н. р.	Н. р.	75
	-	840	25 ^{от 10} до 9 7				<u>-</u>	70
	21,8	• • •	2501 10 до 91	4,30	Н. р.	Н. р.	Н. р.	76
	· 	556	 26 ^{от 0} до 100					77
	25, 6	•••	2601 0 до 100	7,60	Н. р.	Ĥ. p.	Н. р.	. 77
	· —	620	•••	•••				

			ние		еская		Темпе	ратура, С
№ π ^{/n}	Символ элемента	Название	Агрегатное состояние	формула вещества	Цвет, кри сталли ческая форма	Плотность	плавления	кипения
78	Rn	Радон	Тв. Ж. Г.	Rn Rn	 Бц Бц	4,4 ⁻⁶² 9,73	—71. — —	
79	S	Сера ромбиче- ская	Тв.	S	Желт., ромб.	2,07	112,8	
80		монокли- ническая	Тв.	S ₈	Бл желт., мн.	1,96	119,25	<u>4</u> %
81		аморфиая	TB.	S	Кор желт.	1,92	•••	_ ` '
		• • • • • • • • • • • • • • • • • • •	Ж. Г.	S ₈ S ₈	Желт. 	1,7988 ¹²⁵ 3,64 ⁴⁴⁴ ,6	<u>-</u>	440.6
82	Sb	Сурьма	Тв.		Серебр., ромбоэдр.	6,6925	630,5	_
00			Ж.	•••		6,55631	-	1640
83	Sc	Скандий	Тв.	•••	Серебр. с желт.	3,0	1539	-
			W		отт., гекс.			2700
0.4	C-:	· C	Ж. Тв	•••	Такта	4.70	217	2700
84	Se	Селен	I B.	•••	Темно- сер с кор. отт., гекс.	4, 79	217	_
	•		Тв. Тв.	Se ₈	Кр., мн. Кр., ам.	4,48 4,82	170 220	
			Тв.	•••	Кор черн., стекло- вид.	4,3	•••	, - *
			Ж.	Se ₈	Коркр.	•••		685
			Γ.	Se ₈	Желто- ватый		· — ·	_

[Скр	ытая			P	астворим	ость	
	теп кДж	лота, к/моль	·		В В	оде		
-	плавления	парообразования при температуре кипения	Мольная теплоемкость, Дж/(моль К)	Удельное электрическое сопротивление. 10-8 Ом см	при 20 °С	при 100 °С	в органических растворителях	№ п/п
	3,3		•••	•••	-			78
	-	16,8	•••	•••	51,00 CM3	13,0 ⁵⁰ см ³	— Р. сп., бзл. и др.	
	1,63	•••	22,625	$(2 \cdot 10^{23})^{20}$	Н. р.	Н. р.	P. CS ₂ (29,5 ²⁰), бэл	79
	1,38	. *, * *	23,625	•••	Н. р.	Н. р.	(1,7 ² ^e) Р. CS ₂ , бзл.	80
		•••	* • •	• • • • • • • • • • • • • • • • • • •	Н. р.	Н. р.	Н. р.	81
		10,9	32200	•••	_	_	_	
			•••	•••	-		. - .	
	20	•	25,425	38,620	Н. р.	Н. р.	Н. р.	82
	_	141	28630	12860	٠	_		
	17,6	• • •	25,70	•••	Pear.	Pear.	Н. р.	. 83
	٠, .		•					
		329	•••	•••			_	
	2,22	•••	25 ^{от 0} до 40	$(10^{10})^{215}$	Н. р.	Н. р.	H. p. CS ₂	84
					Н. р.	Н. р.	P. CS ₂ ,	
	•••	• • • •	•••	•••	Н. р.	H. p.	P. CS ₂ , н. р сп	
	•••	•••	•••	(1012)	Н. р.	Н. р.	P. CS ₂	
•	-	81	350т 490 до 570	•••			· <u> </u>	
	_		•••	•••	-			

			ние		эская		Темпе	ратура, С
№ п/п	Символ элемента	Название	Агрегатное состояние	Формула вещества	Цвет, кристаллическая формула	Плотность	плавления	кипения
85.	Si	Кремний	Тв.		Темно-	2,328	1423	
			Ж.	•••	сер., кб. ···	•••	· <u> </u>	2600
86	Sm	Самарий	Тв.	•••	Серебр.,	7,536	1072	_
	*		Ж.	• • •	ромбоэдр. 	•••	_	1670
87	Sn	Олово	Тв.	•••	Серебр.,	7,2984	231,9	. .
		-	Тв.	•••	Сер. поро-	5,8466	231,9	- .
			Ж.	•••	mor, ro.	$6,98^{232}$	-	2270
88	Sr	Стронций	Тв.	•••	Серебр., кб.	2,63	770	. —
	. •		Ж.	•••		••••		1380
89	Та	Тантал	Тв. Ж.	•••	Сер., кб.	16,6	2996	5300
90	Tb	Тербий	, Тв.	, •••	Серебр.,	8,253	1368	_
		٠.	Ж.	•••	icke,	•••	_	2480
91	Tc	Технеций	Тв.		Серебр кор., гекс.	11,487	2140	-
92	Те	Теллур	Тв.	•••	Серебр сер. с мет. блеском,		449,8	_
			ж.	•••	гекс.	•••		990
9 3	Th	Торий	Тв.	•••	Серебр., кб.	11,7225	1750	_
			Ж.	•••	ко.	• • •	_	>3500
94	Ti	Титан	Тв.	•••	Серебр., гекс.	4,505	1665	· <u> </u>
		•	Ж.	•••	···		_	3227

-	Скр	ытая			Pa	створим	эсть	-
	теп. кДж/	пота, моль			B BC	де		
	плавления	парообразования при температуре кипения	Мольная теплоемкость, Дж/(моль · К)	Удельное влектрическое сопротивление. 10- Ом · см	при 20 °С	при 100 °С	в органических растворителях	№ п/п
	46,4	•••	19,820	$(10^6)^{20}$	Н. р.	Н. р	Н. р.	85
	_	304	•••	•••		-	-	
	8,63	•••	49,40	8825	Pear.	Pear.	Н. р.	86
		204	• • •		- .	_	_	
	7,07	•••	26,918	9,30	Н. р.	Н. р.	Н. р.	87
	•••	•••	$25,6^{20}$	•••	H. p.	Н. р.	Н. р.	
		285	31232	49300	_			
	9,2	•••	• • •	24,80	Pear.	Pear.	Pear. сп.	88
		140	•••	•••	_	_	-	
	24,7	 754	2720	1240	H. p.	H. p.	H. p.	89
	9,2	•••	29,90	135,5	Реаг.	Pear.	Н. р.	90
	 .	290	•••	•••	-	_		
	20,3	•••	•••	69100	Н. р.	Н. р.	Н. р.	91
	13,4	•••	2628	$(2 \cdot 10^5)^{20}$	Н. р.	Н. р.	Н. р.	9 2
		84	•••	•••	· —	. —	· _	٠
	3,9		32 ^{от 0} до 100	12,00	Н. р.	Н. р.	Н. р.	93
٠.		~600	• • •	•••	_		_	
	18,9		25,2 ^{от 0} до 100	43,50	Н. р.	Н. р.	Н. р.	94
	_	472		•••			_	

	-	-	ние	æ	ская		Темпер	атура, С
№ п/п	Символ элемента	Название	Агрегатное состояние	Формула вещества	Цвет, крис тал лическая форма	Плотность	пдавления	кипения
95	Ti	Таллий	Tв.	•••		11,85	303	_
	٠.	• ,	Ж.	•••	гекс.	11,289306		1457
96	Tm	Тулий	Тв.	•••	Серебр.,	9,318	1600	_
			Ж.	•••.	гекс.	•••		1720
97	U	Уран	Тв.	`		19,12	1130	-
			ж.	•••	ромб.	16,631130	_	3813
98	V	Ванадий	Тв. Ж.	•••	Сер., кб.	6,11116	1900	3400
99	W	Вольфрам	Тв. Ж.	• • • •	Сер., кб.	19,3	3410 —	5930
100	Xe	Ксенон	Тв. Ж. Г.	Xe Xe	 Бц.	2,7 ⁻¹⁴⁰ 2,987 ^{-108,1} 5,851 ⁰	-111,8 - -	
101	Υ .	Иттрий	Тв.	• • •	Cep.,	4,472	1525	
			Ж.	•••	гекс.	•••	· <u> </u>	.3025
102	Yb	Иттербий	Тв.	•••	Серебр., кб.	6,953	824	
			·Ж.	• • •	•••	• • •		1320
103	Zn	Цинк	Тв.	• • •	Голуб бел., гекс.		419,5	
			Ж.	•••	* • •	6,66419,5		906
104	Zr	Цирконий	TB.		Серебр., гекс.	6 ,4 5	1862	_
			Ж.	• • •	• • •	•••	_	3580

	Скр	ная			P.	астворн⊯	ость	
•	теп. кДж	/моль			ВЕ	воде		ļ
	плавления	парообразования при температуре кипения	Мольная теплоемкость, Дж/(моль К)	Удельное электрическое сопротивление, 10-6 Ом см	при 20 °С	при 100 °С	в органических растворителях	№ п/п
•	4,3	•••	2728	15,00	Н. р.	Н. р.	Н. р.	95
	-	162	•••	74303	_	;		
	18	•••	27,20	7985	Pear.	Pear.	Pear.	96
		240	•••	•••				
**	12,6	•••	28 ^{от 0} до 100	30,60	Н. р.	Pear.	Н. р.	97
	_	453	•••	***	;	_		
	17,6	51 4	24,6 ^{от 0} до 100	190	H. p.	H. p.	H. p.	98
	35	 736	2 5 от 20 до 199	4,910	H. p.	H. p.	Н. р.	·-99
	2,3	•••	•••	•••				100
	Ξ,	12,6	•••	•••	24,10 CM ³	7,1280 CM ³	Р. сп., бзл.	
	17,6	•••	25,70	6925	Н. р.	Pear.	Н. р.	101
	_	335	•••	•••	_	_	· - ·	
,	6,8	•••	26,50	2725	Pear.	Pear.	Н. р.	102
	-	16 6	•••	•••	_		_	
	7,53		25,320	4,80	Н. р.	Н. р.	Н. р.	103
		115	•••	37440	-		 -	
	19,3	•••	26 ^{от 0} до 100	41,00	Н. р.	Н. р.	Н. р.	104
	-	536	•••	•••	_	_	-	

Кб. — кубический Кор. — коричневый Кр. — красный Кта — кислота Мет. — металлический Мн. — металлический Н. р. — не растворяется Орторомб. — орторомбический Отт. — оттенок Прозр. — прозрачный Р. — растворяется Реаг. — реагирует Роз. — розовый

Ромб.— ромбический Ромбоэдр.— ромбоэдрический Св.— светлый, светло-Сер. — серый Серебр. — серебристый Сп.— этиловый спирт Стекловид.— стекловидный Тв.— твердый Тетраг.— тетрагональный Фиолет.— фиолетовый Черн.— черный Эф.— диэтиловый эфир

22. СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Соединения в таблице размещены в алфавитном порядке символов элементов. Соли находятся совместно с соединениями того элемента, который является катионом соли. Кислые соли помещены после гидридов элементов, основные — после оксидов, двойные соли и комплексные соединения — в следующей таблице. Кислоты, как бескислородные, так и кислородные, отнесены к соединениям водорода. Гидриды металлов, азота и фосфора находятся совместно с соединениями этих элементов.

В таблице приведены относительные молекулярные массы, вычисленные по относительным атомным массам элементов в углеродной

шкале — 12 C = 12,0000.

Значения показателей преломления в случае одноосных кристаллов, газов и жидкостей приведены для обыкновенного луча D-линии спектра натрия (589,3 нм); в случае кристаллов с двумя и тремя значениями показателей преломления они приведены в такой последовательности: n_o , n_e и n_p , n_m , n_g . Данные соответствуют комнатной температуре или температуре, указанной в верхнем индексе.

Для жидких и твердых веществ приведена относительная плотность (т. е. плотность вещества, отнесенная к плотности воды при 4 °C) при 20 °C или температуре (в градусах Цельсия), указанной в верхнем индексе. Для газов дана плотность в килограммах, деленных на метр в кубе, при нормальных условиях, т. е. при температуре 0 °C

и давлении 101325 Па (760 мм рт. ст.).

Температуры плавления и кипения приведены для давления 101 325Па или для давлений, указанных в скобках. В этих графах даны также сведения об устойчивости веществ при нагревании. Если слово «разл.» стоит после цифры (значения температуры), это означает, что вещество при указанной температуре плавится (или кипит) с разложением, если «разл.» стоит перед цифрой, то при указанной температуре вещество разлагается без плавления (или кипения). Если перед цифрой стоит формула со знаком «минус», это значит, что при данной температуре происходит потеря указанной составной части молекулы вещества. В этой же графе в некоторых случаях приведены температуры перехода вещества в другие кристаллические формы или превращения в вещества другого состава, а иногда также область существования данного вещества.

Растворимость, т. е. количество вещества, насыщающего 100 г растворителя при температуре, указанной в верхнем индексе, для твердых и жидких веществ приведена в граммах, для газов — в сантиметрах кубических. Для гидратов в некоторых случаях приведены данные в расчете на безводное вещество (после цифры стоит «бв.»). В боль-

шинстве случаев растворимость характеризуется только качественно. Растворимость в неводных растворителях приведена в скобках после формулы или сокращенного названия растворителя. Если температура кипения растворителя ниже комнатной, то растворимость вещества дана для жидкого состояния растворителя.

Принятые сокращения:

Абс. - абсолютный Ам. — аморфный Амил. сп. - амиловый спирт Анил. — анилин Ац. — ацетон Бв. — безводный Бел. — белый Бэл. — бензол Блест. — блестящий Бур. — бурый Бц. — бесцветный Вак. — в вакууме Взр. — взрывчатый, взрывается Водн. — водный В озг. — возгоняется Возд. - воздух Воспл. - воспламеняется Выч. -- вычислено Г. — газ, газообразный Гекс. — гексагональный Гигр. - гигроскопичный Глиц. — глицерин Гол. — голубой Гор. — горячий Диокс. - диоксан Дым. — дымящий Ж. — жидкий, жидкость Желт. -- желтый Желтов. — желтоватый 3. — зеленый Зеленов. — зеленоватый Зол. — золотистый Иг. — иглы, игольчатый Кб. — кубический Конц. — концентрированный Кор. - коричневый Кр. — красный кристал-Крист. — кристаллы, лический Ксил. — ксилол Лигр. — лигроин Лист. - листочки Мет. — металл, металлический Мет. сп. — метиловый спирт Мин. — минеральный Мн. -- моноклинный Нас. — насыщенный Н. р. -- не растворяется Нестаб. - нестабильный

Окт. — октаэдры Ор. — оранжевый Орторомб. — орторомбический Пер. - переходит Петр. эф. — петролейный эфир Пир. - пиридин -Пл. — пластинки Пор. — порошок Пр. — призмы Прозр. — прозрачный Пурп. — пурпурный Р. — растворяется Разб. — разбавленный Разл. - разлагается, с разложе-Расплав. — расплавленный Расплыв. — расплывающийся Pear. — реагирует Роз. — розовый Ромб. - ромбический P.-р.— раствор С. р. — сильно растворим Св. — светло-Сер. — серый Серебр. — серебристый Син. — синий Сл. р. — слабо растворяется Сп. - этиловый спирт-Стаб. — стабильный Стеклов. --- стекловидный Студ. — студенистый Тб. — таблички Тв. - твердый, в твердом состо-Тетраг. — тетрагональный Тол. — толуол Триг. — тригональный Трикл. — триклинный Уст. -- устойчивый Фен. - фенол Фиол. — фиолетовый Хлф. — хлороформ Хол. -- холодный Черн. — черный Эф. — диэтиловый (этиловый) эфир оо — смешивается в любых соотквинешон

		A contract of the contract of		
№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1	Ag ₃ AsO ₃	Ортоарсенит	446,53	Желт. пор.
2	Ag ₃ AsO ₄	серебра Ортоарсенат	462,5 3	Коркр., кб.
. 3	Ag ₃ AsS ₃	серебра Тиоортоарсенит	494,72	Триг., 2,792; 3,088
4	AgBr	серебра Бромид серебра	187,78	Свжелт., кб.,
5 ·	AgBrO ₃	Бромат серебра	235,78	2,253 Бц., тетраг., 1,847;
6 7 8	AgCN AgCNO (AgCNO) ₂	Цианид серебра Цианат серебра Фульминат	133,89 149,89 299,77	1,920 Бел. крист. Бп. крист. Сер. иг.
9 10 11	AgCNS Ag ₂ CO ₃ AgCl	серебра Роданид серебра Карбонат серебра Хлорид серебра	см. № 35 275,75 143,32	AgSCN Желт., мн. Бел., кб., 2,071
12 13	AgClO ₃ AgClO ₄	Хлорат серебра Перхлорат серебра	191,32 207,32	Бел., тетрат. Бел., расплыв. крист., кб.
14 15	Ag_2CrO_4 $Ag_2Cr_2O_7$	Хромат серебра Бихромат (дихро- мат) серебра	331,73 431,73	Кр., мн. Кр., трикл.
16	AgF	Фторид серебра (I)	126,87	Желт. расплыв. крист., кб.
17	AgF ₂	Фторид серебра	145,87	Кор., триг.
18	Ag ₂ HPO ₄	(II) Гидроортофосфат	311,72	Бел., триг., 1,8036
19	$Ag_2H_4TeO_6$	серебра Тетрагидроорто-	443,35	Желт., ромб.
20	Agl	теллурат серебра Иодид серебра	234,77	Желт., гекс., 2,21; 2,22
21	AgIO ₃	Иодад серебра	282,77	Б ц., ромб.
22	AgMnO ₄	Перманганат серебра	226,81	Темно-фиол., мн.
2 3	AgN_3	Азид серебра	149,89	Вел., ромб.
24	AgNO ₂	Нитрит серебра	153,88	Бц., ромб.
25	$Ag_2N_2O_3$	Гипонитрит серебра	275,75	Желт.
26	AgNO ₃	Нитрат серебра	169,87	Бц., ромб., α 1,729; γ 1,788
27	Ag ₂ O	Оксил серебра	231.74	Корчерн. кб.
27 28 29	Ag_2O Ag_2O_2 $AgReO_4$	Оксид серебра Пероксид серебра	231,74 247,74	Корчерн., кб. Серо-черн., кб.

		Темпера	тура, °С		Рас творимо	сть	
				ВВ	оде	в других	№
	Плотность	плавления	кипения .	лри 20 °С	при 100 °C	раствори- телях при 20°C	n/n
,	•••	150 разл.	•••	0,0005	•••	•••	1
	6,65725	•••	•••	0,00085	•••	•••	2
	5,49	> 175	•••	Н. р.	Н. р.	•••	3
•	6,47325	434	Разл. 700	0,000016525	0,00037	P. NH ₃ (2,4)	4
	•••	Разл.	•••	0,19625	1,13590	(-3-7	5
	3,95 4,00 ···	320 разл. Разл. Вэр.	•••	0,000023 Сл. р. 0,075 ¹³	 Р. Р.	•••	6 7 8
	6,077 5,56	218 разл. 455	1559	0,0032 0,0009:91•	0,05 0,0021	 Р. пир. (1,9)	9 10 11
	4,430 2,806 ²⁵	230 Разл. 486	Разл. 270	1015 545 ²⁵	50 ⁸⁰ 792,8 ⁸⁹	Сл. р. сп. Р. сп.,	12 13
	5,625 4,770	 Разл.	•••	$0,0014^{6} \\ 0,0083^{15}$	0,008 ⁷⁰ Pear.	тол. • • •	14 15
	5.85212.5	435	•••	$182^{15,5}$	205108	•••	16
	4,57-4,78	690 '	•••	Pear.	Pear.	•••	17
•	•••	Разл. 110		•••	•••	•••	18
٠.	•••	Разл. > 200	•••	Н. р.	Н. р.	•••	19
	5,67	552 разл.	•••	3.10-7	3-10-6	P.NH ₃	20
·	5,525	>200 Разл.	Разл.	0,003 ¹ 0 0,55 0	0,019 ⁶⁰ 1,69 ^{28,5}	 Реаг. сп	21 22
	4,453 ²⁶ 5,75 ³⁰	Взр. 297 Разл. 140 Разл. 110	•••	Н. р. 0,155° Сл. р	0,01 1,363 ⁶⁰	H. p. cn	23 24 25
	4,35219	212	444 разл.	125°; 228	900	Р. эф., глиц.; сл. р. сп	26
	7,14 ^{16,6} 7,44 7,05	Разл. 300 Разл. > 100 430	•••	0,0013 H. p. 0,32	0,005380	•••	27 28 29

№ n/n	Формула	Название	Молеку; лярная масса	Цвет, кристалличе- ская форма, показатель преломления
`30	AgPO ₃	Метафосфат серебра	186,84	Бел., ам.
31	Ag ₃ PO ₄	Ортофосфат серебра	418,58	Желт., кб.
32	$Ag_4P_2O_7$	Дифосфат серебра	605,42	Бел., пор.
36	Ag_2S Ag_2S $AgSCN$ Ag_2SO_3	Сульфид серебра Сульфид серебра Тиоцианат серебра Сульфит серебра	247,80 247,80 165,95 296,80	Черн., кб. Черно-сер., ромб. Бц. крист. Бел. крист.
37 38	Ag_2SO_4 $Ag_2S_2O_6 \cdot 2H_2O$	Сульфат серебра Дитионат серебра,	311,80 411,90	Бел., ромб. Бц., ромб., 1,662
39	$Ag_2S_2O_3$	дигидрат Тиосульфат серебра	327,87	Бел. пор.
40	Ag ₃ SbS ₃	Тиоортоантимо- нит серебра	541,55	Триг., 2,881; 3,984
43	Ag_2 Se Ag_2 Te Ag_2 TeO ₃ Ag_2 WO ₄ AlAs AlAsO ₄ AlBr ₃ AlBr ₃ · 6H ₂ O AlBr ₃ · 15H ₂ O	Селенид серебра Теллурид серебра Теллурит серебра Вольфрамат серебра Арсенид алюминия Ортоарсенат алюминия Бромид алюминия Бромид алюминия ния, гексагидрат Бромид алюминия	294,70 343,32 391,32 463,59 101,90 165,90 266,69 374,78 536,91	Сер., кб. Сер., кб. Свжелт. Свжелт. крист. Кб. Бел., гекс., 1,596 Бц. расплыв. крист., мн. Бц. расплыв. крист.
51	Al $(BrO_3)_3 \cdot 9H_2O$ Al $_4C_3$ Al $_3C_3$	гидрат Бромат алюминия, нонагидрат Карбид алюминия Хлорид алюминия	572,82 143,96 133,34	Бц. расплыв. крист. Желт., триг., 2,70 Бел., триг. или мн.
53	AlCl ₃ · 6H ₂ O	Хлорид алюминия, гексагидрат	241,43	Бц. расплыв. крист., гекс., 1,560
54	Al $(ClO_3)_3 \cdot 6H_2O$	Хлорат алюминия, гексагидрат	385,43	Бц. расплыв. ром- боэдры
55	AlF ₃	Фторид алюминия	83,98	Бц., триг.

	Темпер	оатура, °С	F	астворимос	ть	Ţ	
			ВІ	воде	в других	N₂	
Плотность	плавления	кипения	при 20 °С	при 100°C	раствори-	π/π	
6,37	~482	•••	Н. р.	•••	• • •	30	
6,370 25	849	•••	0,0006519,5	• • •	•••	. 31	
5,306 ^{7,5}	585	•••	Н. р.	Н. р.	•••	32	
7,317 7,326	825 842 Разл	Разл. Разл.	$\sim 10^{-15}$ $\sim 10^{-15}$ 0.000021^{23}	0,00064	•••	33 34 35	
5,45 ^{29,2} 3,61	Разл. 100 652	Разл. 1085	Сл. р. 0,570	1,41	•••	36 37	
•••	Разл.	•••	 Сл. р.	•••	•••	38 39	
5,76	> 175	•••	Н. р.	•••	• • • •	40	
8,0 8,5 	880 955 450	Разл. 	H. p. H. p. H. p. 0,05 ¹⁵	 Н. р.	•••	41 42 43 44	
3.81	1200	•••	Медленно	Реаг.	Pear. cn.	45	
3,25	•••		pear. H. p.	Н. р.	•••	46	
Тв. 3,01 ²⁵ ; ж. 2,64 ¹⁰⁰	98	256,3	P.	. P.	Р. сп., CS ₂ , ац.	47	
2,54	93	Разл. > 100	Р.	•••	Р. сп.; амил. сп.	48	
•••	—7,5	Разл. 7	P.	•••	Р. сп.	49	
•••	62,3	Разл. 100	Р.	p.	•••	50	
2,99 Тв. 2,44 ²⁵ ; ж. 1,31 ²⁰⁰	Разл. > 2200 192,6 (228 кПа)	179,7 возг.	Pear. 44,90	Pear. 48,680	H. р. ац. Р. абс. сп., хлф., ССІ ₄ , эф.;	51 52	
2,3 98—2,440	. •••	Разл.	P.	Ρ,	сл. р. бзл. Р. абс. сп. (50),	53	
•••	Разл.	•••	P.	Ρ.	эф.	54	
3,07	1040	1256	0,525	1,67	Н. р. ац.	55	

		1		
№ п/п	Формула	Название	Молеку- ля рная масса	Цвет, кристалличе- ская форма, показатель преломления
56	$AlF_3 \cdot H_2O$	Фторид алюминия,	101,99	Бц., ромб., 1,473;
-		гидрат		1,490; 1,511
57	$Al_2F_6 \cdot 7H_2O$	Фторид алюминия, гептагидрат	294,06	Бел. крист. пор.
58	$(AlH_3)_n$	Гидрид алюминия	•••	Бел. пор.
59	AlI ₃	Иодид алюминия	407,69	Свкор. расплыв
60	$All_3 \cdot 6H_2O$	Иодид алюминия,	515,79	Желтов. крист.
61	AIN	гексагидрат Нитрид алюминия	40,99	Би., гекс.
62	Al $(NO_3)_3 \cdot 9H_2O$	Нитрат алюминия, нонагидрат	375,13	Бц. расплыв. крист. ромб.
63	${\rm Al}_2{\rm O}_3$	Оксид алюминия	101,96	Бц., гекс. или кб., 1,765
64	AlO (OH)	Оксид-гидроксид	59,99	Бел., ромб.
65	Al (OH) ₃	алюминия Гидроксид	78,00	Бел., мн.
66	AID	алюминия	57, 9 6	Желтов. сер., кб.
67	AIP AIPO ₄	Фосфид алюминия Ортофосфат	121,95	Бц., тетраг.
68	$AlPO_4 \cdot 2H_2O$	алюминия Ортофосфат алю-	157,98	Бц., ромб., 1,558
69	Al ₂ S ₃	миния, дигидрат Сульфид алюминия	150,16	Желт., гекс.
70	$Al_2 (SO_4)_3$	Сульфат алюминия	240 15	Бел. пор.
71	$Al_{2}^{12} (SO_{4}^{1/3})_{3} \cdot 9H_{2}O$	Сульфат алюминия,	= ~ 1 ~ ~	Бп., мн., 1,459
72	$\text{Al}_2 (\text{SO}_4)_3 \cdot 18\text{H}_2\text{O}$	нонагидрат Сульфат алюминия, октадекагидрат	666,42	Бц., мн., 1,474; 1,476; 1,483
73	Al ₂ Se ₃	Селенид алюминия	290,84	Свжелт., гекс.
74	AsBr ₃	Бромид	314,65	Бц., ромб.
75	AsCl ₃	мышьяка (III) Хлорид	181,28	Бц. ж., 1,5975 ^{21,9}
76	AsCl ₅	мышьяка (III) Хлорид	252,19	and the second s
77	AsF ₃	мышьяка (V) Фторид	131,92	Бц. ж., 1,364 ^{17,5}
78	AsF ₅	мышьяка (III) Фторид	169,91	Бц. г.
79	AsH ₃	мышьяка (V) Гидрид мышьяка	77,94	Бц. г.
80	AsI ₂	(арсин) Иодид мышьяка	328,73	Кр. крист.
	•	(11)	*	

		Температ	ypa, °C	· P			
				в в	оде	в других	N₂
	Плотность	плавления	кипения	при 20 °С	при 100 °C	раствори- телях при 20 °C	п/п
	2,17	Разл.	•••	Сл. р.	•••	. •••	56
	•••	-4H ₂ O, 100	—6H ₂ O, 250	Н. р.	Сл. р.	•••	57
	•••	Разл. >100	. •••	Реаг.	Pear.	Pear. сп.;	58
	Тв. 3,98 ²⁵ ;	191	387,9	* P.	P.	р. эф. Р. сп.,	59
	ж. 3,26 ²⁰⁰ 2,63	185 разл.	Разл.	P.	•••	эф., CS ₂ Р. сп., CS ₂	60
	3,0535	2200_	Возг. 2000	Pear.	Pear.	Pear. cn.	61
	•••	(0,4 МПа) 73,5	Разл. 150	24125	160 бв.	Р. cп (100),	62
	3,5—3,9	2010—2050	2700; 2980	Н. р.	Н. р.	ац.	63
	3,01	•••	•••	H. p.	Н. р.	•••	64
	2,424	•••	•••	Н. р.	Н. р.	•••	65
	2,42 2, 566	Разл. > 1000 > 1500	•••	Pear. H. p.	Pear. H. p.	Н. р. сп., СН, соон	66 67
	2,54	> 1500	•••	Н. р.	Н. р.	H. p. cn.	. 68
*	2,02 ¹³ 2,71 1,71	1100 Разл. 770 Разл.	Возг. 1550	Реаг. 31,2 ⁰ Р.	Pear. 89,0 P.	Н. р. ац Сл. р . сп	
	1,6917	Разл. 86,5	•••	36,2 бв.	Р.	Н. р. сп	. 72
	3,39725	32,8	. •. 221	Pear. Pear.	Pear. Pear.	P. CS ₂	73 74
	2,163	-16	131,3	Pear.	Pear.	Р. сп., эф., б зл	75
	•••	-40	•••	Pear.	Pear.	эф., озл	76
	2,660	—5,90	56,3	Реаг.	Pear.	Р. эф., сп., бзл	⁶ 7 7
	7, 71 г/дм ³	79,8	—52,9	Pear.	Pear.	Р. сп., эф., бзл.	78
	3,5023 г/дм ³	116,9	62,5	20 см3	•••	эф., ози.	79
	•••	130	Разл. 136	Pear.	Pear.	Р. сп., эф., хлф. CS ₂	, 80

Продолжение т	аблицы
---------------	--------

	· ·	1	1							<u> </u>		÷
Nο			Молеку-	Цвет, кристалличе- ская форма,	K.		Температ	ypa, °C	Pa	створимост	гь	
I/n	Формула	Название	лярная масса	показатель преломления	Пло	тность	плавления	кипения	B BC		в других раствори- телях	№ п/п
31	AsI ₃	Иодид	455,63	Кр., триг		· · · · · · · · · · · · · · · · · · ·		•	при 20 °С	при 100 °C		<u> </u>
39	AsI ₅	мышьяка (III)	700.44	V	4	,3913	146	414	5,925	Pear.	Р. сп., эф., бзл.,	81
	As ₂ O ₃	Иодид мышьяка (V) Оксид		Кор., мн. Бел., ам. или стек-		3,93	76	•••	P.	•••	хлф. Р. сп., эф.	. 82
	As_2O_5	мышьяка (III) Оксид		лов., 1,824 Бел., ам	3	,738	315	457,2	$2,05^{25}$	8,1898	H. р. сп., эф.	, 83
	AsP	мышьяка (V) Фосфид мышьяка		Кр. пор.	4.	,086	Разл. 315	•••	65,8	76,7	Р. сп.	84
6 -	As ₂ S ₂	Com to -	010.07			•••	Возг. с разл.	•••	Pear.	Pear.	Сл.р. CS ₂ ; н. р. сп.,	,
	As_2S_3 As_2S_3	Сульфид мышьяка (II) Сульфид		Кркор., мн., 2,46; 2,59; 2,61 Кр. или желт., мн.	α3,	50619;	307	565	Н. р.	Н. р.	эф., хлф.	86
	•	мышьяка (III)	210,01	пр. или желт., мн.		254 ¹⁹ 3,43	300	707	0,0000518	Ст. р.	Р. сп.; н. р. CS ₂ ,	87
	As ₂ S ₅	Сульфид мышьяка (V)		Желт.		•	Возг.	Разл. 500	0,0001360	Н. р.	бзл.	,
	As ₂ Se ₃ AuBr	Селенид мышьяка (III)		Темно-кор. крист.		4,75	360	•••	Н. р.	Pear.	• • •	89
	AuBr ₃	Бромид золота (I) Бромид	436,69	Желтовсер. крист. Темно-кор. крист.		7,9 · · ·	Разд. 115 —Вг ₂ , 160	•••	Н. р. Сл. р	H. p.	 Р. эф.	90 91
	AuCN	золота (III) Цианид золота (I)		Свжелт., гекс.		7,12	Ра в л.	•••	Сл. р.	• • •	H. р. сп.,	
	Au (CN) ₃ · 6H ₂ O	Цианид золота (III),	383,11	Бц. пл.		•••,	Разл. 50		Р.	P	эф. Р . сп.,	93
	AuCl	гексагидрат Хлорид	232,42	Желт. крист.		7.4		Разл. 289,5	Door	Реаг.	эф.	- / 94
	AuCl ₃	золота (I) Хлорид золота (III)	3 03,34	Кр. расплыв. крист.	a e	7,4 3,9	 288 (под	Возг. 265	Pear.	P.	 Р. сп., эф.;	
٠,	AuCl ₃ · 2H ₂ O	Хлорид золота (III),	339,38	Ор. крист.		•••	давл. Cl ₂) Разл.		Р.	Р.	сл. р. NH ₃ Р. сп., эф.;	96
	AuI	дигидрат Иодид золота (I)	323,87	Зеленовжелт. или			5 100				сл. р. NH ₃	3
,	AuI ₃	Иодид	577,68	бел. пор. Темно-з., ромб.		8,25	Разл. 120 Разл.	•••	Сл. р. ப =	Pear.	• • •	97 98
	Au ₂ O Au ₂ O ₃	золота (III) Оксид золота (I)	409,93 441,93	Серо-фиол. пор.		 3,6	Разл. > 200	•••	Н. р. Н. р.	Реаг. Н. р .	•••	99
	Au (OH) ₃	Оксид золота (III) Гидроксид	243,92	Черно-бур. пор. Черно-бур. пор.		•••	20 ,160	•••	Н. р.	Н р.	•••	100
	A ₁₁ ,P _a	золота (III) Фосфид золота	486,86	Сер. пор.		•••	$-1.5 \mathrm{H_2O}$, 250	•••	$5.7 \cdot 10^{-11}$ (25°)	• • •	•••	. 101
	Au ₂ S	Сульфид золота (I)	426,00	Черно-бур. пор.		6,67 · · ·	Разл. Разл. 240	•••	Н. р.	•••	•••	102 103

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
104	Au ₂ S ₃	Сульфид золота (III)	490,12	Черно-бур. пор.
105	$Au_2(SO_4)_3 \cdot H_2O$	Сульфат золо- та (III), гидрат	700,13	Пурп. расплыв. крист.
106	Au ₂ Se ₃	Селенид золота (III)	630,81	Тв.
107	BBr ₃	Бромид бора	250,54	Бц. ж., 1,428
	B ₄ C	Карбид бора Хлорид бора	55,26 11 7, 17	Черн. триг. Бц. ж., 1,428
109	·BCl ₃		67,81	Бц. г.
110	BF ₃ BI ₃	Фторид бора Иодид бора	391,53	Бц. гигр. тб.
112	BN	Нитрид бора	24,82	Бел., гекс.
	D M II	F	80,50	Бц. ж.
	B ₃ N ₃ H ₆ B ₂ O ₃	Борозол Оксид бора	69,62	Бц., кб. или гекс., 1,459; 1,464
115	P.O	Оксид бора	69,62	Стеклов.
116	$\begin{array}{l} \text{B}_2\text{O}_3\\ \text{B}_2^{}\text{O}_3 \cdot 3\text{H}_2\text{O} \end{array}$	Оксид бора, тригидрат	123,67	Бц. крист., 1,456
117	RD	Фосфид бора	41,78	Кор. пор.
	BPO	Ортофосфат бора	105,78	Тетраг.
119		Сульфид бора	117,81	Бел. крист. или стеклов.
120	B _s Si	Силицид бора	60,52	Черн., ромб.
121	Ba ₃ As ₂	Арсенид бария	561,86	Кор. крист.
122	Ba(AsO ₃) ₂	Метаарсенат бария	383,18	Бел. пор.
123	BaHAsO ₄ · H ₂ O	Гидроортоарсенат бария, гидрат		Бц., ромб. или мн.
124	$Ba_3 (AsO_4)_2$	Ортоарсенат бария		Бц. крист.
125	Ba ₂ As ₂ O ₇	Диарсенат бария		Бц. крист.
126	BaBr ₂	Бромид бария		Бц., ромб.
127	$BaBr_2 \cdot 2H_2O$	Бромид бария, дигидрат		Бн., мн., 1,713; 1,727; 1,747
128	$BaBr_2 \cdot BaF_2$	Бромид-фторид бария		Бц. тб.
129	$Ba(BrO_3)_2 \cdot H_2O$	Бромат бария, гидрат	411,17	Бц., мн. № 26
130	BaC ₂	Карбид бария		Сер. или черн., тетраг.
131	Y BaCO ₃	Карбонат бария	197,35	Бел., гекс. или ромб.

		Температ	rypa, °C	P	астворимост	ъ	
	a⊫ i a i i i			в вс	оде	в других	N₂
	Плотность	плавления	кипения			раствори-	n/n
	~	плавления	Кипения	при 20°C	при 100 ℃	телях при 20°C	
-							
	8,754	Разл. ∼ 200	•••	Н. р.		. • . • :	104
	• • • •	•••	• •••	P.	Pear.		105
	4,6522	•••	•••		•••		106
	2,6500	-46	90,9	Pear.	Pear.	P. cn., CCl ₄	107
	2,50-2,60	~ 2450	> 3500	Н. р.	Н. р.		108
	1,4349	—107	12,4	Реаг.	• • •	Реаг. сп.	109
	2,99 г/дм ³	<u>—128</u>	-101	106° см ^з	Pear.	_ •••	110
	3,3550	49; 49,6	210	Pear.	Pear.	P. CS ₂ , CCl ₄ , бзл.	111
	2,20	3000 (под давлением)	•••	Н. р.	Сл. реаг.	0014, 004.	112
	0.8240	—58	53	Pear.	Pear.		113
	1,844	~ 450	> 1700	1,10	15,7	Р. сп.	114
	1.84	577		Сл. р.	P.		115
	1,49	Разл.	•••	Сл. р.	P.	• • •	116
	•••	Воспл. 200	• • •	Н. р.	Н. р.		117
	•••	> 1000		Сл. р.	•••		118
	1,55	310		Pear.	Реаг.	Р. сп.;	119
						сл. р.	
	2.52			Н. р.		PCl ₃ , SCl ₂	120
	4,115			30.20	48,88		121
	•••	Разл. 500	•••	Pear.	Pear.	•••	122
	3,9315	-H ₂ O, 150	•••	0,059	Pear.	A	123
	5,10	1605		0,055	•••	• ••	124
		Разл. 800	3.5	• • •	Pear.		125
	4,78124	847		900	149	Р. мет.	126
	4,701	047	•••	30	143	CII.; CII.	120
	3,5824	-H ₂ O, 75; -2H ₂ O, 120	•••	1160	204	Р. мет. сп., сп.	127
	4,9618	-21180, 120	•••	•••	•••	Н. р. сп.	128
٠	3,9518	—H ₂ O, 180	Разл. 260	0,30	5,7	Н. р. ац.,	129
	3,75	~ 2000 разл.		Pear.	Pear.	сп.	130
	4,43	1740 (9 МПа)	Разл. 1450	0,002	0,006	Н. р. сп.	131
		*					-

No			Молеку-	Цвет, кристалличе- ская форма.
n/n	Формула	Название	лярная масса	показатель преломления
132	Ba (CN) ₂	Цианид бария	189,38	Бел. крист.
133	Ba (CNS) ₂ \cdot 3H ₂ O	Роданид бария, тригидрат	см. № 160	Ba (NCS) ₂ · 3H ₂ O
134	BaCl ₂	Хлорид бария	208,25	Би., ромб. или кб.
135	BaCl ₂ · H ₂ O	Хлорид бария, гидрат	226,26	Бц., ромб.
	$BaCl_2 \cdot 2H_2O$	Хлорид бария, дигидрат	244,28	Би., ромб. или мн., 1,635; 1,646; 1,660
137	BaCl ₂ · BaF ₂	Хлорид-фторид бария	383,58	Бц., тетраг.
138 139	Ba $(CIO)_2$ Ba $(CIO_3)_2 \cdot H_2O$	Гипохлорит бария Хлорат бария, гидрат	240,24 244,28	Бел. пор. Би., мн., 1,577
140	Ba (ClO ₄) ₂ · 3H ₂ O	Перхлорат бария, тригидрат	390,29	Бц. гекс., 1,533
141	BaCrO ₄	Хромат бария	253,33	Желт., ромб.
142	$BaCr_2O_7 \cdot 2H_2O$	Дихромат бария, дигидрат	389,35	Желт крист иг.
143	BaF ₂	Ф торид бари я	175,34	Бц., кб.
144	BaH ₂	Гидрид бария	139,36	Сер., ромб.
145	$Ba (HS)_2 \cdot 4H_2O$	Гидросульфид бария, тетрагидрат	275,54	Бц. или желтов. ромб. иг.
146	Ba $(H_2PO_2)_2 \cdot H_2O$	Гипофосфит бария, гидрат	285, 33	Бел. блест., мн.
147	Ba $(H_2PO_4)_2$	Дигидроорто- фосфат бария	331,31	Бел., трикл.
148	BaHPO ₄	Гидроортофос- фат бария	233,32	Бел., ромб.
149	Bal ₂	Иодид бария	391,15	
	Bal ₂ · 2H ₂ O	Иодид бария, дигидрат	427,18	Ба., ромб. или мн
	BaI ₂ · 6H ₂ O	Иодид бария, гексагидрат	499,24	
152	Ba (IO3)2Ba (IO3)2 · H2O	Иодат бария	487,15	Бц., мн.
		Иодат бария, гидрат	505,16	Бц., мн.
154	BaMnO ₄	Манганат бария	256,28	Cepo-3., rekc.
	Ba (MnŌ ₄) ₂	Перманганат бария	375,21	Черно-фиол., ромо
156	BaMoO ₄	Молибдат бария	297,28	Бц., тетраг.
157	Ba.N.	Нитрид бария	440,03	Бел. пор.
158	$Ba(N_s)_s$	Азид бария	221,38	Би., мн. или ромо
159	$Ba (N_3)_2 \cdot H_2O$	Азид бария, гидрат	239,40	Бц. крист.

~-1	and the second second second	Температу	na °C	Растворимость			
		Temnepary	ра, -С	В В			
	Плотность	плавления	кипения		при 100 °C	в других раствори- телях при 20 °C	N ₂ π/n
	••	ar see the	• • •	8014		Р. 70 % сп. (18 ¹⁴)	
	+ 4				1.15		133
	3,917 3,27	960	1830	31,2° 38,4	57,1 67,4	H. p. cn. H. p. cn.	13 4 13 5
	3,106	—2H₂O,	, •••	42,8	71,7	Н. р. сп.	136
	4,5118	>100 1008	•••	Pear.	Pear.	Н. р. сп.	137
	3,3 3,3	Разл. 235 —Н _а О, 120	•••	45 ¹⁵ 21,8 ⁰	81 119	 Сл. р.	138 139
	2,74	Разл. 400	•••	290 бв.	562 бв.	ац., сп. Р. сп.	140
	4,498	—2H ₂ O, 120	•••	0,0003416	0,0004628	• • • •	141 142
	4,83 4,21	1353 Разл. 675 Разл. 50	2220—2260	0,162 ³⁰ Реаг. 49 бв.	Сл. р. Реаг.	 Н. р. сп.	143 144 145
	2,8710	Разл.	• • • •	28,6	33,3	Н. р. сп.	146
	2,94	•••	•••	Pear.	Pear.	•••	147
	4,16515	•••	•••	0,015	•••	•••	148
	4,92	740	•••	166,70°	246,670	Р. сп.	149
	5,15	—2H ₂ O. 539	•••	20015	382	(77 ²⁰) P. cn., au.	150
	2,61	25,7	•••	410°	1250	(1,07 ¹⁵) Р. сп.	15
	4,998 ¹⁵ 5,23	Разл. —2H ₂ O, 130	•••	0,02 2 Сл. р.	0,197 Сл. р.	H. р. сп. H. р.	153 153
. * \$	4,85 3,77	 Разл. 220	•••	Сл. р. 62,5 ¹¹	•••	сп., ац. Pear. cп.	154 155
V.	4,97	1000 Разл. 219	 Ran	0,0058 ²³ Pear. 17,4 ¹⁷	Pear		156 157 158
	2,936	Разл. 219 Взр.	Взр.	P.	Р.	Сл. р. абс. сп.; н. р. эф.	159

Ne n/n	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
160	Ba (NCS) ₂ · 3H ₂ O	Изотиоцианат бария, тригидрат	307,55	Бц. иг.
161	Ba (NO _a) _a	Нитрит бария	229,35	Бц. гекс. пр.
162	Ba $(NO_2)_2$ Ba $(NO_2)_2 \cdot H_2O$	Нитрит бария, гидрат	247,37	Бц. или желтов. гекс. иг.
163	BaN ₂ O ₂	Гипонитрит бария	197,35	Бел. ам. пор. или крист. иг.
164	BaN ₂ O ₂ · 4H ₂ O	Гипонитрит бария,	269,41	Бел. крист. пор.
105	Da (NO.)	тетрагидрат Нитрат бария	261,35	Бц., кб., 1,572
	Ba (NO ₃) ₂ BaO	Оксид бария	153,34	Бц., кб. или гекс.
167	BaO ₂	Пероксид бария	169,34	Ба. или сер., тетраг.
168	BaO ₂ · 8H ₂ O	Пероксид бария, октагидрат	313,46	
169	Ba (OH) ₂	Гидроксид бария	171,35	Бц. мн.
170	$Ba (OH)_2^2 \cdot 8H_2O$	Гидроксид бария, октагидрат	315,48	Бц., мн., 1,471; 1,500; 1,502
171	BaS	Сульфид бария	169,40	Бц., кб.
	BaSO ₃	Сульфит бария	217,40	Бц., кб.
173	BaSO ₄	Сульфат бария	233,40	Бц., ромб., 1,637 1,638; 1,649
	BaS ₂ O ₃	Тиосульфат бария	249,47	Бц., ромб. Бц., ромб.
175	$BaS_2O_3 \cdot H_2O$	Тиосульфат бария, гидрат	201,10	DH,, pomo.
176	$BaS_2O_6 \cdot 2H_2O$	Дитионат бария, дигидрат	333,49	1,5951
177	$BaS_2O_8 \cdot 4H_2O$	Персульфат бария,	401,52	Бп. мн. пр.
178	BaSe	тетрагидрат Селенид бария	216,30	кб.
179	BaSeO ₄	Селенат бария	280,30	Бц., ромб.
180	BaSiO ₃	Метасиликат бария	213,42	1,673; 1,674; 1,678
181	BaSiO ₃ · 6H ₂ O	Метасиликат бария, гексагидрат	321,52	Бц., ромб., 1,542 1,548; 1,548
182	ВаТе	Теллурид бария	264,94	Бел. или желтов. кб.
183	BaTeO ₄	Теллурат бария	328,94	Бел. пор.

П		Температура, °С Раство		створимост	гворим эсть		
	. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		1	ВВ	оде	в других	N ₂
	Плотность	плавления	кипения	при 20°C	при 100 °С	раствори-	n/a
•	2,28612	3H ₂ O,	•••	32025	Р.	Р. сп.	160
	3,23 ² 8 3,187	217 разл. Разл. 115	Ж:	67,5 81,8	300 P.	Сл. р. сп. Р. сп. (1,6);	161 162
	8,891 80	•••	•••	Н. р.	Pear.	н. р. ац. Сл. р. NH ₃	163
	2,74230	Разл.	•••	Сл. р.	•••	•••	164
	3,24 ²³ 5,72	595 1920	Разд. 2000	9 1,5°	34,4 90,8 ⁸⁰	Н. р. сп. Р. сп.; н. р.	165 166
	4,96	450	O,800	Сл. р.	Pear.	NH ₃ , ац. Н. р. ац.	167
	2,292	-8H ₂ O, 100	• • •	0,168	Pear.	H. р. ац., эф.	16
	4,5 2,18 ¹⁶	408 - 78	Разл. —8H ₂ O, 780	1,65° 5,6 ¹⁵	101,480 P.	Сл. р. сп.	169
	4,25 ¹⁵ 4,5	> 2000 Pasπ. 1580	•••	6,9 0,02 0,000222 ¹⁸	34 0,002 ⁸⁰ 0,000413	Н. р. сп.	17 175 175
	•••	Разл.	•••	0,2	•••	•••	174
	3,45	-H ₂ O, 100	•••	Сл. р.	• • •.	•••	17
ē	4,536 ^{13,5}		• • •	24,7518	90,9	Н. р. сп.	170
	*. • • •	Разл.	•••	52,20	Pear.	•••	177
•	5,02		•••	Реаг.	Pear.	•••	178
;	4,75 4,399 ⁴	Разл. 1604	•••	0,0118 H. p.	0,0138 Pear.	***	179 180
	2,58	. •••		•••	Pear.	•••	18
	5,51	Разл.	•••	Сл. р.	•••	•••	182
	4,55		ente grafia	Сл. р.	•••	•••	18

		4 150	21	1 ·
N₂ n/n	Формула	Название	Молеку- дярная масса	Цвет, кристалличе ская форма, показатель преломления
184	BaTeO ₄ · 4H ₂ O	Теллурат бария, тетрагидрат	401,00	Бел. пор.
185	BaWO ₄	Вольфрамат бария	385,19	Бц., тетраг.
186	Be (AlO ₂) ₂	_ Метаалюминат бериллия	126,97	Ромб., 1,717; 1,748; 1,757
187	BeBr ₂	Бромид бериллия	168,83	Бц. расплыв. иг.
188 189	Be ₂ C BeCO ₃ · 4H ₂ O	Карбид бериллия Карбонат берил- лия, тетрагидрат	30,04 141,08	Желт., кб. Бел., гекс.
190	BeCl ₂	Хлорид бериллия	79,92	Бц. расплыв. иг.
191	BeF ₂	Фторид бериллия	47,01	Бц., тетраг. или гекс.
192	BeH ₂	Гидрид бериллия	11,03	Бел. пор
193	BeI ₂	Иодид бериллия	262,82	Би. иг
194 195	- "" ATT A	Нитрид бериллия Нитрат бериллия, тригидрат	55,05 187,07	Свсер., кб. Желтовбел. расплыв. крист.
196	BeO	Оксид бериллия	25,01	Бц., гекс., 1,719; 1,733
197	Be (OH) ₂	Гидроксид бериллия	43,03	Бел. ам. или крист.
198	BeS	Сульфид бериллия	41,08	Свсер., кб.
199	BeSO ₄	Сульфат бериллия	105,07	Бд. крист
200	BeSO ₄ · 4H ₂ O	Сульфат бериллия, тетрагидрат	177,13	Би., тетраг., 1,440; 1,472
201 202	BeSe BeSeO ₄ · 4H ₂ O	Селенид берилдия Селенат бериллия,	87,97 224,03	Сер., кб. Би., ромб., 1,466; 1,501; 1,503
20 3	ВеТе	тетрагидрат Теллурид	136,61	Сер., кб
2 04	Bi AsO ₄	бериллия Ортоарсенат	347,90	Би., тетраг., 2,14; 2,15; 2,18
2 05	BiBr ₂	висмута: (III) Бромид	368,80	Серо-черн. крист
2 06	BiBr ₃	висмута (II) Бромид	448,71	Желт. крист.
2 07	BiCl ₂	висмута (III) Хлорид	279,89	Корчерн крист
2 03	BiCl ₃	висмута (II) Хлорид писмута (III)	315,34	Бел. расплыв. крист.

Ì	ST	Температура, °С		Растворимость			
	Плотность	Maria de la compansión de		ВВ	оде	в других раствори-	N₂
		плавлєния	кипсния	при 20 °С	при 100°C	Tentry	n/n
	••••	-4H ₂ O, 400)	Сл. р.	Сл. р.	•••	184
	5,04	Разл	•••	Сл. р.	Сл. р.	•••.	185
	3,76	•••	a	Н. р.	Н. р.	•••	186
	3,465 ²⁵	Boar. 480	520	Ρ.	P.	Р. сп., эф.;	187
	2,44	> 2100 разл. Разл. 100	•••	Pear 0,360	Pear.	н. р. бзл. Н. р. NH ₃	183 183
	1,89925	404	500	68,56	P.	Р. сп.,	190
:	2,0115	803	1159	P .	Ρ.	эф., б зл. Р. сп	191
		Разл. ∼ 125	•••	Pear.	Геаг	Н. р. эф.,	192
	4,32525	480	590	Pear.	Pear.	тол. Р. сп.,	193
y L		2200 60	Разл. > 2250 Разл.	Pear. P.	Pear P.	эф., CS, Р. сп	194 195
	3,01	2550	~ 4120	0,0000236	•••	• • •	196
	Крист. 1,909	Разл. 138		Сл. р.	Сл. р.	• • • •	197
****	2,36		•••		•••	•••	198
	2,443	Разл. 550—600		35,30	85,9	•••	199
	1,713 ^{10.5}	-2H ₂ O, 100	$-4H_{2}O, 400$	86,315	323	•••	200
	4 ,32 2 ,03	Разл. —2H ₂ O, 100	-4H ₂ O, 300	Pear,	Pear.	• • • · · · · · · · · · · · · · · · · ·	201 202
	5,09	Разл.	· · · ·	Pear.	Pear.	•••	203
	7,14215	• • •	• • • • • • • • • • • • • • • • • • •	Сл. р.		•••	204
	5,9	• • • •	.,	Реаг.		•••	205
e Lex	5,7	218	453	Pear.	Pear.	Р. эф.	206
* *	4,8 5—4,88	163	Разл. 300	Pear.	Pear.		207
	4,75	230	44 7	Pear.	Pear.	Р. сп., эф. ац.	208

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
20 9	BiCl ₄	Хлорид висмута (IV)	350,79	Бц. крист.
210	BiF ₃	Фторид	265,98	Сер., кб.
211	BiI ₂	висмута (III) Иодид	462,79	Свкр., орторомб.
212	BiI ₃	висмута (11) Иодид	589,69	Кркор. или серо-
	Bi (IO ₃) ₃	висмута (III) Иодат	933,68	син., триг. Бел. пор.
	Bi ₂ (MoO ₄) ₃	висмута (III) Молибдат	897,77	Кркор. или серо-
215	BiO	висмута (III) Сксид висмута (II)	225,98	син., триг. Темно-сер. крист. пор.
216	$\mathrm{Bi}_{2}\mathrm{O}_{3}$	Оксид	466,96	Желт., ромб.
217	$\mathrm{Bi}_{2}\mathrm{O}_{5}$	висмута (III) Оксид	497,96	Темно-кр. или кор.
218	Bi (OH) ₃	висмута (V) Гидроксид	260,00	пор. Бел. ам. пор.
219	BiOBr	висмута (III) Оксид-бромид	304,89	Бц., тетраг.
220	BiOCI	висмута (III) Оксид-хлорид	260,43	Бц., тетраг. или аморф
221	BiOF	висмута (111) Оксид-фторид	243,98	Бц., тетраг.
222	BiOI	висмута (III) Оксид-иодид	351,88	Кр., тетраг.
223	BiONO ₃ · H ₂ O	висмута (III) Оксид-нитрат висмута (III),	305,02	Бц. гекс. тб.
224	BiPO ₄	гидрат Ортофосфат	303,95	Бел., мн.
225	BiS	висмута (III) Сульфид	241,04	Сер. пор.
226	Bi ₂ S ₃	висмута (II) Сульфид висмута (III)	514,15	Черно-кор., ромб., 1,315; 1,670; 1,900
227	Bi ₂ (SO ₄) ₃	Сульфат	706,14	Бц. иг.
228	Bi ₂ Se ₃	висмута (III) Селенид	654,84	Черн., триг.
229	Bi ₂ Te ₃	висмута (III) Теллурид	800,76	Сер., триг.
230	Br ₂ · 8H ₂ O	висмута (III) Октагидрат брома	303,94	Гранатово-кр.
231	$Br_2 \cdot 10 H_2O$	Декагидрат брома	339,97	крист. Кр., окт.

	Ī	Температура, °С		P	T		
÷		•		В В	оде	в других	№
	Плотность	плавления	кипе ния	при 20°C	при 100 °С	раствори-	п/п
-	•••	225	•••	Pear.	•••	•••	209
¥	8,75	•••	•••	Н. р.	Pear.	Р. ац.; н р. сп.	210
	6,5	Разл. 400	•••	Н. р.	•••		211
1	5,64	439	Разл. 500	Н. р.	Реаг.	Р. абс. сп.	212
	•••	•••	•••	Н. р.	Pear.	Р. абс. сп.	213
	6,07	643	•••	•••	•••		214
	7, 15—7,30 ¹⁹	. •••	• • •.	Медленно реаг.	Pear.	•••	215
	8,9	820	1890—1900	Н. р.	Н. р.	•••	216
	5,10	-O,150	—20, 357	Н. р.	Н. р.	•••	217
	4,36	$-H_2O$, 100	• • •	0,00014	Pear.	• • • •	218
,	8,0815	Разл.	, •••	Н. р.		•••	219
	7,7215		•••	Сл. р.	•••	Н. р. ац., NH ₃	220
	7,5	Разл.	•••	Н. р.	• • •		221
	7,92	Разл.	•••	Н. р.	•••	H. р. сп., хлф.	222
	4,92815	Разл. 260	•••	- Н. р.	•••	• • •	223
	6,32315	Разл.	•••	Н. р.	Сл. р.	•••	224
	7,7	685	•••	Сл. р.	•••	•••	225
	6,5—7,39	685 разл.	* * *	0,00001818	•••	•••	226
	6,82	Разл. > 418	•••	Pear.	Pear.	·	227
	6,82	710	Разл.	Н. р.	•••		2 28
	7,7	537	•••	**************************************	•••	•••	229
	1,499	Разл. 6,2	* * * * * * * * * * * * * * * * * * *	Pear.	Pear.	• • •	230
	1,386	Разл. 6,8		Pear.	Pear.	· ••• · · · · · · · · · · · · · · · · ·	231

Продолжение	makauus
11 росолжение	тиолица

			100		, -1		Темпера	тура, °С	j P	астворимос	ТЬ	ī
. Me n/π	Формула	Название	Молек у- лярная	Цвет, кристалличе ская форма,					B B	оде	в других	Ne.
n/n	Формула	Liusbanat	масса	по казател ь преломления	_	Плотность	пдавления	кипения	при 20 ℃	при 100 °С	ра твори-	п/п
23 2	BrCl	Хлорид брома (I)	115,36	Желтовкр. ж. или г.			•••	Разл. 10	Pear.	Pear.	P. CS ₂ ,	232
233	BrF	Фторид брома (I)	98,90	Кр. кор. г.; кр. ж.	****	•••,	-33	20	Pear.	Реаг.	эф. · · ·	233
234	BrF ₈	Фторид брома (ÍII)	136,90	Свжелт. ж.		2,8438,8	8,8	125,7	Pear.	Pear.		234
2 35	BrF ₅	Фторид брома (V)	174,90	Бц. ж.		Тв. 3,09 ^{—61,4} ; ж. 2,466 ²⁵	-61,4	40,4	Pear.	Pear.	•••	235
236	BrN ₃	Азид брома (I)		Кр. ж.		ж. 2,400-	~ 45	Взр.	• • •	•••	Р. эф.; сл. р. бэл.,	236
237	СО	Оксид углерода (II)		Бц. г.	1.7	1,25°; ж. 0,814 ⁻¹⁹⁵	-207	-192	3,5° см ⁸	0,4 ⁹⁰ см ³	лигр. Р. сп.	237
	CO ₂	Оксид углерода (IV)		Бп. г.		1,977°; ж.	—56,6 (0,5 мПа)	— 78,5, возг.	88 см ³	24 ⁷⁵ cm ³	Р. ац., сп.	238
239	COS	Сульфоксид углерода (IV); оксид-сульфид углерода (IV)	60,07	Бц. г.		1,101 ⁻³⁷ 2,72; ж. 1,24 ⁻⁸⁷	—138,2	50,3	133° см ⁸	40,3 ³⁰ см ³	Р. сп.	239
.240	Ca (AlO ₂) ₂	углерода (177) Метаалюминат кальция		Бц., ромб. или мн., 1,643; 1,655; 1,663		3,67	1600	***	Pear.	Pear.	•••	240
241	$Ca_3 (AlO_3)_2$	Ортоалюминат кальция	270,20	Бц., кб., 1,710		•••	1535 разл.	• • •	Н. р.	•	•••	241
242 243	Ca_3As_2 $Ca_3(AsO_4)_2$	Арсенид кальция Ортоарсенат кальция	270,08 398,08	Кр. крист. Бел. ам. пор.	A	3,03125	Разл.	•••	Pear. 0,013 ²⁵	Pear.	•••	242 243
244 245	CaB ₆ Ca (BO ₂) ₂	Борид кальция Метаборат кальция	104,95 125,70	Черн., кб. Бц., ромб., 1,540; 1,656; 1,682		2,3315	1162	•••	Н. р Сл. р.	Н. р.	• • •	244 245
246	Ca (BO2)2 · 2H2O	Метаборат кальция, дигидрат	161,73	Бц., кб.	1	•••	Разл.	•••	0,31030	0,4090		246
247	CaB ₄ O ₇	Тетраборат кальция	195,32	Бц., стеклов.		•••	986		•••	•••	• • •	247
248	CaBr ₂	Бромид кальция	199,90	Бц. расплыв. иг.		3,35325	765	806-812	142	312108	Р. сп., ац.; сл.	248
249	$CaBr_2 \cdot 6H_2O$	Бромид кальция, гексагидрат	308,00	Бц., триг.		•••	38,2	•••	952	P.	р. NH ₃ Р. сп., ац.	249
250	$Ca (BrO_3)_2 \cdot H_2O$	Бромат кальция, гидрат	313,91	Бп., мн.		3,329	—H ₂ O, 180	•••	Ρ.	P.	•••	250
251 252	CaC ₂ Ca (CN) ₂	гидрат Карбид кальция Цианамид кальция		Бц., тетраг. или кб. Бц., триг.		2,22 2,29	~ 2300 Boar. ~1200	•••	Реаг. Реаг. с выделе- нием NH ₃	Реаг. с образо- ванием	Н. р. сп.	251 252
					- [мочевины		

П родолжение	таблиц ы
--------------	-----------------

				1			_
№ • n/ π	Формула	Название	Молеку- лярная масса	Цвет, кристалляче з ская форма, показатель преломления		Плотность	,
253 254	Ca(CN) ₂ Ca (CNS) ₂ · 3H ₂ O	Цианид кальция Роданид кальция, тригидрат	92,12 см. № 278	Бел. пор. 8 Ca (NCS) ₂ · 3H ₂ O		••••	_!
25 5	CaCO ₃	Карбонат кальция (арагонит)	100,09	Би., ромб., 1,530; 1,681; 1,685		2,93	
256	Ca CO ₃	(арагонат) Карбонат кальция (кальцит)	100,09	Би., триг., 1,486; 1,550; 1,658		2 ,711 ^{25,2}	
257	CaCl ₂	Хлорид кальция	110,99	Бц. расплыв. крист., ромб., 1,52		2, 512 25	
258	CaCl ₂ · 6H ₂ O	Хлорид кальция, гексагидрат	219,08	Бц. расплыв. крист., триг., 1,393; 1,417		1,6817	
259	Ca (ClO) ₂ · 2H ₂ O	Гипохлорит кальция, дигидрат	179,01	Би. тетраг. пл., 1,53; 1,63		• • • • • • • • • • • • • • • • • • •	
260	Ca (ClO ₃) ₂ · 2H ₂ O	Хлорат кальция, дигидрат	243,01	Бц. расплыв.		2,711	
261	Ca (ClO ₄) ₂	Перхлорат кальция	238,98	крист., мн. Бц. крист.		•••	
262	CaCrO ₄ · 2H ₂ O	Хромат кальция, дигидрат	192,10	Желт. ромб.			
263	CaF ₂	Фторид кальция	78,08	Бц., кб., 1,4339; 1,434	1.3	3,180	
264	CaH ₂	Гидрид кальция	42,10	Бц., орторомб.		1,9	
265	Ca (HCO ₃) ₂	Гидрокарбонат кальция	162,11	Бц., ромб., 1,514		Ş	
266	$Ca (H_2PO_2)_2$	Гипофосфит кальция	170,05	Свсер., мн.		· · ·	
267	Ca (H ₂ PO ₄) ₂ · H ₂ O	Дигидроорто- фосфат кальция, гидрат	252,07	Бц. расплыв. крист., трикл., 1,4932; 1,5176; 1,5292		2,220 ¹⁶	
268	CaHPO ₄ · 2H ₂ O	Гидроортофосфат кальция, дигидрат	172,09	Бц., мн., 1,5392; 1,5457; 1,5576		2,30616	: •
269	$Ca (HS)_2 \cdot 6H_2O$	Гидросульфид кальция,	214,32	Бц. пр.			Į
270	CaI ₂	гексагидрат Иодид кальция	293,89	Желтовбел.		3,95625	7
271	Cal ₂ · 6H ₂ O	Иодид кальция,	401,98	расплыв. пл. Бц. расплыв.	į ė	•••	
272 273	Ca (IO ₃) ₂ Ca (IO ₃) ₂ · 6H ₂ O	гексагидрат Иодат кальция Иодат кальция, гексагидрат	389,88 497,98	крист., триг. Бц., трикл. Бц., ромб		4,51915	

		Темпера	тура, °С	Растворимость			,
	Плотность			ВВ	оде	в других	No.
	плотность	плавления	кипения	при 20 °C	при 100 °C	раствори-	π/π
		Разл. > 350		Pear.	Pear.	•••	253 254
	2,93	Разл. 825	•••	Н. р.	Н. р.	• • •	255
	2 ,711 ^{25,2}	1339 (10 M∏a)	Разл.	0,0065	Н. р.	•••	256
	2,512 ²⁵	782	> 1600	74,5	159	Р. сп., сн ₄ соон,	257
- '	1,6817	29,92	-4H ₂ O, 30; -6H ₂ O, 200	535	P. ·	ац. Р. сп.	258
	•••	—H ₂ O, 74	•••	P	Pear.	•••	259
	2,711	$-H_{2}O$, > 100	•••	196 бв.	P.	Р. сп., ац.	260
	•••	7100	•••	188,625	P.	Р. сп., ац.; сл.	261
	•••	-2H ₂ O, 200	•••	16,6	P.	р. эф. Р. сп.	262
	3,180	1418	2500	0,001618	0;001726	Н. р. ац.	263
٠	1,9	816 (в токе Н ₂)	Разл. ∼ 600	Pear.	Pear.	•••	264
	•••	• • • •	•••	16,6	18,4	. • • •	265
	•••	Разл.	•••	15,425	12,5	Н. р. сп.	266
	2,22016	—H ₂ O, 109	Разл. 203	1,830	Реаг.	•••	267
	2,30616	Разл.	••••),02 ²⁵ бв.	Pear.	Н. р. сп.	268
	. •••	Разл. 15—18	•••	Р.	•••	Р. сп.	269
	3,95625	575	718	209	426	Р. сп., ац.	270
	•••	42	•••	P.	P. 1	Р. сп., ац.	271
<u></u>	4,51915	Разл. Разл.	• • • • • • • • • • • • • • • • • • •	Сл. р. 0,25 ¹⁵	0,67 ⁹⁰ Сл. р.		272 278

.	I	T = 1			, - 1		Темпе рат	ypa, °C	Pa	створимост	гь			
		_	Молеку-	Цвет, кристалличе-					вво	оде	в других	N ₂		
№ п/п	Формула	Название	Название	Название	Формула Название			Плотность	плавления	кипения	при 20 °С	при 100 °С	раствори-	п/в
274	$Ca (MnO_4)_2 \cdot 5H_2O$	Перманганат кальция,	368,03	Пурп. пр.		2,4	Разл.	• • •	33114	33825	•••	274		
275	CaMoO ₄	пентагидрат Молибдат	200,02	Бц., тетраг., 1,967; 1,978		4,38-4,53	•••	•••	Н. р.		H. р. сп., эф.			
276	Ca ₃ N ₂	кальция Нитрид кальция	148,25	Бц. расплыв. крист., гекс.	4	2,6317	900	•••	Paer.	Pear.	Н. р. абс. сп.	276		
277	Ca (N ₃) ₂	Азид кальция	124,12	Бц., ромб.		•••	Взр. 144—156	• • • • • • • • • • • • • • • • • • • •	•••	•••	P. cn. (0,211 ¹⁶);	27 7		
278	Ca (NCS) ₂ · 3H ₂ O	Изотиоцианат кальция,	210,29	Бел. распл. криет.		•••	•••	•••	P.	, P.	н. р. эф. Р. сп.	278		
279	Ca (NO ₂) ₂ · H ₂ O	тригидрат Нитрит кальция,	150,11	•		2,5330	-H ₂ O, 100		82,6 ¹⁸ бв.	180 бв.	Сл. р. сп.			
80 81	Ca (NO ₃) ₂ Ca (NO ₃) ₂ · 4H ₂ O	гидрат Нитрат кальция Нитрат кальция, тетрагидрат	164,09 236,15	крист., гекс. Бц., кб. Бц. расплыв. крист., мн., 1,465; 1,498;	•	2,36 1,82	561 42,7	Разл. Разл.	126 408	363 P.	Р. сп., ац. Р. сп., ац.	281		
283	CaO CaO ₂ CaO ₂ · 8H ₂ O	Оксид кальция Пероксид кальция Пероксид кальция,	56,08 72,08 216,20	1,504 Бц., кб., 1,838 Бел., тетраг. Бел., тетраг.		3,37	2580 Разл. 275 —8H ₂ O, 100	2850 Разл. 275	• .	0,66 ⁸⁰ Pear.	 Н. р. сп., эф.			
285	Ca (OH) ₂	октагидрат Гидроксид	74,09	Бц., гекс.		2,24	$-H_{2}O, 580$	Разл.	0,14825	0,077		285		
286	Ca ₃ P ₂	кальция Фосфид кальция	182,19	Кр. крист.		2,23825	> 1600	•••	Pear.	Реаг.	H. р. сп., эф., бзл.			
287	$Ca_2P_2O_6 \cdot 2H_2O$	Гипофосфат каль-	274,13	Бц. крист.		* • • •	$-2H_{2}O, 200$	•••	Н. р.	• • •	•••	287		
288	Ca (PO ₃) ₂	ция, дигидрат Метафосфат	198,02	Бц., тетраг., 1,588		2,82	975	•••	Н. р.	Н. р.	•••	288		
289	Ca ₃ (PO ₄) ₂	кальция Ортофосфат	310,18	Бел., триг.	V	3,14	1670	****	Н. р.	•••	•••	289		
290 291	$Ca_2P_2O_7$ $Ca_2P_2O_7 \cdot 5H_2O$	кальция Дифосфат кальция Дифосфат кальция,		Бц. крист., 1,60 Бц., мн., 1,539;		3,09 2,25	1230		Н. р. Сл. р.	•••	• • •	290 291		
292	Ca ₂ PbO ₄	пентагидрат Ортоплюмбат	351,35	1,545; 1,551 Кркор. крист.		5,71	Разл.	•••	Н. р.	Реаг.		292		
293	CaS CaSO ₃ · 2H ₂ O	кальция Сульфид кальция Сульфит кальция,	72,14 156,17	Бц., кб., 2,137 Бц., гекс.		2,18 ¹⁵	> 2000 $-2H_2O$, 100	Разл. Разл	Pear. 0,0043 ¹⁵	Pear. 0,0011	•••	293 294		
	CaSO ₄	дигидрат Сульфат кальция	136,14	Бц., ромб. или мн. 1,569; 1,575;	A	Ромб. 2, 90—2,99	Мн. 1400; 1450	• • •	0,176	0,162	Р. глиц.			
96	$C_{a}SO_{4} \cdot 0,5H_{2}O$	Сульфат кальция, гемигидрат	145,15	1,613 Бц., мн. или триг.		2,67—2,73	—0,5H ₂ O, 163	•••	Сл. р.	Сл. р.	•••	296		

№ n/n	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
297	CaSO ₄ · 2H ₂ O	Сульфат кальция, дигидрат	172,17	Бц., мн., 1,521; 1.523; 1,530
298	$CaS_2O_3 \cdot 6H_2O$	Тиосульфат каль-	260,30	Бц., трикл.
299	$CaS_2O_6 \cdot 4H_2O$	ция, гексагидрат Дитионат кальция,	272,26	Бц., гекс. 1,5496
300	CaSe	тетрагидрат Селенид кальция	119,04	Бц., кб.
301	CaSeO ₄	Селенат кальция	183,04	Бц. крист.
	CaSeO ₄ · 2H ₂ O	Селенат кальция, дигидрат	219,07	Бц., мн.
303	CaSi ₂	Силицид кальция	96,25	Свинцово-сер. блест., трикл.
304	CaSiO ₃	Метасиликат кальция	116,16	Би., мн., 1,610; 1,611; 1,664
305	Ca ₂ SiO ₄	Ортосиликат кальция	172,24	Бц. крист.
206	CaTaO		215,68	Вел. крист.
	CaTeO ₃ CaTiO ₃	Теллурит кальция Метатитанат	135,98	Ромб., в 2,34
308	CaWO ₄	кальция Вольфрамат	287,93	Бц., тетраг., 1,918; 1,934
309	CaZrO ₉	кальция Метацирконат кальция	179,29	Би., мн.
310	Cd ₃ As ₂	4	487,04	Темно-сер., кб.
211	CdAs ₂	Арсенид кадмия	262,24	Черно-сер.
	CdBr ₂	Арсенид кадмия Бромид кадмия	272,22	Бел. гекс. тб.
313	CdBr ₂ · 4H ₂ O	Бромид кадмия, тетрагидрат	344,28	Бц. иг.
314	Cd (BrO ₂) ₃ · H ₂ O	Бромат кадмия,	386,23	Бц., ромб.
315	CdCO ₃	гидрат Карбонат кадмия	172,41	Бел., гекс. или триг.
316	Cd (CN) ₂	Цианид кадмия	164.44	Бц. крист.
317	Cd (CNS) ₂			Cd (SCN) ₂
318	CdCl ₂	Роданид кадмия Хлорид кадмия	183,31	Би., триг.
	$\frac{1}{4} \left(\frac{1}{2} \right)^{-1} = \frac{1}{4} \left(1$			
319	2CdCl ₂ · 5H ₂ O	Хлорид кадмия, пентагидрат	456,68	Бц., мн., 1,6513
	C4 (OID C)	Гидроксид-	164,86	Бц. гекс. пр.
320	Cd (OH) Cl	хлорид кадмия		

		Температ	ypa, °C	Растворимость			
	,	1		ВВ	оде	в других	N₂
	Плотность	плавлення	кипения	при 20°C	при 100 °C	раствори-	п/п
	2,31—2,33	1,5H ₂ O,	—2H ₂ O; 163	Сл. р.	Сл. р.	Р. глиц.	297
•	1,872	Разл.	•••	78,7°	22440	Н. р. сп.	298
	2,176	• • •	•••	16°	3030	• • • •	299
	3,82	•••	•••	Pear. 8,3 ¹⁸	Pear. 660	•••	300 301
	2,93 2,676	•••	•••	10,118	7,360		302
	2,5	1020	•••	Н. р.	Реаг.		303
	2,905	1540	• • •	0,009517	•••		304
	•••	2130	•••	•••	•••	•••	305
		> 960	•••	Сл. р.	P.		306
	4,10	•	•••	•••	•••	• • •	307
	6,06	•••	•••	$0,2^{18}$	•••	• • • •	308
	4,78	2550	· , ·	· · · · · ·	•••	•••	309
	6,21 ¹⁶ ; 6,35	721 62 1	•••	•••	•••	•••	310 311
	5,28	568	863	7510	162	P. cn.	312
	• • •	•••	•••	12010	350	(26,6 ¹⁵), эф. (0,4 ¹⁵) Р. сп. (25), ац.;	313
	3,758	Разл.	•••	12517	•••	сл. р. эф. Н. р. сп.	314
	4,2584	Разл. ∼ 400	• • •	2,76(10-4)16	Н. р.	,•••	315
	2,226	Разл. > 200	•••	1,715	• • •	•••	316 317
	4,04725	568	975	90,00	147	Р. сп., мет. сп.; н. р. ац.,	318
	3,327	—1,5 H ₂ O, 34	•••	18918	287	эф. Р. мет. сп.; сл. р. сп.	319
	4,57	• • •		•••	•••	•••	320
	2,2818	,,,,,, 80	•••	298° бв.	487 ⁶⁵ бв.	Р. ац., сп.	321
_							

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
			e la	
3 22	CdF ₂	Фторид кадмия	150,40	Бц., кб.
3 23	CdHAsO ₄ · H ₂ O	Гидроортоарсенат кадмия, гидрат	270,34	Тв.
	Cd $(HCO_3)_2 \cdot 2H_2O$	Гидрокарбонат калмия лигилрат	238,46	Бц., мн.
3 25	$Cd (H_2PO_4)_2 \cdot 2H_2O$	Дигидроортофос- фат кадмия, дигидрат	342,40	Бц., трикл.
326	CdI ₂	Иодид кадмия	366,21	Кор., гекс.
207	C1 (IO)	**	460.00	P
327 328	$\begin{array}{c} \text{Cd } (\text{IO}_3)_2 \\ \text{Cd } (\text{IO}_3)_2 \cdot \text{H}_2\text{O} \end{array}$	Иодат кадмия Иодат кадмия,	462,20 480,22	Бц., крист. Бц., мн.
329	Cd (MnO ₄) ₂ · ·6H ₂ O	гидрат Перманганат кадмия,	458,36	•••
330	CdMoO ₄	гексагидрат Молибдат	272,34	Тетраг.
331	Cd ₃ N ₂	кадмия Нитрид кадмия	365,21	Черн., кб.
332	Cd (NO ₃) ₂	Нитрат кадмия	236,41	Бц. крист.
333	$Cd (NO_3)_2 \cdot 4H_2O$	Нитрат кадмия, тетрагидрид	308,47	Бц. крист.
334	Cd ₂ O	Оксид кадмия (I)	240,80	З., ам.
335	CdO	Оксид кадмия (II)	128,39	Кор., ам.
	CdO	Оксид кадмия (II)	128,39	Кор., кб.
	Cd (OH) ₂	Гидроксид кадмия (II)	146,41	Бц., гекс. или триг.
338	Cd ₃ P ₂	Фосфид кадмия	399,15	Сер. блест. иг.
	Cd ₃ (PO ₄) ₂	Ортофосфат кадмия	527,14	Бц., ам. или гекс.
	$Cd_2P_2O_7 \cdot 2H_2O$	Дифосфат кадмия, дигидрат	434,77	Бц. пор.
	CdS	Сульфид кадмия	144,46	Желтовор., кб. или гекс., 2,506 2,529
342	Cd (SCN) ₂	Тиоцианат · кадмия	228,56	Бц. крист.
	CdSO ₃	Сульфит кадмия	192,46	Бц. крист.
344	CdSO ₄	Сульфат кадмия	208,46	Бц., ромб.

١		Температ	ypa, °C	Растворимость				
١	_		., .	в во	де	в других	N ₂	
	Плотность	плавления	кипения	при 20 ℃	при 100 ℃	раствори- телях при 20 °C	n/n	
•	6,64	1100	1758	4,352	•••	H. р. сп., NH ₃	322	
	4,16115	> 120	•••	•••	•••	* * *	32	
	2,44	Разл.	•••	Р.	P.	•••	324	
	2,7415	Разл. 100	•••	• • •	•••	Н. р. сп., эф.	32	
	5,670 ⁸⁰	388	918	78,7 º	125	Р. сп., эф., мет. сп.; сл. р.	320	
	6,43	Разл.	•••	Сл. р. Р.	Сл. р.	NH ₃ , au.	327 328	
	2,81	Разл. 95	•••	Р.	Р.	•••	32	
	5,347		•••	Сл. р.	•••	• • •	33	
	7,67 2,455 ¹⁷	350 59,5	 132	142 ¹⁵ 327 ¹⁵	682 P.	 Р. сп.,	33 33 33	
	8,19218	Разл.	•••	•••		NH ₃	33	
	6,95	Разл. > 900	•••	Н. р.	Н. р.		33	
	8,15	Разл. > 900	•••	Н. р.	Н. р.	•••,	33	
	4,7915	$-{\rm H_2O}, \\ 130-200$	•••	0,0002615	• • •	•••	33	
	5,60	700 1500	•••	н. р.	•••	•••	33 33	
	4,96515	900 бв.	•••		* * *	•••	34	
	4,82	1750 (10 МПа)	•••	8,67 × ×(10 ⁻¹⁴) ¹⁸		•••	34	
	•••	•••	••••	Р.	•••	P. cn.	34	
	4,691	Разл. 1000	• • •	Сл. р. 76,7	61	 Н. р. сп., ац., NH ₃	34 34	

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе - ская форма, показатель преломления
345	CdSO ₄ · 7H ₂ O	Сульфат кадмия, гептагидрат	334,57	Бц., мн.
34 6	$CdS_2O_6 \cdot H_2O$	Дитионат кадмия, гексагидрат	380,62	Бц. крист.
347	CdSe	Селенид кадмия	191,36	Серо-кор., гекс. или кб.
34 8	CdSeO ₄ · 2H ₂ O	Селенат кадмия, дигидрат	291,39	Бц., ромб.
34 }	CdSiO ₈	Метасилика т кадмия	188,48	Би., ромб.
350	CdTe	Теллурид кадмия	240,00	Черн., кб. Желт. крист.
3 51	CdWO ₄	Вольфрамат кадмия	360,25	
352	CeBr ₃ · H ₂ O	Бромид церия (III), гидрат	397,86	Бц. расплыв. иг.
3 53	Ce (BrO ₃) ₃ · 9H ₂ O	Бромат церия (III), нонагидрат	685,98	Свкр., гекс.
354 355	CeC_2 Ce_2 (CO_3) ₃ · $5H_2O$	Карбид церия Карбонат церия (III), пен- тагидрат	164,14 550,34	Кр., тетраг. Бел. пр
	CeCl ₃	Хлорид церия (III)	246,48	Бц. расплыв., гекс.
357 358	CeF ₄ · H ₂ O	Фторид церия (III) Фторид церия (IV), гидрат	197,12 234,13	Бел., гекс. Бел. ам. пор., 1.614
359 360	CeH ₃ CeI ₃ ·9H ₂ O	Гидрид церия Иодид церия (III), нонагидрат	143,14 682,97	Темно-син. ам. пор. Свкр. крист.
361 362	Ce $(IO_3)_4$ Ce ₂ $(MoO_4)_3$	Иодат церия (IV) Молибдат церия (III)	839,73 760,05	Бц. крист. Желт., тетраг., 2:028; 2,04
363	$Ce (NO_3)_3 \cdot 6H_2O$	Нитрат церия (III),	434,23	Бц. расплыв. крист.
364	Ce_2O_3	гексагидрат Оксид церия (III)	328,24	Серо-з., триг. или кб.
36 5	CeO ₂	Оксид церия (IV)	172,12	Свжелт., кб. или бц., ам.
36 6	CeOC1	Оксид-хлорид церия (III)	191,57	Пурп., тетраг.
367	Ce (OH) ₃	Гидроксид	191,14	Бел., студ.
36 8	Ce (PO ₃) ₃	церия (III) Метафосфат	377,04	Крист. иг.
369	CePO ₄	церия (III) Ортофосфат церия (III)	235,09	-Кр., мн. или Желт., ромб., 1,788

		Температ	Растворимость				
•	_			в во	де	в других	N₂
	Плотность	жинэлдалп	кипения	при 20 °C	при 100°C	раствори- телях при 20°C	п/п
•	2,48	. •••	• • •	220	150	Н. р. сп.	345
	2,272	Разл.	• • •	•••		•••	346
	5,81 ¹⁵	> 1350	•••	Н. р.	•••	• • •	347
	3,632	-H ₂ O, 100	•••	Р.	•••	•••	348
	4,93	1242	•••	Сл. р.	•••	•••	349
	6,2015	1042	•••	H. p. 0,05	•••	•••	350 351
	•••	735 бв.	1560 бв.	Р.	Р.	P. cn.	3 52
	•••	49	Разл.	Ρ.	Р.	•••	353
	5 , 23	•••		Pear. Сл. р.	Pear.	•••	354 355
	3,92° 6,16 4,5—5,0	794—812 1460 Разл. 295	2330 	P. H. p. H. p.	•••	Р. сп., ац.	356 357 358
	•••	755 бв.	 1400 бв.	Pear. Pear.	Pear. Pear.	 Р. сп.	359 360
	5,03 ¹⁸	930	•••	0,015		•••	361 362
		-3 H ₂ O, 150	Разл. 200	560 ²⁵	P.	Р. сп.	363
	6,9—7,3	•••	• • •	Н. р.	Н. р.	(50), ац.	364
	7,3	> 2600	•••	Н. р.	Н. р.		365
	•••	. •••	•••	Н. р.	•••		36 6
	* " •	•••	•••			•••	367
	3,272	• • •	•••	•••	•••	•••	368
	5,22	•••	•••	Н. р.	Н. р.	. • • • •	369

				Heer woulden nume		Температ	ypa, °C	F	астворимос:	ГЪ		
N ₂	Формула	Название	Молеку- лярная	Цвет, кристалличе- ская форма,					вв	оде	в других	№
n /n	Фортула	ar in the control of	масса масса	показатель преломления		Плотность	плавления	кипения	при 20 °C	при 100 °C	раствори-	n/n
3 70	Ce ₂ S ₃	Сульфит церия (III)	376,43	Кр. или кор., кб.		5,020	Разл.	• • •	Н. р.	Pear.	•••	370
371	Ce ₂ (SO ₄) ₃	Сульфат церия (III)	568,42	Бц. или з., мн.		3,912	Разл. > 500	•••	9,4	0,4	•••	-371
372	$Ce_2(SO_4)_3 \cdot 9H_2O$	Сульфат церия (III), нонагидрат	730,56	Бц., гекс.		2,831	• • •	, ····	Р.	Р.	•••	372
373	Ce(SO ₄) ₂	Сульфат церия (IV)	332,24	Желт. крист.		3,9118	Разл. 195	•••	Р.	P.	• • •	373
374	$Ce(SO_4)_2 \cdot 4H_2O$	Сульфат церия (IV),	404,30	Желт., ромб.		• •••	•••	•••	P.	P.	• • •	374
375	$Ce_2(S_2O_6)_3 \cdot 15H_2O$	церия (111),	1030,84	Трикл., 1,507		2,288		***	•••	• • •	•••	375
	Ce ₂ (SeO ₄) ₃	пентадекагидрат Селенат церия (III)	709,11	Бц., ромб.		4,456	•••	•••	39,550	2,5	• • •	376
	$CeSi_2$ $Ce_2 (WO_4)_3$	Силицид церия Вольфрамат	196,29 1023,78	Тетраг. Желт., тетраг.		5,67 ¹⁷ 6,77 ^{16,5}	1089	•••	H. p. 0,014	0,020	•••	377 378
379 380 381	$Cl_2 \cdot 6H_2O$ $Cl_2 \cdot 8H_2O$ ClF	церия (III) Гексагидрат хлора Октагидрат хлора Фторид	179,05 215,03 54,45	Желт. крист. Св. желт., ромб. Бц. г.	ų.	1,29 1.23 米. 1,67 ⁻¹⁰⁸	Разл. 9,6 —155,6	 —100,1	Сл. р. Сл. р. Реаг.	Сл. р. Сл. р. Pear.	•••	379 380 381
382	CIF ₃	хлора (II) Фторид	92,45	Бц. г. или ж.		•••	—76,3	11,75	Pear.	Pear.	•••	382
383 384	Cl ₂ O ClO ₂	хлора (III) Оксид хлора (I) Оксид хлора (IV)	86,91 67,45	Желтор. «бур. г. Зеленов. «желт. г. или крбур. ж.		3,89° г/дм ³ 3,09 ¹¹ г/дм ⁸	—116 —59,0	2 разл. 11,0	Pear. Pear.	Pear. Pear.	Р. петр.	383 384
3 85	(ClO ₃) ₂	Оксид (YI)	166,90	Темно-кр. масляни- стая ж.		2,023	3,5	203	Pear.	Pear.	эф., ССІ ₄ Р. ССІ ₄	385
	Cl ₂ O ₇	Оксид	182,90	Бц. маслянистая ж.		1,860	—91,5	79,8 разл.	Pear.	Pear.	Р. CCl ₄ , бзл.	386
3 87	$Co_3 (ASO_4)_2 \cdot 8H_2O$	Ортоарсенат кобальта (II), октагидрат	598,76	Фиодкр., мн., 1,626; 1,661; 1,699		2,948	Разл.'	e, d * •••	Н. р.	Н. р.	•••	387
	CoB CoBr ₂	Борид кобальта Бромид кобальта (II)	69,74 218,75	Кр. пр. 3 расплыв., триг.	5	$\substack{7.25^{18} \\ 4.909^{25}}$	 Разл.	***	Pear. 119 ²⁵	Реаг. 257	 Р. сп.	
390	CoBr ₂ · 6H ₂ O	Бромид кобальта (II),	326,84	Крфиол. расплыв. пр.		2,46		-4H ₂ O, 100; -6H ₂ O, 130	43025	Р.	(77,1), эф. Р. эф., сп.	390
391	Co $(BrO_3)_2 \cdot 6H_2O$	гексагидрат Бромат кобальта (II),	422,84	Кр. окт.		•••	v vi •••	•••	45,517	•••	•••	391
392	Co (CN) ₂ · 2H ₂ O	гексагидрат Цианид кобальта (II), дигидрат	147,00	Сине-фиол. пор.		1,87225 бв.	—2H ₂ O, 280	••• ••• •••	Н. р.	•••	* • •	392

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
393	Co(CN) ₂ · 3H ₂ O	Цианид кобальта (II), тригидрат	165,01	Крсер. ам. пор.
394	$Co(CNS)_2 \cdot 3H_2O$	Роданид кобальта (II), тригидрат	см. № 410	Co (NCS) ₂ · 3H ₂ O
39 5	CoCO ₃	Карбонат кобальта (II)	118,94	Кр., гекс.
396	CoCl ₂	Хлорид кобальта (II)	129,84	Гол., триг,
397	CoCl ₂ · 2H ₂ O	Хлорид кобальта (II),	165,87	Кр., мн.
39 8	CoCl ₂ · 6H ₂ O	дигидрат Хлорид кобальта (II),	237,93	Кр., мн.
399	CoCl ₃	гексагидрат Хлорид кобальта (III)	165,29	Кр. крист.
100	Co(ClO ₃) ₂ · 6H ₃ O	Хлорат кобальта (II),	333,93	Кр. расплыв., кб.
401	$Co(ClO_4)_2$	гексагидрат Перхлорат кобальта (II)	257,83	Кр. иг.
102	Co(ClO ₄) ₂ · 6H ₂ O	Перхлорат кобальта (II), гексагидрат	365,93	Кр., гекс.
103	CoCrO ₄	Хромат кобальта (II)	174,93	Желтовкор., ромб.
104	CoF ₂ · 2H ₂ O	Фторид кобальта (II), дигидрат	132,96	Свкр., мн.
105	CoI ₂	Иоди д кобальта (II)	312,74	Черн., гекс.
106	CoI ₂	Иодид кобальта (II)	312,74	Желт. гигр. и г.
107	Col ₂ · 6H ₂ O	Иодид кобальта (II), гексагидрат	420,83	Кркор., гекс.
108	Co(IO ₃) ₂	Иодат кобальта (II)	408,74	Черно-фиол. иг.
109	$Co(IO_3)_2 \cdot 6H_2O$	кобальта (П) Иодат кобальта (П), гексагидрат	516,83	Кр. окт.
110	Co(NCS) ₂ · 3H ₈ O	Изотноцианат кобальта (II), тригидрат	229,14	Фнол., ромб.

	·	Температу	ypa, °C	P	аство римост	ъ	
:				ВВ	о де	в других	Ne
	Плотность	плавления виг		при 20 °C	при 100 °C	раствори- телях при 20°C	11/11
<u></u>	•••	—3H ₂ O, 250		Н. р.		•••	393
Y							394
	4,13	Разл.	•••	Н. р.	Н. р.		395
•	3,356	724	1049	52,9	106,2	P. cn. (54,4),	396
	2,47525	•••	•••	79	192	ац. (8,6)	397
	1,92225	86	-6H ₂ O, 110	173	P.	Р. сп., эф., ац.	398
٠	2,94	Возг.		P.	P.		399
	1,92	61	Разл. 110	1350 бв.	P.	P. cn.	400
	3,327	•••	•••	1000	11545	Р. сп., ац.	401
	•••	•••	•••	Ρ.	P.	Р. сп., ац.	402
	•••	Разл.	•••	Н. р.	•••	•••	403
	4,46		•••	1,36 бв.	Pear.	• • •	404
	5,68	515—520	570 разл.	19725	420	P. сп., ац., SOCl ₂	405
	5,4525	Пер. в а, 400	•••	P.	•••	•••	406
	2,90	$-6H_2^{400}$, 130	•••	Р.	P.	Р. сп., эф., хлф.	407
	5,00818	• • • • • • • • • • • • • • • • • • • •	•••	0,320	1,03	• • •	408
i	3,68921	61 разл.	4H ₂ O, 135	P.	p.	•••.	409
	•••	-3H ₂ O, 105		6,0 бв.	•	. •••	410
				tar Lucio			

Ne n/n	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
411	$C_0(NO_3)_2 \cdot 6H_2O$	Нитрат кобальта (II), гексагидрат	291,03	Кр. расплыв, крист., мн.
412	c _o o	Оксид кобальта (II)	74,93	Кор., кб.
413	Co ₃ O ₄	Оксид кобальта (II, III)		Черн., кб.
414	Co ₂ O ₃	Оксид кобальта (III)	165,86	Черно-сер., кб.
415	Co(OH) ₂	Гидроксид кобальта (II)	92,95	Свкр., триг.
416	Co(OH) ₃	Гидроксид кобальта (III)	109,95	Черно-кор. пор.
417	Co ₂ P	Фосфид кобальта	148,84	Сер. иг.
418	$Co_3(PO_4)_2$	Ортофосфат кобальта (II)	366,74	Кр. крист.
419	$Co_3(PO_4)_2 \cdot 8H_2O$	Ортофосфат кобальта (II),	510,86	Свкр. пор.
420	Co(ReO ₄) ₂ • 5H ₂ O	октагидрат Перренат кобальта (II), пентагидрат	649,40	Темно-роз. крист.
421	CoS	Сульфид кобальта (II)	91,00	Черн., гекс.
400	Ćo ₃ S ₄	Cum dun votanta	305,06	Темно-сер., кб.
422	C0354	Сульфид кобальта	214,06	Черн. крист.
	Co ₂ S ₃	Сульфид кобальта (III)	100.00	Черн., кб.
424	CoS_2 $CoSO_3 \cdot 5H_2O$	Сульфид кобальта	229,07	
425	C0SO ₃ · 5H ₂ O	Сульфит кобальта (II), пентагидрат		
426	CoSO ₄	Сульфат	155,00	Кр., ромб.
•		кобальта (II)		
427	$CoSO_4 \cdot 7H_2O$	Сульфат кобальта (II),	281,10	Кр., мн., 1,477; 1,483; 1,489
428	Co ₂ TiO ₄	гептагидрат Ортотитанат	229,76	Зеленовчерн., кб.
429	CoSe	кобальта (11) Селенид	137,89	Желт., гекс.
430	CoSeO₄ · 7H₂O	кобальта (II) Селенат кобальта (II),	328,00	Кр., мн.
124	Co Si	гептагидрат Силицид кобальта	145.97	Сер., ромб.
	Co ₂ Si CoSi	Силицид кобальта	11510	Темно-син., кб.
433		Силицид кобальта		Темно-син., кб.
•				

Ī		Темпера		Растворимость 🗸				
	T				в воде	в других	N₂	
	Плотность	плавления	ж ипени я	при 20	°С при 100 °С	раствори-	n/n	
	1,87	—3H ₂ O, 55		2630	P.	P. cn , ац.; сл. р.	411	
	5,76,7	1800 разл.	****	Н. р.	Н. р.	NH ₃	412	
	6,07	Разл. 900	• • •	Н. р.	Н. р.	•••	413	
	5,18	Разл. 895	• • •	Н. р.	Н. р.	•••	414	
	3,59715	Разл.		Н. р.	•••		415	
	•••	-1,5 H ₂ O,	,	Н. р.	•••		416	
	6.4^{15}	1386	• • •	Н. р.	Н. р.		417	
	2,58725	•••	•••	Н. р.			418	
	2,76925	—8H ₂ O, 200	•••	Сл. р). į···	•••	419	
	•••	Разл	•••	Pear.	Pear.	•••	420	
	5,45 ¹⁸	> 1116	•••	0,00038	19		421	
	4,86 4,8	Разл. 680 	•••	Н. р.	•••	•••	422 423	
	4,269	•••	•••	Н. р. Н. р.		• • •	424 425	
	3.7125	Разл. > 700	*• • •	36,2	38,5	Р. мет. сп.; н. р.	426	
	1,94625	96,8	_7H ₂ O, 42	20 87	101,4	NН ₃ Р. сп. (2,5³),	427	
	5,07-5,12	•••	• • •	•••	•••	мет. сп.	428	
	7,65	•••	•••	• • •	•••	•••	429	
	2,135	•••	•••	86,00	Ρ.	. • • •	430	
	7,28 6,30	1327 1935	•••	•••	•••	•••	431 432	
	5,3	1277	***	•••		•••	433	

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
434	Co ₂ SiO ₄	Ортосиликат кобальта (II)	209,95	Фиол. крист.
435	CoWO ₄	Вольфрамат кобальта (II)	306,78	Сине-з., мн.
436	CrAs	Арсенид хрома	126,92	Сер., ромб.
437	CrB	Борид хрома	62,81	Серебр., ромб.
438	CrBr ₂	Бромид хрома (II)	211,81	Бел. крист.
439	CrBr ₃	Бромид хрома (III)	291,72	Темно-з., триг.
440	CrBr ₃ - 6H ₂ O	Бромид хрома (III), гексагидрат	399,81	3. расплыв. крист гекс.
441	Cr_3C_2	Карбил хрома	180,00	Сер., ромб.
442	CrCl ₂	Хлорид хрома (II)	122,90	Бел. расплыв. иг.
443	CrCl ₃	Хлорид хрома (III)	158,36	Фиол., триг.
444	CrCl ₃ · 10H ₂ O	Хлорид хрома (III), дек а гидрат	338,51	З крист.
445	CrF ₂	Фторид хрома (II)	89,99	З. крист.
	CrF ₃	Фторид хрома (III)	108,99	3., ромб.
447	$CrF_3 \cdot 4H_2O$	Фторид хрома (III), тетрагидрат	181,05	З., кб.
448	Crl ₂	Иодид хрома (II)		Сер. пор.
	CrÑ	Нитрид хрома	66,00	Ам. или кб.
450	$Cr(NO_3)_3 \cdot 9H_2O$	Нитрат хрома (111), нонагидрат	400,15	Пурп., мн.
451	CtO	Оксид хрома (II)	68,00	Черн. пор.
452	Cr ₂ O ₃	Оксид хрома (111)	151,99	З., триг.
453	CrO ₈	Оксид хрома (VI)		Кр. расплыв. крист., ромб.
454	CrO ₂ Cl ₂	Оксид-хлорид хрома (VI); хлорид хромила	154,90	Темно-кр. ж.
455	CrP	Фосфид хрома	82,98	Серо-черн., ромб.
	CrPO ₄ · 6H ₂ O	Фосфат хрома (III), гексагидрат	255,06	Фиол., трикл., 1,568; 1,591; 1,599
457	CrS	Сульфид хрома (II)	84,06	Черн. крист.
458	Cr ₂ S ₃	Сульфид	200,18	Черно-кор. пор.
459	CrSO ₄ · 7H ₂ O	хрома (III) Сульфат хрома (II), гептагидрат	274,16	Син. крист.

		Темпера	тура, °С	F	астворимо	сть	T
7.	~			ВВ	юде	в других	N₂
	Плотность	плавления	кипения	при 20 °C	при 100 %	раствори-	n/r.
	4,63	•••	• • •	Н. р.			434
	8,42	•••	•••	Н. р.	•••	• • •	435
	6,35 ¹⁶ 6,17 4,356 4,250	~ 2760 842	Bosr.	H. p. H. p. Pear. P.	H. p. H. p. Pear. P.	 Р. сп. Р. сп.	436 437 438 439
	5,417	•••	•••	P.	P.	Р. сп.; н. р. эф.	440
	6,68 2,75	1890 824	3800 ~1308	H. p. Pear.	H. p. Pear.	Сл. р сп.;	441 442
	2,7615	1152	•••	•••	•••	н. р. э þ. Н. р.	443
	•••		•••	P	Р.	CS ₂ Р. сп.	444
,	4,11 3,8	1100 > 1000	> 1300 Boar.	Сл. р.	P.	•••	445 446
	3,78	•••	•••	81,325	Р.	. •••	447
	5,196 5,9	795 Разл. 1170 37	 Разл. ~ 125,5	H. p. P.	 Н. р. Р.	 Р. сп., ац.	448 449 450
	5,21 2,70	1550 1990 196	 Разл.	H. p. H. p. 166 ¹⁵	H. p. H. p. 199	н. р. сп. Р. сп.,	451 452 45 3
	1,911	96,5	117,6	Pear.	Pear.	эф. Р. эф.; pear. сп.	454
	5,7 ¹⁵ 2,121	-3,5H ₂ O,	•••	Н. р. Сл. р.	•••	•••	455 456
	4,1	•••	•••	Н. р.	. •••	•••	45 7
	3,7719	. ••• jagan	•••	Pear.	Pear.	Реаг. сп.	458
	•••	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Pear.	Pear.	Сл. р. сп.	459

		Название	Молеку- лярная масса	ская форма, показатель преломления
60	Cr ₂ (SO ₄) ₃	Сульфат хрома (III)	292,17	Фиол. крист. или пор.
161 `	$Cr_2(SO_4)_3 \cdot 18H_2O$	Сульфат хрома (III), октадекагидрат	716,45	Сине-фиол., кб.
162	Cr.Si.		212,15	Тетраг. пр.
163	Cr ₃ Si ₂ CsBr	Силицид хрома Бромид цезия	212,81	Бц., кб., 1,6984
164		Бромат цезия	260,81	Бц. крист.
165	Cs ₂ CO ₃	Карбонат цезия	325,82	Бц. расплыв. крист.
166	CsCl	Хлорид цезия	168,36	Бц., кб., 1,6418
167	CsClO ₄	Перхлорат цезия	232,36	Бц., ромб., 1,4788
168	Cs ₂ CrO ₄	Хромат цезия	381,80	Желт., ромб.
169	CsF	Фторид цезия	151,90	Бц., кб., 1,48
	CsF · 1,5H ₂ O	Фторид цезия, сесквигидрат	178,93	Бц. крист.
171	CsH	Гидрид цезия	133,91	Бел., кб.
172	CsHCO ₃	Гидрокарбонат цезия	193,92	Бел., ромб.
173	CsHSO ₄	Гидросульфат цезия	229,99	Бц., ромб.
174	Csl	Иодид цезия	359,81	Би., кб., 1,7876
175	CsIO ₈	Иодат цезия	307,81	Бц., кб. или мн.
176	CsIO ₄	Периодат цезия	323,81	Ец., ромб.
177	CsMnO ₄	Перманганат цезия	251,84	Фиол., ромб.
178	CsNO ₂	Нитрит цезия	178,91	Желт. крист.
179	CsNO ₃	Нитрат цезия	194,91	Бц., гекс. или кб
180	Cs ₂ O	Оксид цезия	281,81	Оркр, гекс.
181	Cs_2O_2	Пероксид цезия	297,81	Желт. иг.
182	$Cs_2^2O_3^2$	Пероксид цезия	313,81	Кор., кб.
183	CsO _a	Пероксид цезия	164,90	Желт., тетраг.
184	CsOH	Гидроксид цезия	149,91	Желтов.сер. расплыв. крист.
185	Cs ₂ SO ₄	Сульфат цезия	361,87	Би., ромб., 1,560; 1,564; 1,566
186	CsSO ₃ F	Фторсульфонат цезия	231,97	Бц., тетраг.
187	Cu ₃ As	Арсенид меди	265,54	Триг.
188	Cu _s As	Апсения мели	467,54	Син. окт.
189	$Cu_3(AsO_4)_2 \cdot 4H_2O$	Ортоарсенат меди (II),	540,52	Сине-з. пор.
400	C., D	тетрагидрат	010.04	Worm non
19U	Cu ₃ B ₂	Борид меди	212,24	Желт. пор
491	$Cu(BO_2)_2$	Метаборат меди (II)	149,16	Сине-з. крист. пор

1	Температур	a, °C	P	астворимост	ъ	
			вв	оде	в других	N ₂
Плотность	плавления	кипения	при 20 °C	при 100°C	раствори-	n/n
3,012	. 77.4.49.155	**** p.6.2	i Pic off	••••	Сл. р. сп.	460
1,722	—12H ₂ O, 100	***:	120	Р.	P. cn.	461
\$10.00 	· · · · · · · · · · · · · · · · · · ·			••		462
5,5 4,44	632	1300	H. p. 123.3 ²⁵	Н. р.	• • •	463
7,77			3,725	•••	• • •	464
• • •	Разл. 610	•••	260,515	Ρ.	Р. сп.	465
9.07	642	1300	186.5	270.5	(П ¹⁹), эф. Р. сп.	466
3,97 3,327	Разл.	1000	0,80	30	Н. р. абс. сп.	467
4.237			71,413	•••		466
3,586	682	1250	P.	•••	Н. р. сп.	469
•••			366,518	• • •	• • • •	470
3,42	Разл.		Pear.	Pear.		47
0,12	Разл. 175	•••	209,315	P.	Р. сп.	472
3,35216	Разл.	• • •	P.	: • •	41.4	473
4.510	621	1280	440	15160	Р. сп.	474
4,85		•••	2,624		• • •	47
4,259		••• 414	2,1515	• • •	• • •	470
3,597	Разл.	•••	0,0971	1,2759	• • • •	477
• • •			. . P.	Р.		478
3,685	417	Разл.	9,160	196,8	Р. ац.	479
4,36	Разл.	•••	_	Pear.	Р. абс.	480
4,25	360—400 400	Разл. 650	Pear.	Pear.	сп.	48
4.25	400.		Реаг.	Реаг.		48
3,7719	600	Разл	Pear		• • •	48
3,675	272,3		385,515		Р. сп.	48
4,243	1010	• • •	167 °	220	Н. р. сп.	, 48
1	292	•••	2,2	. Agric		48
8,0	830	•••	។ ដូចជា ប៉ុន្តែកែក ស្រាស់ស្នាក់ស្នាក់	•••	•••	48
7,56	Разл.	•••	Н. р.,	Н. р.		48
•••	•••	••• 1	Н. р.	Н. р.	•••	48
	ing a second second		មជ្ជសាល បាន ។ បាន បាន ស្រាស់		4	
8,116	• • •	•••	•••	•••	•••	49
3,859		• • • •	P.	•••	•••	49
			eran in t			

№ п/л Формулв Название Молекуларная масса Швет. кристаллическая форма, привольный преломления 492 Си₂Вг₂ Бромид меди (II) 286,90 Бел., кб. 493 СиВг₂ Бромид меди (II) 233,36 Черн. расплыв, крист., мн. 494 Си(ВгО₃)₂ · 6H₂О Бромат меди (II), гексагидрат 151,10 Кр. вм. пор. 495 Си₂СN)₂ Ацетиления меди (I) 119,12 Бел. мн. пр. 497 Си(СN)₂ Циания меди (II) № 532 Си(SCN) 498 Си(СNS) Роданид меди (II) № 532 Си(SCN)₂ 499 Си(СNS) Роданид меди (II) № 532 Си(SCN)₂ 500 Си₂Со₃ Карбонат меди (II) 187,09 Желт. пор. 500 Си₂Со₃ Карбонат меди (II) 134,45 Коржелт., мн. 503 СиСl₂ · 2H₂О Хлорид меди (II), дигидрат 1170,48 3. расплыв. крист., кб. 504 Си(СlO₃)₂ · 6H₂О Хлорид меди (II), дигидрат 134,45 Коржелт., мн. 505 СиСг₂Оγ · 2H₂О Хлорид меди (II), дигидрат 165,08 Кр., кб. 506 Си₂-2 2H₂О Фторид меди (II), дигидрат 179,55 Син., мн.					
493 CuBr ₂ Бромид меди (II) 233,36 Черн. расплыв. крист., мн. 494 Cu(BrO ₈) ₂ · 6H ₂ O Бромат меди (II), 151,10 Кр. ам. пор. меди (II) 115,57 Желтовз. пор. Оправния меди (II) 115,57 Желтовз. пор. Родания меди (II) см. № 532 CuSCN Родания меди (II) см. № 533 Cu(SCN) ₂ Хлорид меди (II) 187,09 Желт. пор. Хлорид меди (II) 197,99 Бел., кб., 1,973 502 CuCl ₂ Хлорид меди (II) 134,45 Коржелт., мн. 503 CuCl ₂ · 2H ₂ O Хлорид меди (II), 170,48 З. расплыв. крист., гексагидрат Дихромат меди (II), дигидрат Крист. Пидроортопересния меди (II), дигидрат (II) 137,57 Син., мн. дигидрат (II) 179,55 Син. пор. меди (II), дигидрат меди (II) 179,55 Син. пор. меди (II), дигидрат меди (II) 179,55 Син. пор. меди (II), дигидрат меди (II) 179,55 Син., трибл. гидрат меди (II), дигидрат меди (II) 413,34 З., мн. мн. дигидрат меди (II),	M 11/11	Формула	Название	лярная	ская форма, показатель
494 Cu(BrO ₃) ₂ · 6H ₂ O	492	Cu ₂ Br ₂	Бромид меди (I)	286,90	Бел., кб.
Тексатидрат Ацетиленид Меди (I) 196 Cu₂(CN)₂ 497 Cu(CN)₂ 498 Cu(CNS) 499 Cu(CNS) 499 Cu(CNS)₂ 500 Cu₂CO₂ 501 Cu₂CO₂ 502 CuCl₂ 503 CuCl₂ 504 Cu(COS)₂ 505 CuCl₂ 505 CuCr₂Oγ⋅2H₂O 505 CuCr₂Oγ⋅2H₂O 506 Cu₂F₂ 507 CuF₂⋅2H₂O 507 CuF₂⋅2H₂O 508 CuHAsO₃ 509 Cu₂HIO₆ 509 Cu₂HIO₆ 510 CuHPO₃⋅2H₂O 511 Cu₂U₂ 511 Cu₂U₂ 511 Cu₂U₂ 511 Cu₂U₂ 512 Cu(IO₃)₂ 513 Cu(IO₃)₂ 514 Cu₃N 514 Cu₃N 515 Cu(NO₃)₂⋅3H₂O 515 Cu(NO₃)₂⋅3H₂O 516 Cu₂V₂ 517 Cu∇₃ 518 Cu(IO₃)₂⋅3H₂O 519 Cu₂HIO₆ 510 CuHPO₃⋅2H₂O 511 Cu₂U₂ 513 Cu(IO₃)₂⋅4D₀ 514 Cu₃N 514 Cu₃N 515 Cu(NO₃)₂⋅3H₂O 516 CuγN₂₂ 517 CuγN₂₂ 518 Cu(NO₃)₂⋅3H₂O 518 Cu(NO₃)₂⋅3H₂O 519 CuγN₃₂ 510 Cu(NO₃)₂⋅3H₂O 511 Cu₂U₃ 511 Cu₂U₃ 512 Cu(IO₃)₂ 513 Cu(IO₃)₂⋅3H₂O 514 Cu₃N 515 Cu(NO₃)₂⋅3H₂O 515 Cu(NO₃)₂⋅3H₂O 516 CuγN₂₂ 517 CuγN₂₂ 518 Cu(NO₃)₂⋅3H₂O 518 CuγN₃₂ 519 CuγN₃₂ 510 CuγN₂₂ 511 Cu₂U₃ 511 Cu₂U₃ 512 Cu(NO₃)₂⋅3H₂O 513 Cu(NO₃)₂⋅3H₂O 514 Cu₃N 515 Cu(NO₃)₂⋅3H₂O 515 Cu(NO₃)₂⋅3H₂O 516 CuγN₂₂ 517 CuγN₃₂ 518 CuγN₃₂ 519 CuγN₃₂ 519 CuγN₃₂ 510 CuγN₃₂ 511 Cu₂U₃ 511 Cu₂U₃ 512 Cu(NO₃)₂⋅3H₂O 513 Cu(NO₃)₂⋅3H₂O 514 Cu₃N 515 Cu(NO₃)₂⋅3H₂O 515 CuγN₂₂ 516 CuγN₂₂ 517 CuγN₃₂ 517 CuγN₃₂ 518 CuγN₂₂ 518 CuγN₃₂ 519 CuγN₃₂ 519 CuγN₃₂ 510 CuγN₃₂ 510 CuγN₃₂ 511 Cu₂U₃ 512 CuγN₃₂ 513 CuγN₃₂ 514 Cu₃N 515 CuγN₃₂ 515 CuγN₃₂ 516 CuγN₃₂ 517 CuγN₃₂ 517 CuγN₃₂ 518 CuγN₃₂ 518 CuγN₃₂ 519 CuγN₃₂ 519 CuγN₃₂ 510 CuγN₃₂ 511 CuγN₃₂ 512 CuγN₃₂ 513 CuγN₃₂ 513 CuγN₃₂ 514 CuγN₃₂ 515 CuγN₃₂ 517 CuγN₃₂ 517 CuγN₃₂ 517 CuγN₃₂ 518 CuγN₃₂ 518 CuγN₃₂ 519 CuγN₃₂ 519 CuγN₃₂ 510 CuγN	493	CuBr ₂	Бромид меди (II)		
Тексатидрат Ацетиленид Меди (I) 196 Cu₂(CN)₂ 497 Cu(CN)₂ 498 Cu(CNS) 499 Cu(CNS) 499 Cu(CNS)₂ 500 Cu₂CO₂ 501 Cu₂CO₂ 502 CuCl₂ 503 CuCl₂ 504 Cu(COS)₂ 505 CuCl₂ 505 CuCr₂Oγ⋅2H₂O 505 CuCr₂Oγ⋅2H₂O 506 Cu₂F₂ 507 CuF₂⋅2H₂O 507 CuF₂⋅2H₂O 508 CuHAsO₃ 509 Cu₂HIO₆ 509 Cu₂HIO₆ 510 CuHPO₃⋅2H₂O 511 Cu₂U₂ 511 Cu₂U₂ 511 Cu₂U₂ 511 Cu₂U₂ 512 Cu(IO₃)₂ 513 Cu(IO₃)₂ 514 Cu₃N 514 Cu₃N 515 Cu(NO₃)₂⋅3H₂O 515 Cu(NO₃)₂⋅3H₂O 516 Cu₂V₂ 517 Cu∇₃ 518 Cu(IO₃)₂⋅3H₂O 519 Cu₂HIO₆ 510 CuHPO₃⋅2H₂O 511 Cu₂U₂ 513 Cu(IO₃)₂⋅4D₀ 514 Cu₃N 514 Cu₃N 515 Cu(NO₃)₂⋅3H₂O 516 CuγN₂₂ 517 CuγN₂₂ 518 Cu(NO₃)₂⋅3H₂O 518 Cu(NO₃)₂⋅3H₂O 519 CuγN₃₂ 510 Cu(NO₃)₂⋅3H₂O 511 Cu₂U₃ 511 Cu₂U₃ 512 Cu(IO₃)₂ 513 Cu(IO₃)₂⋅3H₂O 514 Cu₃N 515 Cu(NO₃)₂⋅3H₂O 515 Cu(NO₃)₂⋅3H₂O 516 CuγN₂₂ 517 CuγN₂₂ 518 Cu(NO₃)₂⋅3H₂O 518 CuγN₃₂ 519 CuγN₃₂ 510 CuγN₂₂ 511 Cu₂U₃ 511 Cu₂U₃ 512 Cu(NO₃)₂⋅3H₂O 513 Cu(NO₃)₂⋅3H₂O 514 Cu₃N 515 Cu(NO₃)₂⋅3H₂O 515 Cu(NO₃)₂⋅3H₂O 516 CuγN₂₂ 517 CuγN₃₂ 518 CuγN₃₂ 519 CuγN₃₂ 519 CuγN₃₂ 510 CuγN₃₂ 511 Cu₂U₃ 511 Cu₂U₃ 512 Cu(NO₃)₂⋅3H₂O 513 Cu(NO₃)₂⋅3H₂O 514 Cu₃N 515 Cu(NO₃)₂⋅3H₂O 515 CuγN₂₂ 516 CuγN₂₂ 517 CuγN₃₂ 517 CuγN₃₂ 518 CuγN₂₂ 518 CuγN₃₂ 519 CuγN₃₂ 519 CuγN₃₂ 510 CuγN₃₂ 510 CuγN₃₂ 511 Cu₂U₃ 512 CuγN₃₂ 513 CuγN₃₂ 514 Cu₃N 515 CuγN₃₂ 515 CuγN₃₂ 516 CuγN₃₂ 517 CuγN₃₂ 517 CuγN₃₂ 518 CuγN₃₂ 518 CuγN₃₂ 519 CuγN₃₂ 519 CuγN₃₂ 510 CuγN₃₂ 511 CuγN₃₂ 512 CuγN₃₂ 513 CuγN₃₂ 513 CuγN₃₂ 514 CuγN₃₂ 515 CuγN₃₂ 517 CuγN₃₂ 517 CuγN₃₂ 517 CuγN₃₂ 518 CuγN₃₂ 518 CuγN₃₂ 519 CuγN₃₂ 519 CuγN₃₂ 510 CuγN	494	Cu(BrO ₂) ₂ · 6H ₂ O	Бромат меди (II),	427,45	Сине-э., кб.
496 Cu₂(CN)₂			гексагидрат Ацетиленид	151,10	Кр. ам. пор.
502 CuCl₂ Хлорид меди (II) 134,45 Коржелт., мн. 503 CuCl₂ · 2H₂O Хлорид меди (II), дигидрат 170,48 3. расплыв. крист., ромб., β 1,685 504 Cu(ClO₃)₂ · 6H₂O Хлорат меди (II), гексагидрат Дихромат меди (II), дигидрат 338,53 3. расплыв. крист., кб. 505 CuCr₂Oγ · 2H₂O Дихромат меди (II), дигидрат 165,08 Кр., кб. 506 Cu₂F₂ Фторид меди (II), дигидрат 165,08 Кр., кб. 508 CuHAsO₃ Гидроортоарсенит меди (II) 187,47 3. пор. 509 Cu₂HIO₆ Гидроортопериодат меди (II) 350,99 3. крист. 510 CuHPO₃ · 2H₂O Ортофосфит меди (II) 179,55 Син. пор. 511 Cu₂I₂ Иодид меди (II) 133,34 3., мн. 512 Cu(IO₃)₂ Иодат меди (II) 431,36 Син., трикл. 513 Cu(IO₃)₂ · H₂O Иодат меди (II) 431,36 Син., трикл. 514 Cu₃N Нитрат меди (II) 241,60 Син. расплыв. крист. 515 Cu(NO₃)₂ · 3H₂O Нитрат меди (II) 241,60 Син. расплыв. крист. 516 Cu(NO₃)₂ · 3H₂O Нитрат меди (II) 241,60 Син. расплыв. крист.	497 498 499 500	Cu(CN) ₂ Cu(CNS) Cu(CNS) ₂ Cu ₂ CO ₃	Цианид меди (I) Цианид меди (II) Роданид меди (I) Роданид меди (II) Карбонат меди (I)	115,57 см. № 532 см. № 533 187,09	Желтовз. пор. CuSCN Cu(SCN) ₂ Желт. пор.
504 Cu(ClO ₃) ₂ · 6H ₂ O Дигидрат хлорат меди (II), гексагидрат меди (II), гексагидрат меди (II), дигидрат меди (II), дигидрат фторид меди (II), дигидрат тидроортоарсенит меди (II) 338,53 3. расплыв. крист., кб. Черн. расплыв. крист. 506 Cu ₂ F ₂ Фторид меди (II), дигидрат тидроортоарсенит меди (II), дигидрат меди (II) 165,08 Кр., кб. Син., мн. мн. дигидрат за меди (II) 509 Cu ₂ HIO ₆ Гидроортоарсенит меди (II) 350,99 3. крист. дат меди (II) 510 CuHPO ₃ · 2H ₂ O Ортофосфит меди (II), дигидрат меди (II), дигидрат меди (II) 179,55 Син. пор. 511 Cu ₂ I ₂ Иодат меди (II) дигидрат меди (II) 380,88 Бел., кб. дат., мн. мн. дигидрат меди (II) 512 Cu(IO ₃) ₂ · H ₂ O Иодат меди (II) дигидрат меди (II) 413,34 3., мн. дигидрат дигидрат меди (II) 514 Cu ₃ N Нитрат меди (II), тидрат меди (II), тидрат меди (II), тригидрат меди (II), тригидрат крист. 204,63 Темно-сер. пор. син. расплыв. крист.					
504 Cu(ClO ₃) ₂ · 6H ₂ O Хлорат меди (II), гексагидрат Дихромат меди (II), дигидрат Фторид меди (II), дигидрат Торид меди (II), дигидрат Гидроортоарсении меди (II) 338,53 3. расплыв. крист., кб. 506 Cu ₂ F ₂ Фторид меди (II), дигидрат Гидроортоарсении меди (II), дигидрат Гидроортопериодат меди (II) 165,08 Кр., кб. 509 Cu ₂ HIO ₆ Гидроортоарсении меди (II) 187,47 3. пор. 510 CuHPO ₃ · 2H ₂ O Ортофосфит меди (II), дигидрат Модид меди (II), дигидрат Модид меди (II), дигидрат Модид меди (II) 179,55 Син. пор. 511 Cu ₂ I ₂ Иодат меди (II) 413,34 3., мн. 512 Cu(IO ₃) ₂ · H ₂ O Иодат меди (II) 413,34 3., мн. 514 Cu ₃ N Нитрат меди (II), тидрат 431,36 Син., трикл. 514 Cu ₃ N Нитрат меди (II), тригидрат 204,63 Темно-сер. пор. 515 Cu(NO ₃) ₂ · 3H ₂ O Нитрат меди (II), тригидрат 241,60 Син. расплыв. крист.	503	CuCl ₂ · 2H ₂ O		170,48	3. расплыв. крист.,
505 CuCr₂O, · 2H₂O Дихромат меди (II), дигидрат гидроортоарсенит меди (II) 165,08 Кр., кб. Син., мн. дигидрат гидроортоарсенит меди (II) 508 СuHAsO₂ Гидроортоарсенит меди (II) 187,47 З. пор. меди (II) 510 СuHPO₃ · 2H₂O Ортофосфит меди (II) 179,55 Син. пор. меди (II) 511 Сu₂I₂ Иодат меди (II) 380,88 Бел., кб. мед. меди (II) 512 Сu(IO₃)₂ Иодат меди (II) 413,34 З., мн. мн. мн. меди (II) 513 Сu(IO₃)₂ · H₂O Иодат меди (II) 431,36 Син., трикл. гидрат меди (II) 514 Сu₃N Нитрат меди (II) 204,63 Темно-сер. пор. мерист. 515 Сu(NO₃)₂ · ЗН₂O Нитрат меди (II) 241,60 Син. расплыв. крист.	504	$Cu(CiO_3)_2 \cdot 6H_2O$	Хлорат меди (II)	, 338,53	З. расплыв. крист.,
506 Cu ₂ F ₂ Фторид меди (I) 165,08 Kp., кб. 507 CuF ₂ · 2H ₂ O Фторид меди (II), дигидрат 137,57 Син., мн. 508 CuHAsO ₈ Гидроортоарсенит меди (II) 187,47 З. пор. 509 Cu ₂ HIO ₆ Гидроортопериодат меди (II) 350,99 З. крист. 510 CuHPO ₃ · 2H ₂ O Ортофосфит меди (II), дигидрат 179,55 Син. пор. 511 Cu ₂ I ₂ Иодат меди (II), дигидрат 380,88 Бел., кб. 512 Cu(IO ₃) ₂ Иодат меди (II), иодат меди (II), тидрат 413,34 З., мн. 513 Cu(IO ₃) ₂ · H ₂ O Иодат меди (II), гидрат 431,36 Син., трикл. 514 Cu ₃ N Нитрат меди (II), тригидрат 204,63 Темно-сер. пор. 515 Cu(NO ₃) ₂ · 3H ₂ O Нитрат меди (II), тригидрат 241,60 Син. расплыв. крист.	505	CuCr ₂ O ₇ · 2H ₂ O	Дихромат меди (II),	315 _i 56	Черн. расплыв.
508 CuHAsO ₈ Гидроортоарсенит меди (II) 187,47 3. пор. 509 Cu ₂ HIO ₆ Гидроортопериодат меди (II) 350,99 3. крист. 510 CuHPO ₃ · 2H ₂ O Ортофосфит меди (II), дигидрат Иодид меди (I), дигидрат Иодид меди (II) 179,55 Син. пор. 511 Cu ₂ I ₂ Иодат меди (II) дигидрат меди (II) 413,34 3., мн. дигидрат дигидрат 513 Cu(IO ₃) ₂ · H ₂ O Иодат меди (II), гидрат меди (II), тидрат меди (II), тидрат меди (II), тригидрат 204,63 Темно-сер. пор. 515 Cu(NO ₃) ₂ · 3H ₂ O Нитрат меди (II), тригидрат 241,60 Син. расплыв. крист.	506 507	Cu_2F_2 $CuF_2 \cdot 2H_2O$	Фторид меди (I) Фторид меди (II)	107 77	
509 Cu ₂ HIO ₆ Гидроортопериодат меди (II) 350,99 3. крист. 510 CuHPO ₃ · 2H ₂ O Ортофосфит меди (II), дигидрат 179,55 Син. пор. 511 Cu ₂ I ₂ Иодид меди (II) дигидрат 380,88 Бел., кб. 512 Cu(IO ₃) ₂ Иодат меди (II) дигидрат 413,34 3., мн. 513 Cu(IO ₃) ₂ · H ₂ O Иодат меди (II), гидрат меди (II), титрид меди 204,63 Темно-сер. пор. 514 Cu ₃ N Нитрат меди (II), тригидрат 241,60 Син. расплыв. крист.	508	CuHAsO ₈	Гидроортоарсе-	187,47	З. пор.
510 CuHPO3 · 2H2O Ортофосфит меди (II), дигидрат меди (II), дигидрат меди (II) 179,55 Син. пор. 511 Cu2I2 Иодид меди (II) иодат меди (II) нодат меди (II) нодат меди (II), гидрат меди (II), гидрат меди (II), гидрат нитрид меди нитрид меди (II), тригидрат 413,34 3., мн. нов. Син., трикл. гидрат меди (II), гидрат меди (II), тригидрат меди (II), тригидрат крист.	509	Cu ₂ HIO ₆	Гидроортоперио-	350,99	3. крист.
511 Cu ₂ I ₂ Иодид меди (I) 380,88 Бел., кб. 512 Cu(IO ₃) ₂ Нодат меди (II) 413,34 З., мн. 513 Cu(IO ₃) ₂ · H ₂ O Иодат меди (II), гидрат Нитрид меди 204,63 Темно-сер. пор. 515 Cu(NO ₃) ₂ · 3H ₂ O Нитрат меди (II), тригидрат 241,60 Син. расплыв. крист.	510	CuHPO ₃ · 2H ₂ O	Ортофосфит меди (II),	179,55	Син. пор.
514 Cu ₃ N Нитрид меди 204,63 Темно-сер. пор. 515 Cu(NO ₃) ₂ · 3H ₂ O Нитрат меди (II), тригидрат крист.	512	Cu(IO.).	Иодид меди (I) Иодат меди (II) Иодат меди (II),	413,34	З., мн.
тригидрат крист.		•	Нитрид меди	•	
T40 0 0	515	$Cu(NO_3)_2 \cdot 3H_2O$		241,60	
	516	Cu ₂ O		143,08	Кр., кб.

T	<u> </u>	Температу	Pa	ъ	1		
				B B(оде	в других	N ₂
I	Ілотность	плавления	К ипсния	при 20°C	при 100 °C	раствори- телях при 20°C	π/π
	4,71825	504	1345	0,0010525	Pear.	P. CH ₃ CN	492
	4,710	498	900	107,50	<u>.</u> P.	Р. сп., ац., NH ₃ , пир.; н.	493
	2,583	Разл. 180	e •••	Р.	. •••	р. бзл.	494
	•••	Взр.	•••	Сл. р.	v	••,• *,	495
	2,92	473 Разл.	Разл.	Н. р. Н. р.	Н. р.	P. пир.	496 497 498
	4,40 3,53	Разл. 430	1490	H. p. 0,0062	Н. р.	P. CH₃CN	499 500 501
	3,054	630	Разл. 993	77,425	120	(13,4 ¹⁸) Р. сп. (53 ¹⁵), мет. сп.	502
	2,38	-2H ₂ O, 110	• • •, .	12425	225	(68 ¹⁵) Р. сп.	503
	• • •	65	Разл. 100	2070	р.	Р. сп.,	504
	2,283	-2H ₂ O, 100	•••	P.	Pear.	ац. Р. сп.	5 05
	2,93	908	•••	Н. р. Сл. р.	Pear.	 Р. сп.;	506 507
	• • •	Разл.	•••	Н. р.	Н. р.	н. р. ац. Реаг. сп.	508
	•••	Разл. 110	•••	Н. р	Н. р.	•••	509
	•••	Разл.	•••	Н. р.	Н. р.	. •••	510
	5,62 5,241 ¹⁵ 4,872	605 Разл. 290 —Н ₂ О, 240	1339	0,00044 ¹⁸ 0,1364 ²⁵ Сл. р.	 Сл. р. Сл. р.	Р. пир. 	511 512 513
	5,8426	Разл. 300	•••	Pear.	Pear.		514
	2,043,9	114,5	•••	39640	1270	Р. сп. (100 ^{12,5})	515
	6,0	1235	O,1800	Н. р.	Н. р.	(100 -)	516

Ne n/n	Формула	Название	Молеку- лярная	Цвет, кристалличе- ская форма, показатель	
			масса	преломления	
	CuO CuOH	Оксид меди (II) Гидроксид	79,54 80,55	Черн., кб. 2,84 Желт.	;
519	Cu (OH) ₂	меди (I) Гидроксид меди (II)	97,55	Син. студ. или ам. пор.	
520	2(CuCO ₃) · Cu(OH) ₂	Гидроксид- карбонат меди (II)	344,65	Син., мн., 1,730; 1,758; 1,838	
521	CuCO ₃ · Cu(OH) ₂	Гидроксид- карбонат меди (II)	221,10	Темно- з., мн.; 1,655; 1,875; 1,909	
522	CuCl ₂ ·2CuO·4H ₂ O	Оксид-хлорид меди (II), тетрагидрат	365,58	Сине-з. пор.	
523	CuCl ₂ ·3CuO·4H ₂ O	Оксид-хлорид меди (II), тетрагидрат	445,12	Свз. пор.	
524	CuCrO ₄ ·2CuO·2H ₂ O	Оксид-хромат меди (II), дигидрат	374,64	Желтовкор. пор.	
525	Cu(OH)IO ₃	Гидроксид-иодат меди (II)	255,45	3., ромб.	
526 527	Cu_3P_2	Фосфид меди Фосфид меди	443,19 252,57	Серо-черн., триг. Серо-черн. пор.	
<u>528</u>	$Cu_3(CO_4)_2 \cdot 3H_2O$	Ортофосфат меди (II), тригидрат	434,61	Сине-з., ромб.	*
529 530	Cu ₂ S Cu ₂ S	Сульфид меди (I) Сульфид меди (I)	159,14 159,14	Черн., кб. Черн., ромб. или гекс.	
531	CuS	Сульфид меди (II)	95,60	Черн., гекс. или мн., 1,45	
532	Cu\$CN	Тиоцианат меди (I)	1 21, 62	Бел. пор.	
4.	Cu(SCN) ₂	Тиоцианат меди (II)		Черн. пор.	•
	$Cu_2SO_3 \cdot H_2O$	Сульфит меди (I), гидрат	•	Бел., гекс.	
5 35	Cu ₂ SO ₄	Сульфат меди (I)	223,14	Сер. пор.	
5 36	CuSO ₄	Сульфат меди (II)	159,60	Зеленовбел., ромб., 1,773	
5 37	CuSO ₄ · 5H ₂ O	Сульфат меди (II), пентагидрат	249,68	Син., трикл., 1,514; 1,5368; 1,543	
538	Cu _a Se	Селенид меди (I)	206,04	Черн., кб.	

T		Температур	a, °C	P	а створимост	ь		
			:	ВЕ	оде	в других	Nŧ	
	Плотн ость	плавления кипения		при 20 °C	при 100°C	раствори- телях при 20°C	n/a	
	6,40 3,37	Разл. 1026 —0,5H ₂ O,		Н, р. Н. р.	Н. р. Н. р.	•••	517 518	
	3,368	Разл.	•••	Н. р.	Pear.	unit they a	519	
	3,88	Разл. 220	•••	Н. р.	Pear.	•••	520	
-	4,0	Разл. 200	•••	Н. р.	Pear.		521	
				Ĥ. р.	•••		522	
	***	-3H ₂ O, 140	•••	Н. р.	••• • • • •	nga nagarat s	523	
		-2H ₂ O, 260	•••	Н. р.	•••	••••	524	
	4,873	Разл. 290	•••	Н. р.	Н. р.	***	525	
	6,4—6,8 6,67	 Разл.	•••	H. p. H. p. H. p.	Сл. р.	•••	526 527 528	
	5,78 5,6	1130 1100	•••	$\sim 1 \cdot 10^{-14}$ $\sim 1 \cdot 10^{-14}$		• • • • • • • • • • • • • • • • • • • •	529 530	
	4,620	Разл. 220	•••	1 - 1-21	• • •	•••,	531	
	2,843	1084	•••	0,000518	•••	Р. эф.;	532	
	•••	Разл. 100	•••	Pear.	Pear.	н. р. сп.	533	
	3,8315	Разл.	•••	Сл. р.	•••	•••	534	
	•••	•••	•••	Pear.	Pear.	Р. ледя- ной	535	
	3,603	200	Разл. 650	20,2	77	СН ₃ СООН Р. мет. сп.;	530	
	2,284	-4H ₂ O, 110 -	-5H ₂ O, 150	35,6	205	н. р. сп. Р. мет. сп.;	537	
	6,8421	1113	•••	· •••	•••	н. р. сп.	538	

	1	1		
Me n/n	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
539	CuSeO ₄ · 5H ₂ O	Селенат меди (II), пентагидрат	296,57	Свсин., трикл., 1,56
540	Cu ₈ Sb	Стибид меди	312,37	Сер., гекс.
541	Cu ₄ Si	Силицид меди	282,25	Бел. пор.
542 543	$C u_2 Te$ Dy(BrO ₃) ₃ · 9H ₂ O	Теллурид меди Бромат диспрозия, нонагидрат	254,68 708,36	Серо-син., гекс. Желт. гекс. иг.
544	$\mathrm{Dy_2(CO_3)_3} \cdot 4\mathrm{H_2O}$	Карбонат диспро- зия, тетрагидрат	577,09	Студ.
545	DyCl ₃	Хлорид диспрозия	268,86	Желт. мн. тб.
546	$Dy_2(CrO_4)_3 \cdot 10H_2O$	Хромат диспрозия, декагидрат	853,13	Желт. крист.
547	DyF _a	Фторид диспрозия	219.50	Свэ, гекс.
548	$Dy(NO_3)_8 \cdot 5H_2O$	Нитрат диспрозия, пентагидрат	438,59	Желт. крист.
549	Dy ₂ O ₃ DyPO ₄ · 5H ₂ O	Оксид диспрозия	373,00	Желт., кб.
550	DyPO ₄ · 5H ₂ O	Ортофосфат диспрозия, пентагидрат	347,55	Желт., студ.
55 I	Dy ₂ S ₃	Сульфид диспрозия	421,22	Желт., мн.
552	$Dy_2(SO_4)_3 \cdot 8H_2O$	Сульфат диспрозия, октагидрат	757,31	Желт. крист.
553	ErB ₆	Борид эрбия	232,13	Син., кб.
554	ErBr ₃ · 9H ₂ O	Бромид эрбия, нонагидрат	569,13	Роз. крист. иг.
555	$Er(BrO_3)_3 \cdot 9H_2O$	Бромат эрбия, нонагидрат	713,12	Крист. пр.
556	$\operatorname{Er_2(CO_3)_3} \cdot 2\operatorname{H_2O}$	Карбонат эрбия, дигидрат	550,58	Кр. пор.
557	ErCl ₃	Хлорид эрбия	273,62	Бц. или роз., мн.
558 550	ErCl ₃ · 6H ₂ O	Хлорид эрбия, гексагидрат	381,71	Расплыв. крист.
559	ErF ₃	Фторид эрбия	224,26	Би, пор.
560	$\text{Er}(\text{NO}_3)_8 \cdot 5\text{H}_2\text{O}$	Нитрат эрбия, пентагидрат		Кр. гигр. крист.
561 560	Er ₂ O ₃	Оксид эрбия	382,52	Кржелт. или роз.
562 563	Er(OH) ₃ ErOCl	Гидроксид эрбия Оксид-хлорид эрбия	218,28 218,71	Сине-роз., гекс. Свроз. крист.
564	Er ₂ S ₃	Сульфид эрбия	430,71	Желт. или кор., мн.
565	$Er_2(SO_4)_3$	Сульфат эрбия	622,70	Бел. гигр. пор.
5 66	$\operatorname{Er}_{2}(\operatorname{SO}_{4})_{3}^{3} \cdot 8H_{2}O$	Сульфат эрбия, октагидрат	766,84	Свкр., мн.
5 67	Er ₂ Se ₃	Селенид эрбия	571,40	Черн. или желт.

T		Температ	ypa, °C	Растворимость			
	ers Listori			В В	оде	в других	M
1 11	Ілотность	плавления	кинэпия	при 20 °C	при 100°C	раствори- телях при 20°C	п/п
٩	2,559	· · · · · · · · · · · · · · · · · · ·	•••	26,3	Pear.	; /. !	539
. !	8,51 7,53 7,338 ²⁵	687 850 ~900	•••	•••	•••	• • •	540 541 542
	•••	78 -	-6H ₂ O, 110	Р,	Р.	•••	543
	• • •	-3H ₂ O, 150	•••	Н. р.	•••	•••	544
	3,679	-3,5H ₂ O, 150	1530 Разл.	P. 1,002 ²⁵	Р.	•••	546 5 46
	•••	1360 88,6	2230	H. p. P.	P.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	547 548
	7,8127	-5H ₂ O, 200	•••	Н. р.	• • •	•••	549 55
	• • • • • • • • • • • • • • • • • • •	1470—1490 —8H ₂ O, 360	•••	5,072	3,3440		55 55
	4,61	 953 бв.	1460 бв.	•••	•••	•••	55 5 5
	• • •	•••	•••	Ρ.	•••	•••	55
	. •••	•••	• • •	Н. р.	•••	•••	55
	4,1	77 4 	1500	 Р.	P.	Сл. р. сп.	55′ 55
	•••	1350 -4H ₂ O, 130	2230	H. p. P.		Р. сп., эф., ац.	559 56
	8,640	•••	•••	0,0004929	•••		56
-	***	•••	•••	Сл. р.	•••	* * *	56 56
	6,05	1730	•••	• • •	•••	•••	56
	3,678 2,2 17	Разл. 630 —8H ₂ O, 400	•••	43° 16 бв.	6,53 ⁴⁰ 6,53 ⁴⁰	•••	56 56
	6,96	•••		• • •	•••	•••	56

• '.	A SECTION OF THE SECT		gr 18 , v e.	Цвет, кристалличе-		25	Темпера	тура, °С	P	астворимос	ТЬ	T
№ n/n	Формула	Название	Молеку- лярная масса	ская форма, показатель преломления		Плотность	плавления	кипения	в в при 20 °C	оде при 100°C	в других раствори- телях пги 20°C	n/n
568 569	ErVO ₄ EuC l ₂	Ортованадат эрбия Хлорид	482,20 222,87	Тетраг. Бц., ромб.			0.50		1 15 :45 (41) 1 2 :47:44 X (•••	•••	568
*::	EuCl _s	европия (II) Хлорид		Желт. гекс. иг.		4,89 4,47 ³⁵	~ 850 626	••••;1 3	बदा, ल्ला सम्बद्धाः	•••	 ∴ %. 1	569
571	Eu ₂ (CO ₃) ₃ · 3H ₂ O	европия (III) Карбонат европия (III),	537,95	Свжелт. крист.		4,470	•••	Разл. ;	Н. р.			570 571
572	EuF ₂	тригидрат Фторид	189,96	'Свжелт., кб.	₹. ***	• • •	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	•••	Н. р.		4.4	572
573	EuFa	европия (II) Фторид европия (III)	208,96	Орторомб. или гекс.		34.50	1390	2280	Н. р.	•••	• • •	573
574	$Eu(NO_3)_3 \cdot 6H_2O$	Нитрат европия (III), гексагидрат	446,06	Крист.		•••	85	•••	Ρ.	Ρ.	Saturda •••	574
575	Eu ₂ O ₃	Оксид европия (III)	351,92	Свроз., кб.		7,42	• • • • √? · * • • •	•••	Н. р.	•••	•••	575
576	EuS	Сульфид европия (II)	184,02	Черн., кб.		•••	*	•••, ,	18 18	•••	•••	576
577	EuSO ₄	Сульфат европия (II)	248,02	Бц., ромб.		4,9825	•••	•••	Н. р.	•••	•••	577
578	$Eu_2(SO_4)_3 \cdot 8H_2O$	Сульфат европия (III), октагидрат	736,23	Свроз. крист.		**************************************	-8H ₂ O, 375	Разл. 1600	2,563 бв.	1,93 ⁴⁰ бв.	• • •	578
579 580	FeAs FeAs ₂	Арсенид железа Арсенид железа	130,77 205,69	Бел., ромб. или кб. Серебрсер., ромб.		7,83 7,4	1020 990	•••	Сл. р. Н. р.	•••		579 580
5 81	$Fe_3(AsO_4)_2 \cdot 6H_2O$	Ортоарсенат железа (II), гексагидрат	553,47	3. ам. пор.	- ,	•••	Разл.	•••	Н. р.	Н. р.	•••	581
5 82	FeAsO ₄ · 2H ₂ O	Ортоарсенат железа (III), дигидрат	230,79	3., ромб.; 1, 765 ; 1,774; 1,7 97		8,18	Разл.	•••	Н. р.	Н. р.	•••	582
58 3 584	FeB FeBr ₂	Борид железа Бромид железа (II)	66,66 215,66	Сер., ромб. Желтовз., триг.		7,15 4,624	 684 (под	•••	H. p.	184	Р. сп.	583 584
5 85	FeBr ₂ · 6H ₂ 0	Бромид железа (II),	323,76	Свз., ромб.		•••	давлени ем) Разл. 49,0	• • • •	P.	•••	•••	585
5 86	FeBr ₃	гидрат Бромид железа (III)	295,57	Кркор. расплыв.		•••	Bosr.	•••	Р.	Р.	Р. сп., эф.	5 86
5 87	FeBr₃ · 6H₂O	Бромид железа (III),	403,67	кр. Кр. крист.		•••	с разл. 27	•••	Ρ.	Р.	•••	587
588 58 9	Fe ₃ C Fe(CNS) ₂ · 3H ₂ O	гексагидрат Карбид железа Роданид железа (II), тригидрат	179,55. см. № 600	Cep., ромб. Fe(NCS) ₂ ·3H ₂ O		7,67	1650	***	Н. р.	Н. р.	•••	588 589

:	April March			
№ 11/11	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
			<u> </u>	
590	FeCO ₃	Карбонат железа (II)	115,86	Сер., триг., 1,635;
591	FeCO ₃ · H ₂ O	Карбонат железа (II), гидрат	133,87	Ам. пор.
592	FeCl ₂	Хлорид железа (II)	126,75	Свз. расплыв. крист., триг.
593	FeCl ₂ 4H ₂ O	Хлорид железа (II),	198,81	Зеленовгол. рас- плыв. крист., мн.
5 94	FeCl ₃	тетрагидрат Хлорид : железа (III)	162,21	Кркор., триг.
5 95	FeCl ₃ · 6H ₂ O	Хлорид железа (III), гексагидрат	270,30	Желтовкор. расплыв.
596	Fe(ClO ₄) ₂ · 6H ₂ O	Перхлорат железа (II), гексагидрат	362,84	3., гекс.
597	FeF_2	Фторид железа (II)	93,84	Бел. блест. тетраг. пр.
598	FeF ₂ · 8H ₂ O	Фторид железа (II), октагидрат	237,96	Зеленовгол. крист.
599	FeF ₃	Фторид железа (III)	112,84	З. ромбоэдры
60 0	2FeF ₃ · 9H ₂ O	Фторид железа (III), нонагидрат	387,82	Желт. крист.
601	$Fe(H_2PO_2)_3$	Гипофосфит железа (III)	250,81	Свсер. пор.
602	Fel ₂	Иодид железа (II)		Сер., гекс. или
603	Fel ₂ · 4H ₂ O	Иодид железа (II), тетрагидрат	381,72	Серо-черн. расплыв крист.
604	Fe ₄ N	Нитрид железа	237,40	
605	Fe ₃ N	Нитрид железа	125,70	
6 06	$Fe(NCS)_2 \cdot 3H_2O$	Изотиоцианат железа (II),	226,06	3. , ромб.
607	$Fe(NO_3)_2 \cdot 6H_2O$	тригидрат Нитрат железа (II), гексагидрат	287,95	Свз., ромб.
608	$Fe(NO_3)_3 \cdot 6H_2O$	нексагидрат Нитрат железа (III), гексагидрат	349,95	Бц., кб.

		Температ	rypa, °C	P	астворимос	ТЬ	i .
	Плотность			в в	оде	в других	Ne
	Плотность	плавления	кипения	при 20 °C	при 100°C	у аствори-	ព/ព
	3,8	Разл.	•••	5,79 × × (10 ⁻⁵) ¹⁸	•••	***	590
	•••	Разл.	•••	Сл. р.	•••	•••	591
	2,98	677	1012	62,6	94,2	Р. сп. (100), ац.;	592
	1,96	-2H ₂ O, 75,6	-3H ₂ O ₁ , 120	154	316	н. р. эф. Р. сп.	593
	2,89825	309	315	74,40	537	Р.:сп., эф., ац.	594
	•••	37	285	Р.	P.	(63 ¹⁸) Р. сп., эф.	595
	•••	Разл. > 100	•••	202 бв.	27760 бв.	Р. сп. (86,5 ²⁰)	596
	4,09	~ 1000	•••	Сл. р.	Сл. р.	Н. р.	597
,	•••	-8H ₂ O, 100	•••	С л. р.	P	сп., эф. Н. р. сп., эф.	598
	3,81	•••	•••	0,1	P.	Н. р.	599
1	•••	-3H ₂ O, 100	Разл.	Сл. р.	P.	сп., эф. Н. р. сп.	600
	•••	Разл.	•••	0,04325	0,083	•••	601
	5, 315	592	•••	P.	•••.	• • • •	602
	2,87	90—98	•••	P.	****	Р. сп., эф.	603
,	6,57 6,35	Разл. 200 Разл.	•••	н. р. Р.	•••	 Р. сп., эф., ац.	604 605 606
	•••	60,5 разл.	•••	2000	167 ⁶⁰ бв.	· • • •	607
	•••	35	•••	1390	P.	•••	608
							·

			1 - 1 - 1 - 2	1		Темпер	атура, °С	,	остворимост	ние таблі гь	1
Na 11/11	Формула	Название	Молеку- лярная	Цвет, кристалличе- ская форма, показатель	Плотно	ть.			оде	в других	
u/13			масса	преломления		плавления	кипения	при 20 °C	при 100°C	раствори- телях при 20°C	1
609	Fe(NO ₃) ₃ · 9H ₂ O	Нитрат железа (III), нонагидрат	404,00	Свфиол., мн.	1,6842	1 1 1 4 7,2 4, ,	Разл. > 50	2040	P. (1)	Р. эф., сп., ац.	609
	FeO Fe ₃ O ₄	Оксид железа (II) Оксид железа (II, III)		Черн., кб. Темно. кр., кб.	5,7 5,18	1420 Разл. 1538; 1590	Mariana (Mariana) Mariana (Mariana)	H. p. H. p.	H. p. H. p.	• • •	610 611
612	Fe ₃ O ₄ · 4H ₂ O	железа (П, ПП) Оксид железа (П, ПП), тетрагидрат	303,60	Черн.		Разл.	4.48 + 1.5 +	Н. р.	H. p.	in energy i	612
613 614	Fe ₂ O ₃ Fe(OH) ₂	Оксид железа (III) Гидроксид железа (II)		Кркор., триг. Свз., гекс. или ам.	5,24 3,4	1565 Разл. 150—200	••• \$	H. p.	•••	• • • • • •	613 614
615	FeO(OH)	Оксид-гидроксид железа (III)	88,84	Кор., ромб.	4,28	- (• • • • • • • • • • • • • • • • • • •	14 ***	•••	ij tojaka i j	615
616	Fe(OH) ₃	Гидроксид железа (III)	106,87	Кркор., кб.	3,4—3	,9 —1,5H ₂ O, 500	•••	$^{2,03}_{\times^{(10^{-8})^{18}}}$		_3 (** * * . »	616
617	FeP	Фосфид железа	86,82	Ромб.	6,07	•••		X(10)			617
618	Fe ₂ P	Фосфид железа		Серо-черн., триг.	6,56	1290	•••;	Н, р.	H, p.	• • • •	618
619	$Fe_3(PO_4)_2 \cdot 8H_2O$	Ортофосфат железа (II), октагидрат	501,60	Свгол., мн., 1,579; 1,603; 1,633	2,58	Programme Association	•••	Н. р.	Н. р.		619
620	FePO ₄ · 2H ₂ O	Ортофосфат железа (III), дигидрат	186,86	Свжелт., мн.	2,87	Разл.	•••	Сл. р.	0,67	. • • • •	620
621	$Fe_4 (P_2O_7)_3 \cdot 9H_2O$	Дифосфат железа (III), нонагидрат	907,36	Желтовбел. пор.		to veri j≋•• °	•••	Н. р.	*	ing •′•gs s	621
622	FeS	Сульфид железа (II)	87,91	Черикор., гекс.	4,84	1193.	Разл.	$_{\times^{(10^{-9})^{18}}}^{5.36} \times$	•••	•••	622
62 3	Fe ₂ S ₃	Сульфид железа (III)	207,89	Желтовз. крист.	4,3	Разл.		Сл. р.	Pear.	• • •	623
624	FeS ₂	Дисульфид железа (II) (марказит)	119,98	Золжелт., ромб.	4,87	Пер. в пи- рит 450		0,00049		••• _*	624
62 5	FeS ₂	Дисульфид железа (II)	119,98	Золжелт., кб.	5,03	1. t. de _{1. de} 1171 ;t. 4.	Разл.	0,00049	•••	reeje sat	625
62 6	FeSO ₃ · 3H ₂ O	(пирит) Сульфит железа (II),	189,95	Зеленов. или бел. крист.		Разл. 250	•••	Сл. р.	• • في ي غ شا		626
627	FeSO ₄ · 7H ₂ O	тригидрат Сульфат железа (II),	278,01	Зеленовгол., мн., 1,471; 1,478; 1,486	1,898	64 :	-6H ₂ O, 100; -7H ₂ O, 300	330	14950	Н. р. сп.	627
62 8	Fe ₂ (SO ₄) ₃	гептагидрат Сульфат	399,88	Желт. расплыв. крист., ромб.	3,0971	Разл. 480	• • •	Р.	Pear.	· . • • •	628
62 9	$\text{Fe}_2(\text{SO}_4)_3 \cdot 9\text{H}_2\text{O}$	железа (III) Сульфат железа (III), нонагидрат	562,02	Желт. расплыв. крист., гекс., 1,552; 1,558	2,1	Разл.	•••	P.	Pear.	P. абс. сп.	6 29

			<u> </u>	
N ₂ n/n	Формула	Название	Молеку- лярная масса	Цвет, кристаллич е - ская форма, показатель преломления
630	FeS ₂ O ₃ · 5H ₂ O	Тиосульфат железа (II),	258,05	3. расплыв. крист.
631 632	FeSiO ₃	пентагидрат Силицид железа Метасиликат	83,93 131,93	Желтовсер., кб. Мн.
633	$GdBr_3 \cdot 6H_2O$	железа (11) Бромид гадолиния,	505,07	Бц. ромб. тб.
634	GdCl ₃	гексагидрат Хлорид гадолиния	263,59	Бц. мн. пр.
635	GdCl ₃ 6H ₂ O	Хлорид гадолиния,	371,68	Бц., мн.
	GdF ₃	гексагидрат Фторид гадолиния	214,24	Бел., студ. или орто- ромб.
637 638	GdI_3 $Gd(NO_3)_3 \cdot 6H_2O$	Иодид гадолиния Нитрат гадолиния, гексагидрат	537,96 451,36	Свжелт. пор. Желт., трикл.
639	Gd_2O_3	Оксид гадолиния	362,50	Бел., ам. или кб.
640	Gd ₂ S ₃	Сульфид	410,69	Желт., кб.
641	Gd ₂ (SO ₄) ₃	гадолиния Сульфат гадолиния	602,68	Бц. крист.
642	$Gd_2(SO_4)_3 \cdot 8H_2O$	Сульфат гадолиния,	746,80	Бц., мн.
643	$\mathrm{Gd_2(SeO_4)_3} \cdot 8\mathrm{H_2O}$	октагидрат Селенат гадолиния,	887,49	Бц., мн.
644	GaBr ₂	октагидрат Бромид галлия (II)	229,54	Бц. расплыв. крист.
645	GaBr ₃	Бромид	309 ,45	Бц. расплыв. крист.
646	GaCl ₂	галлия (III) Хлорид галлия (II)	140,63	Бел. расплыв. крист.
647	GaCl ₃	Хлорид галлия (III)	176,08	Бел. расплыв. иг.
648	Ga(ClO ₄) ₃ · 6H ₂ O	Перхлорат галлия (III),	476,16	Бел. распл ыв. крист.
649	GaF ₃	гексагидрат Фторид	126,72	Бел. пор.
650	GaF₃ · 3H₂O	галлия (III) Фторид галлия (III), тригидрат	180,76	Бел. пор.
				-

7		′ Темпе	ратура, °С	· P	встворимост	ъ	ĺ
	Плотность	T		ВВ	оде	в других	₩.
	Плотность	плавления	кипения	при 20 °C	при 100 ℃	раствори- телях при 20°C	n/n
2	•••	•••	• • •	Р.	Pear.	Р. сп.	630
	6,1 3,5	1550	•••	Н. р.	Н. р.	•••	631 632
	2,84418	765—786	1490	P.	P	•••	633
	4,52	628	1580	Р.	Р.	•••	634
	2,4246	•••	•••	P.	Р.		635
	· • • • · · · · · · · · · · · · · · · ·	1380	2280	Н. р.	•••	• • • •	636
•	 2,332	929 91	1340	р.	р.	Р. сп.	637 638
	7,407 ¹⁵ 3,8	 1885	•••	Сл. р. Реаг.	 Pear.	•••	639 640
•	4,13914,6	Разл. 500	•••	2,89	2,1840	•••	641
	3,0 10 ^{14,6}	-8H ₂ O, 400	Разл. 500	3,28	2,5440	•••	642
	3,309	-8H ₂ O, 130	•••	Р.	\mathbf{P}_{\bullet}	**************************************	643
	•••	Posr. 200	***	• • • •	•••	• • •	644
	3,6925	121,5	277,8	Ρ.	Ρ.	Сл. р.	645
	• • •	170,5	~ 535	Pear.	Pear.	NH ₃	646
	2,4725	77,9	201,2	P.	Р.	Р. NH ₃ ; сл. р.	647
		Разл. 175	•••	P.	•••	петр. эф. Сл. р. сп.	648
	4,47	> 1000	•••	0,002	•••	•••	649
	•••	> 140	Разл.	Н. р.	Сл. р.		650
	•						

			*	i
№ n/n	Формула	Название	Молеку- лярная	Цвет, кристалличе- ская форма, показатель
-			масса	преломления
651	Ga ₂ H ₆	Гидрид галлия	145,49	Бц. ж.
652	GaI ₈	Иодид галлия (III)	450,43	Желт. расплыв. иг.
653	GaN	Нитрид галлия	83,73	Сер., гекс.
	Ga(NO ₃) ₃	Нитрат галлия (III)	255,73	Бц. расилыв. крист.
655	Ga ₂ O	Оксид галлия (I)	155,44	Кор. пор.
•	Ga ₂ O ₃	Оксид галлия (III)	187,44	Бел., а триг., в мн.
657	$Ga_2O_3 \cdot H_2O$	Оксид галлия (III), гидрат	205,45	Бел., ромб.
658	Ga(OH) ₃	Гидроксид галлия (III)	120,74	Бел., студ.
65 9	Ga ₂ S	Сульфид галлия (I)		З. или черн. пор.
660	GaS	Сульфид галлия (II)	101,78	Желт. гекс. тб.
	Ga ₂ S ₃	Сульфид галлия (III)		Желт., кб. или гекс.
	Ga ₂ (SO ₄) ₃	Сульфат галлия (III)		Бел. пор.
663	$Ga_2(SO_4)_3 \cdot 18H_2O$	Сульфат галлия (III), октадекагидрат	751,90	Бц., окт.
664	Ga ₂ Se	Селенид галлия (I)	·	Черн. пор.
665	GaSe	Селенид галлия (II)	· · · · · · · · · · · · · · · · · · ·	Кркор. тб.
	Ga ₂ Se ₃	Селенид галлия (III)		Гекс. или триг.
667	$Ga_2(SeO_4)_3 \cdot 16H_2O_4$	Селенат галлия (III), гексадекагидрат	856,56	Бц., мн. или трикл.
668	GaTe	Теллурид галлия (II)	197,32	Черн. пор.
66 9	Ga ₂ Te ₃	Теллурид галлия (III)	522,24	Черн., кб.
670	GeBr ₂	Бромид германия (II)	232,41	Бц. крист.
671	GeBr ₄	Бромид германия (IV)	392,23	Сер. окт. или бц. ж.
672	GeCl ₂	Хлорид германия (II)	143,50	Желт. пор.

		-				ие таблиц	ы
# E		Темпера	rypa, °C	Pa	аетворимост	ТЬ	
	Плотность			B BC	оде	в других раствори-	№ п/п
		плавления	кипения	при 20°C	при 100 °С	телях при 20°C	
		-21,4	139 (разл. > 130)	Pear.	Pear.	• • • • • • • • • • • • • • • • • • • •	65
100 m	4,1525	212	346	$\mathbf{P}_{\bullet_{1}, \tau_{1}}$.	Pear.	• • • • • • • • • • • • •	65
	6,1	Возг. > 800 Разл. 200	•••	H. p.	H. p. P.	•• •	65 65
	4,7725	> 660	Возг. > 500	Н. р.	Н. р.	•••	65
	α 6,48;	1740 m		Н. р.	Н. р.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	65
	β 5,88 5,2	-H ₂ O, 400	•••	Н. р.	Н. р.	, i • 100 i	65
	•••	Разл.	,	7,6 - 10-	•••		65
	4,1825	420—440 Разл. > 800	•••	Pear.	Pear.	•••,77	65
	3,8625	965	•••	Н. р.	Pear.	••••	66
	3,6525	1255	•••	Реаг.	Pear.	•••	66
	•••	Разл. > 520	•••	P.	•••	Р. сп.; н. р. эф.	66
	•••	Разл.	•••	P.	P. 3.4	н. р. эф. сп., эф.	66
	5,02	o refere of the	•••	8 *** ## 3 *** #**	•••	• • • • • • • • • • • • • • • • • • • •	66
	5,03	960	•••		•••	. •••	66
	4,9225	1020	Σ.: Σ.: *:		•••	:	66
	. j e • • ,	ik, M⁺ šejč	:::::::::::::::::::::::::::::::::::::	57,4 ⁸⁵ . бв.			66
. 44	5,44	824	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	talinaki talib Salah <mark>ig</mark> † - A	•••	1 0 0 00	66
/	5,57	790		is the constant of the second	•••	•••	66
7 7	•••	122	Разл.	Pear.	•••	Р. сп.,	67
	3,13225	26,1	186,5; 188,7	Pear.	•••	GèВr₄ Р. абс. сп., эф.,	67
	•••	Разл. 450	•••	Pear.	Pear.	хлф., CCl ₄ ; P. GeCl ₄ ; н. р. сп., хлф.	67

					ζ'		Тем пера	тура, ⁰С	F	астворимост	ъ	
)% 11/11	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель	,Ni 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Плотность	плавления	кипения	ВВ	оде	в других раствори- телях	№ 11/13
				преломления			шавления	KHICHAN	при 20°C	при 100 °C	при 20 °C	
	GeCl ₄	Хлорид германия (IV)	214,40	Бц. ж., 1.464 ²⁰	6 .	1,87225	-49,6	85,8	Pear.	Pear.	Р. с п.,	673
74	GeF ₂	Фторид германия (II)	110,59	Бц. крист.		•••	Разл. 350	•••	Р.	Р.	•••	674
75	GeF ₄	Фторид	148,58	Бц. г.		6,65 г/дм ³	••• •••	Возг. —36	•••	Pear.	• • • • 1, 2	673
76	GeF ₄ · 3H ₂ O	германия (IV) Фторид германия (IV) тригидрат	202,63	Бц. расплыв. крист.		. 1	Разл.	•••	P.	•••	• • •	670
77 79	GeH ₄ Ge ₂ H ₆	Моногерман	76,62	Бц. г. Бц. ж. нли г.		3,420 г/дм ³	-165	—88,5	Door	Pear.	•••	67 67
	Ge ₂ H ₆	Дигерман Тригерман		Бц. ж. или г. Бц. ж.		6,74 ²⁰ г/дм ³	-109 -105.7	29 111,1	Pear. H. p.	Pear.	P. CCl ₄	67
	Gel ₂	Иодид германия (II)	326,40	Желт., триг.		2,2	Возг. с разл.	•••	P	Pear.	Сл. р. хлф., СС1₄	68
81	Gel ₄	Иодид германия (IV)	580,21	Желтовкр., кб.	ં ું	4,32225	146	377 разл.	Р.	Pear.	P. CS ₂ , CCl ₄	6
32	Ge ₃ N ₂	Нитрид	245,78	Черн. крист.	7	•••	• • •	Возг. > 650				6
3	Ge ₃ N ₄	германия (II) Нитрид	273,79	Кор., кб.		•••	Разл. 450	•••	Н. р.	Н. р.	• • •	. 6
4	GeO	германия (IV) Оксид германия (II)	88,59	Серо-черн. крист.		• • • •	Возг. > 700	•••	Сл. р.	•••		· (
5	GeO ₂	Оксид	104,59	Бел., триг., 1,650	100	4,70318	1116	•••	0,43	1,0	•••	· (
6	GeO ₂	германия (IV) Оксид	104,59	Бел., тетраг.		6,239	1086	•••	Н. р.	• • • •	•••	• (
7	GeOCl ₂	германия (IV) Океид-хлорид	159,50	Бц. ж.	- (:	•••	56,0	Р азл. > 20	Pear.	Pear.		. (
8	GeS	германия (IV) Сульфид	104,65	Желтовкр., ам. или ромб.		Ам. 4,01 ¹⁴ ;	625	827	0,24	Сл. р.	• • •	. (
9.	GeS ₂	германия (II) Сульфид	136,72	Бел., ромб.	3 k	ромб. 3,31 2,94 ¹⁴	800	1530	0,45	Сл. р.	Н. р. сп., эф.	1
0	HAsO ₃	германия (IV) Метаарсенатная	123,93	Бц. расплыв. крист.		÷••		•••	Pear.	Pear.	сп., эф.	
1	$H_3AsO_4 \cdot 0,5H_2O$	кислота Ортоарсенатная кислота,	150,95	Бц. расплыв. крист.	- 100 mm =	2,0—2,5	35,5	—H ₂ O, 160	P.	P	Р. сп., глиц.	· •
2	H ₄ As ₂ O ₇	гемигидрат Диарсенатная	265,87	Бц. крист.	i i	•••	Разл. 206	•••	Pear.	Реаг.	• • • •	•
3	H ₃ BO ₃	кислота Ортоборатная кислота	61,83	Бц., гекс. или трикл., 1,340; 1,456; 1,459	SANS OF SANS	1,43515	185 разл.	•••	2,70	39	Р. глиц. (28 ²⁰), эф (0,078), сп. (5,56)	þ.
4	H ₂ B ₄ O ₇	Тетраборатная `	157,25	Стеклов.		•••	•••	• • •	P.	Ρ.	сл. р. ац Р. сп.	Į.
5	HBr	кислота Бромоводород	80,92	Бц. г.	18	3,6445 г/дм ³	3 —88,5	66,8	2210	130	P. cn.	

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
 696	HBrO	Гипобромитная кислота	96,92	Бц. или желтов. (только в р-ре)
697	HBrO ₃	Броматная кислота	128,91	Бц. иди желтов. (только в p-pe)
6 9 8	HCN	Циановодород	27,03	Бц. г. или ж., 1,2675 ¹⁰
699	HCI	Хлороводород	36,46	Bu. r.
-	HC10	Гипохлоритная кислота	•	Существует только в p-pe
701	HClO ₈ · 7H ₂ O	Хлоратная кислота, гептагидрат	210,57	Существует только в p-pe
702	HClO₄	Перхлоратная кислота	100,46	Бц. ж.
703 704		Фтороводород Иодоводород	20,01 127,91	Бц. г. или ж. Бц. г. или свжелт. ж., 1,466
705	HIO ₈	Иодатная кислота	175,91	Бц. или свжелт., ромб.
70 6	HIO ₄	Периодатная кислота	. 191,91	Бц. крист.
707	HIO ₄ · 2H ₂ O (или Н ₅ IO ₆)	Периодатная кислота, дигидрат (или ортопериодатная кислота)	227,94	Бц. расплыв. крист., мн.
	H_2MoO_4 (или $MoO_3 \cdot H_2O$)	Молибдатная кислота	161,95	Бел. или свжелт., гекс.
	HN ₃ ···	Азидная кислота	43,03	Бц. ж.
710 711	HNO ₃ 6HNbO ₃ · 4H ₂ O	Нитратная кислота Метаннобатная кислота	63,01 923,56	Бц. ж., 1,397 ^{10,4} Бел. ам. пор.
712	H ₂ O	Вода, оксид водорода	18,02	Вн. ж., 1,333; бц., гекс., 1,309; 1,818
713	H ₂ O(D ₂ O)	Тяжелая вода	20,03	Бц. ж., 1,3284420
714	H ₂ O ₂	Пероксид водорода	34,01	Бц. ж.
715	H ₃ PO ₂	Гипофосфитная кислота	66,00	Вц. ж. или расплыв. крист.
7 16	HPO ₂	Метафосфитная кислота	63,98	Крист.
717	H ₃ PO ₃	Ортофосфитная кислота	81,99	Желтов. расплыв. крист.
7 18	$H_4P_2O_8$	Дифосфитная кислота	145,98	Иг.

1.	Температ	rypa, °C	P	встворимост	ъ ј		
			ВВ	оде	в других	Me	
Плотность	плавления кипения		при 20°C	при 100 °C	раствори-	u/n	
6	•••	• • • * * * * * * * * * * * * * * * * *	199 P; 1913; 1		Р. сп., эф., хлф.		
•••	Разл. 100		Ρ.	Pear.	4 m m m m m m m m m m m m m m m m m m m	697	
0,901 г/дм ^а	-13,3	25,6	1000 mg	•••	oo cп.; р. эф.	698	
1,639 г/дм ^з	-114,2	—85,1 a · ;	82,30	56,160	Р. сп., з эф., бзл.	699	
		Разл.	P.; Pear.	•••		700	
* ***		Разл.	э 1. Р. ; у 3. Э 1. Р. ; у 3.	•••	e	701	
1,76822	· -112 / 1	16 (2,4 кПа)		•••		702	
Ж. 0,98851 5,7891 г/дм	3 —87,2 3 —50,8	19,9 —35,4	P. P.	P. P.	P. cn.	703 704	
4,6290	110	*****	236,70	360,880	Р. сп.; н. р. эф., хлф.	705	
•.• •	• • •	Boar. 110	P.	•••	хлφ.	706	
•••	122	Разл. > 122	P.	Р.	Р. сп. эф.	707	
				•			
3,112	Разл. 115	•••	Сл. р.	Сл. р.		708	
1,13	80	37	00	00	oo cn.	709	
1,502	42	86	00	. 00	Р. эф.	710	
4,3	Разл.	•••	Н. р.	•••,	Н. р.	711	
1,0000004	0,00	100,00	• • •:	•••	∞ сп.;	712	
0,99 7071** 1,07	3,81	101,4	•••	•••	сл. р. эф оо сп., сл. р. эф	713	
1,46490	-0,46	. •••,	* · 00 · *	•••	Р. сп., эф.; н. р	714	
1,49319	26,5	Разл.	Р.	P.	петр. эф. Р. сп., эф	. 715	
•••	• • •	•••	Pear.	Pear.	•••	716	
1,65121,2	73,6	Разл. 200	3090	69430	Р. сп.	717	
•••	38	Разл. 130	Pear.	Pear.	****	718	

		1		77-0
Me n/n	Формула	Название	Молеку- лярная, масса	Цвет, кристалличе- ская форма, показатель преломления
	HPO ₈	Метафосфатная кислота	79,98	Бц. расплыв. сте клов.
720	H ₈ PO ₄	Ортофосфатная кислота	98,00	Бц. расплыв крист., ромб.
721	2H ₃ PO ₄ · H ₂ O	Ортофосфатная кислота, гидрат	214,00	Би. гекс. пр.
722	H ₄ P ₂ O ₇	Дифосфатная	177,97	Бц. крист.
723	$H_4P_2O_6$	кислота Гипофосфатная	161,97	Бц. крист.
724	H ₂ PO ₃ F	кислота Мо нофторфосфат-	99,99	Бц. ж.
725	HPO ₂ F ₂	ная кислота Дифторфосфат-	101,98	Бц. ж., дымит на
726	H ₂ PO ₃ NH ₂	ная кислота Моноамидоортофос-	97,01	воздухе Бц. крист.
27	HPO ₂ (NH ₂) ₂	фатная кислота Диамидоортофос-	96,03	Бц. гекс. пр.
728	H ₂ S	фатная кислота Сероводород,	34,08	Бц. г.
729	H ₂ S ₂	сульфид водорода Дисульфид	66,14	Свжелт. ж.
730	H ₂ S ₃	водорода. Трисульфид	98,21	Желт. ж.
731	H ₂ S ₄	водорода Тетрасульфид	130,27	Желт. ж.
32	H ₂ S ₅	водорода Пентасульфид	162,34	Желт. ж.
3 3 -	H ₂ S ₆	водорода Гексасульфид	194,40	♥ Темно-желт. ж.
34	H ₂ SO ₃	водорода Сульфитная	82,08	Только в р-ре
35	H ₂ SO ₄	кислота Сульфатная	98,08	Бц. ж., 1,429
36	$H_2SO_4 \cdot H_2O$	кислота Сульфатная	116,09	Бц. ж., 1,438
37	$H_2SO_4 \cdot 2H_2O$	кислота, гидрат Сульфатная		Бц. ж., 1,405
38	H ₂ SO ₄ · 4H ₂ O	кислота, дигидрат Сульфатная кислота,	170,14	
39	H ₂ S ₂ O ₇	тетрагидрат Дисульфатная	178,14	Бц. крист.
40	H ₂ SO ₅	кислота Моноперсуль-	114,08	Бц. крист.
	$H_2S_2O_8$	фатная кислота Диперсульфатная кислота		Бц. крист.

1		Температ	ypa, °C	Pa	створимост	ь	
				в во	де	в других	N₂
	Плотность	плавления	кипения	при 20 °С	при 100°C	раствори- телях при 20 °C	п/в
	2,2—2,5	Возг.	•••	Pear.	Реаг.	Р. сп.	.719
	1,83418	42,35	-0,5H ₂ O,	548	P.	P. cm.	720
	•••,	29,32	213 Разл.	Р.	•••	••••	721
	•••	61	•••	70923	Pear.	Р. сп., эф.	722
	•••	55	Разл. 100		Реаг.	## 14	723
	1,81825	< -30	> 185 разл.	pear. Pear.	Pear.		724
	1,58325	—96,5	100 разл.	Медленно	Pear.		725 .
	•••	•••	•••	реаг. Медленно	Pe ar.	• • •	726
	•••	~ 100	•••	pear.	Медленно	••••	727
	Ж. 0,964-60	-82,9	-60,8	291 см ³	реаг. 186 ⁴⁰ см ³		728
	1,376	-89,7	70,7	1,200		•••	729
	1,496	— 53	69 (2,7 кПа)		• • •	• • • * * ;	730
	1,588	~85	•••	•••	• • •	Р. бзл.	731
	1,660	50	•••	•••	•••	• • • • .	732
	1,699	Уст. ниже	•••	.e.,e.,e.	• •••	•••	733
	•••	1,45	•••	Ρ.	•••	Р. сп., эф	. 734
•	1,834	10,37	330 (98,3 %)	00	00	Pear. cn.	735
	1,788	8,53	290	00	∞	Pear. cn.	736
	1,6500	-39,5	167	00	∞ .	Pear.	737
	•••	-28,25	•••	00	00	сп., эф. Pear. сп., эф.	738
	1,9	35	Разл.	Pear.	Pear.	Pear. cn	. 739
•	•••	45 разл.	• • • •	Сл. pear	. Реаг.	•••	740
٠.	•••	65 разл.	Разл.	Pear.	Pear.	Р. сп., э	þ. 741

			1.5 3.4 2.7 1.5	
№ п/п	Формула	Название	Молеку- лярная масса	"Цвет, кристалличе- ская форма, показатель преломления
742	HSO ₃ Cleffer to the African African and the African and African a	Хлорсульфатная кислота, хлор- сульфонатная	116,52	ъц дым ж., 1,437 ¹⁴
743	HSO₃F	кислота Фторсульфатная кислота, фтор- сульфонатная кислота	100,07	Бц. ж.
744	HSO ₃ NH ₂	Амидосульфатная	97,09	Бел., ромб.
745	H ₃ SbO ₃	кислота Ортостибитная кислота	172,77	Бел. пор.
746	HSbO ₃	Метастибиатная кислота	170,76	Бел. пор.
747	H ₃ SbO ₄	Ортостибиатная кислота	188,77	Бел. пор.
748	H ₄ Sb ₂ O ₇	дистибиатная кислота	359,53	Бел. пор.
749	H ₂ Se	Селеноводород .	80,98	Бц. г.
7 50	H _u SeO ₃	Селенитная кислота	128,97	Бц., гекс.
751	H ₂ SeO ₄	Селенатная	144,97	Бц., гекс.
7 52	$H_2SeO_4 \cdot H_2O$	кислота Селенатная	162,99	Бц. иг.
75 3	$H_2SeO_4 \cdot 4H_2O$	кислота, гидрат Селенатная кислота,	217,03	Бц. ж.
754	H ₂ SiO ₃	тетрагидрат Метасиликатная кислота	78,10	Бел., ам., 1,41
75 5	H ₄ SiO ₄	Ортосиликатная кислота	96,11	Бел., ам.
75 6	H ₂ SnO ₃	Метастаннатная кислота, α	168,70	Бел. ам. пор.
7 57	$H_{10}Sn_5O_{18}$	Метастаннатная кислота, В	843,52	Бел. ам пор.
758	H ₂ Te	Теллуроводород	129,62	или студ. Бц. г.
759	H ₂ TeO ₃	Теллуритная кислота	177,61	Бел., ромб. или ми.
	H ₂ TeO ₄	Теллуратная кислота	193,61	Бц. крист.
761	H ₆ TeO ₆ · 4H ₂ O	Ортотеллуратная кислота,	301,71	Гекс. иг.
762	H ₂ TiO ₃	тетрагидрат Метатита натная кислота	97,91	Бел. ам. пор.

	Плотность	Температура, °C		Р а створимость			
		11		В	оде	в других	M
		плавления	кипения	при 20 °С	при 100° С	раствори- телях при 20°C	□/n
	1,76618	-80	158	Pear.	Pear.	Pear. cп.; н. р. CS ₂	742
-	1,74018	87,3	162,6	Pear.	Pear.		743
	2,12625	200 разл.	Разл.	14,68	47,0880	Сл. р. сп.,	744
	••• .	Разл.	•••	Н. р.	Н. р.	эф., ац. Н. р. сп.	745
	6,6	Разл.	•••	Сл. р.	Сл. р.	Н. р. ац.	746
	***	Разл.	•••	Сл. р.	Сл. р.	, •, • , •.	747
	•••	-H ₂ O, 200	•••	Сл. р.	Сл. р.	• •	748
8	3,670 г/дм ³	.—64	-42	3774 CM8.	•••	P. CS ₂ ,	749
	3,00415	Разл.	•••	167	385**	COCI ₂ P. cn.;	750
	2,95015	58—60	Разл. 260	566	00	н. р. NH ₃ Pear. cn.;	751
	2,62715	26	205	Р.	P.	н. р. NH ₃	752
	•••	-51,7	•••	Р.	P. 3,43		753
	3,17	Bosr. 2200	•••	Н. р.	Н. р.	•••	754
	2,1-2,3	•••	•••	Н. р.	Н. р.	4	755
	•••	•••	• • •,	Н. р.	Н. р.	•••	756
	•••	•••	•••	Н. р.	Н. р.	•••	757
I	5,81 г/дм ⁸	—49 Разл. 40	-2	Pear. 0,00067	Pear. Pear.	Р. сп. Н. р. сп.	758 759
	3,44 ^{19,2}]	Разл. > 160	•••	16,30	155	Р. сп.	760
	•••	-4H ₂ O, 100	•••	P. ·	P.	Н. р. сп.	761
	•••	• • •	•••	Н. р.	Н. р.		762

П родолжение	таблицы

l		Температ	ypa, °C	Растворимость			
	Плотность			ВВ	оде	В других	346
	Плотность	плавления	кипения	при 20 °C	при 100 °C	в других раствори- телях при 20°C	B/B
	•••	Разл.	••• ***	Сл. р.	•••	•••	76
	5,926	—H ₂ O, 250—300	•••.	Н. р.	Н. р.	•••	76
	•••	•••	•••	Н. р.	•••	H. p. NH _a	76
	. •••		••• • • • • • • • • • • • • • • • • • •	Н. р.	•••		76
	5,5	$-0.5H_2O_1$	••• 🧃	Н. р.	Сл. р.		76
	•.••	$-1,5H_{2}O,$	•••,	Сл. р.	•••	•••	76
	••• ,	•••	•••	P.	•••,	(10.00°) 1	76
	•••	3162					
	• • • • • • • • • • • • • • • • • • • •	420	•••	Р.	P.	•••	77 77
	12,20	3887	• • •			• • • •	77
	•••	434 (под давлением)	Bosr. 315	•••	• • •	•••	77
	7,13	Boar. 800	•••	Н. р.	H. p.	• • •:	77
	0.00	2982	•••	• • •	• • •	•••	77
	9,68	2780 Разл. > 65	•••	H. p. P.	Н. р.	•••	77 77
	•••	Разл. > 500	•••	Р. Сл. р.	•••	ingerial (ingerial (inger	77
	7,307	Возг. ∼400	• • •	0,0000016	•••	Н. р.	7.8
	6,10925	236—241	320—322	0,6125	4,9	сп., ац. Р. сп., мет. сп.	78
	•••	Разл. Разл.	•••	Pear. 0,15	1,6	#C1, CII.	78. 78.
	5,3	Bap.	•••	Н. р.	Н. р.	Н. р. сп.	78
	8,996	Разл. 320	•••	11,325	53	Р. сп., (10), мет. сп., NH ₃ ,	78
	4,42	Взр.	•••	0,07	P.	глиц. Р. сп.	.78
							787 788
		Разл. 130		0,00013	Pear.	Н. р. сп.	789

% n/o	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
763	H ₄ TiO ₄	Ортотитанатная	115,93	Бел. пор.
764	H ₂ UO ₄	кислота Уранатная кислота	304,04	Желт., ромб.
765	HVO ₈	Метаванадатн а я	99,95	Желт. пл.
766	$H_4V_2O_7$	кислота Диванадатная	217,91	Свжелт., ам.
76 7	H ₂ WO ₄	кислота Вольфраматная	249,86	Желт., ромб., 2,24
768	$H_2WO_4 \cdot H_2O$	кислота Вольфраматная	267,88	Бел., ам.
769	H ₆ [H ₂ W ₁₂ O ₄₀] • · · 24H ₂ O	кисдота, гидрат Метавольфраматная кислота, тетра- косагидрат	3286,61	Желт., кб.
770	HfB ₂	Борид гафния	200,11	Сер. крист.
771	HfBr.	Бромид гафния	498,13	Бел. пор.
	HfC	Карбид гафния	190,50	Сер., кб.
	HfCl ₄	Хлорид гафиия	320,30	Бц., кб.
774	HfF4	Among no hugg	254,48	Бц., мн.
	HfN	Фторид гафния	192,50	Желтовкор., кб.
	HíO,	Нитрид гафния		
777	HiOCl ₂ 8H ₂ O	Оксид гафиия Оксид-хлорид гаф-	210,49 409,52	Бел., кб. Бц. тетраг. иг.
778	Hf(SO)	ния, октагидрат	370,61	Бал пов
	$Hf(SO_4)_2$ $Hg_3(AsO_4)_2$	Сульфат гафния Ортоарсенат	879,61	Бел. пор. Желт.
	1168(11004/2		010,01	71(01111
7 80	Hg ₂ Br ₂	ртути (II) Бромид ртути (I)	360,00	Желтовбел., тетраг.
781	HgBr ₂	Бромид ртути (II)	360,41	Бц., ромб.
782	$Hg_2(BrO_3)_2$	Бромат ртути (I)	656,99	Бц. крист.
783	Hg(BrO ₃) ₂ · 2H ₂ O	Бромат ртути (II), дигидрат		Бц. крист.
784	$3 \text{HgC}_2 \cdot \text{H}_2 \text{O}$	Ацетиленид ртути,	691,86	Бел. пор.
785	Hg(CN) ₂	гидрат Цианид ртути (II)	252,63	Бц., тетраг.
	Hg(CNO) ₂	Фульминат ртути (II)	284,62	Бел., ромб.
787	$Hg_2(CNS)_2$	Роданид ртути (I)	см. № 824	$Hg_2(SCN)_2$
788	Hg(CNS) ₂	Роданид	см. № 825	Hg(SCN) ₂
78 9	Hg ₂ CO ₃	ртути (II) Карбонат ртути (I)	461,19	Желтовкор. пор.

Nk. n/n	Формула	Назвацие	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
790	Hg ₂ Cl ₂	Хлорид ртути (I)	472,09	Бел., тетраг.,
	HgCl ₂	(каломель) Хлорид ртути (Н)	271,50	1,973; 2,656 Бц., ромб. 1,859
792	Hg ₂ (ClO ₃) ₂	(сулема) Хлорат ртути (I)	568,08	Бел., ромб.
793	Hg(ClO ₃) ₂ Hg ₂ CrO ₄	Хлорат ртути (II) Хромат ртути (I)	367,49 517,17	Иг. Кр., иг.
795 796	HgCrO ₄ Hg ₂ F ₂	Хромат ртути (II) Фторид ртути (I)	316,58 439,18	Кр., ромб. Желт., кб.
797	HgF,	Фторид ртути (II)	238,59	Бц., кб.
	Hg ₂ HAsO ₄	Гидроортоарсенат ртути (I)	541,11	Желтовкр.
799	HgH₄TeO ₆	Тетрагидроорто- теллурат ртути (II)	428,22	Ромб.
800	Hg_2l_2	Иодид ртути (I)	654,99	Желт. тетраг. или ам. пор.
801	Hgl ₂	Иодид ртути (II)	454,40	Желт., ромб.
802	HgI ₂	Иодид ртути (II)	454,40	Кр., тетраг.
803		Иодат ртути (I)	750,99	Желтов, пор.
804 805	Hg(IO ₃) ₂ HgIBr	Иодат ртути (11) Иодид-бромид	550,40 407,40	Бел. пор. Желт., ромб.
806	HgICI	ртути (II) Иодид-хлорид ртути (II)	362,95	Кр., ромб.
807	HgN ₃	Азид ртути (I)	242,61	Бел. крист.
808	Hg ₃ N ₂	Нитрид ртути (II)	629,78	Кор. пор.
809	Hg(NH ₂)Cl	Амидохлорид ртути (II)	252,07	Бел. пор.
810	Hg(NH ₂)Br	Амидобромид ртути (II)	296,52	Бел. пор.
	Hg(NH ₂)I	Амидоиодид ртути (II)	343,52	Серо-бел. пор.
812	$Hg_2(NO_3)_2$	Нитрат ртути (I)	493,19	Желт., крист.
	$Hg_2(NO_3)_2 \cdot 2H_2O$	Нитрат ртути (I), дигидрат	561,22	Бц., мн.
814	$Hg(NO_3)_2 \cdot 0.5H_2O$	Нитрат ртути (II), гемигидрат		Желтовбел. расплыв. крист.
815	J	Нитрат ртути (II) гидрат		Бц. крист.
816	HgO	Оксид ртути (II)	216,59	Желт., ромб., 2,37; 2,5; 2,65

	Температу	pa, °C'	P	аствори мос т	гь	* .
Плотность	Ī		ВВ	оде	в других	M
Lan	плавления	кипения	при 20 °С	при 100 °C	раствори- телях при 20°C	0/8
7,150	Boar. 400	•••	0,0002025	0,00143	Н. р. сп., эф.	790
5,4425	277	302	6,59	58,3	Р. сп.,	791
6,409 4,998	Разл. 250 Разл.		P. P.	Pear.	эф., пир. Р. сп.	792 793
•••	Разл.	•••	Сл. р.	Сл. р.	Н. р. сп., ац.	794
8.73	Разл. 570	•••	Сл. р. Pear.	Pear.	Н. р. ац.	795 796
8,9515	645 разл.	•••	Pear.	• • • •		797
•••		•••	Н. р.	•••		798
•••	Разл. 20	•••	Медленно реаг.	Быстро реаг.	- 1	799
7,70	Bosr. 140	Разл. 310	2 · 10-8	•••	Н. р. сп., эф.	800
6,271	259	354	Сл. р.	Сл. р.	Р. эф.;	801
6,283	259	354	0,0061025	Сл. р.	сл. р. сп. Р. абс. сп., эф., ац.	802
•••	Разл.	•••	Н. р.	Н. р.		803
•••	229	360	Н. р.	•••	Р. сп.,	804 805
***	153	315	Н. р.	Сл. р.	эф. Р. сп.	806
•••	Взр.	•••	0,025	•••	• • •	807
5,70	Взр.	•••	Pear. 0,14	Pear.	Н. р. сп.	80 8 80 9
•••	Разл.	- 1 m	Pèar.	Pear.	Н. р. еп.	810
•••	• • • • • • •	•••		•••	Н. р. эф.	811
7,33	Разл. 100	•••	Pear.	.		812
7,794	70	•••	For The Explorer	P., pear.	13 ***	813
4,39	79	Разл.	P.	Pear.	Р. ац.; н. р. сп.	814
	•••	• • •	Р.	•••	Н. р. еп.	815
11,14	Разл. 500	•••	0,005125	0,0410	Н. р. сп., эф., ац.,	816

Ж п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
817	HgO	Оксид ртути (II)	216,59	Кр., ромб.
818	HgCO ₃ · 2HgO	Оксид-карбонат ртути (II)	693,77	Кркор. пор.
819	HgSO ₄ · 2HgO	Оксид-сульфат ртути (II)	729,83	Лимонно-желт. пор.
	$Hg_3(PO_4)_2$	Ортофосфат ртути (II)	791,71	Желтовбел. пор.
321 322	Hg ₂ S HgS	Сульфид ртути (I) Сульфид	433,24 232, 65	Черн. пор. Кр. или ор., триг.,
23	HgS	ртути (II) Сульфид ртути (II)	232,65	2,854; 3,201 Черн. кб. или ам. пор.
24	Hg ₂ (SCN) ₃	Тиоцианат ртути (I)	-517,34	Бц. пор.
	Hg(SCN) ₂	Тиоцианат ртути (II)	316,75	Бц. иг.
32 6 327	Hg ₂ SO ₄ HgSO ₄	Сульфат ртути (I) Сульфат	497,25 296,65	Бц. крист. Бц. крист.
328	HgSe	ртути (11) Селенид ртути (11)	279,55	Сер., кб.
29	Hg_3TeO_6	Ортотеллурат ртути (II)	825,37	К б.
.,	Hg ₂ WO ₄	Вольфрамат ртути (I)	649,03	Желт., ам.
4.4	HgWO ₄	Вольфрамат ртути (II)	448,44	Желт. пор.
32	HoBr ₃	Бромид гольмия	404,66	Желт. пор.
33	HoCl ₃ HoF ₃	Хлорид гольмия [*] Фторид гольмия	271,29 221,92	Свжелт., мн. Желт., орторомб.
35	Hol	Иодид гольмия	E4E 64	или гекс.
36	Ho ₂ O ₃	Оксид гольмия	545,64 37 7 ,86	Свжелт. пор. Желт., кб.
37	$Ho_2(SO_4)_8 \cdot 8H_2O$	Сульфат гольмия, октагидрат	762,17	Желт. пор.
38	IBr	Бромид иода (I)	206,81	Темно-сер. крист.
39		Бромид иода (III)	366,63	Кор. ж.
340	ICN	Цианид иода (I)	152,92	Бел., триг.
341	ICI	Хлорид иода (I)	162,36	Темно-кр. иг.
142 143	ICI ICI ₃	Хлорид нода (I) Хлорид нода (III)	162 ,36 233 , 26	Кркор. ромб. пл. Желт. или кркор. расплыв. крист., ромб.

		Темпера	rypa, °C	Pa	астворимост	ъ	
				вв	оде	в других	Ne.
	Плотность	плавления	кипения	при 20 °C	при 100 °C	раствори- телях при 20°C	n/n
	11,08	Разл. 500	•••	0,04925	0,0379	Н. р. сп., эф., ац.,	817
	•••			Н. р.	•••	NH ₃	818
	6,44		• • • • • • • • • • • • • • • • • • • •	0,00316	Сл. р.	Н. р. сп.	819
		•••	• • •	Н. р.	Сл. р.	Н. р. сп.	820
	8,10	Bosr.		Н. р. Сл. р.	•••	Н. р. сп.	821 822
	7,73	Возг.	v . •••	Н. р.	•••	Н. р. сп.	823
	5,318	Разл.	•••	Н. р.	•••		824
	•••	Разл. 165	. •••	0,0725	P.	Сл. р.	825
	7,56 6,47	Разл. Разл.	•••	0,04 ²⁵	0,09	сп., эф.	826
	7,1—8,9	Возг.		Pear.	•••	H. р. сп., ац., NH ₃	827 828
	7,1—0,9		•••	Н. р.		•••	1.5
	• • •	Разл. > 140	•••	Н. р.	Н. р.	ed * * * egge	829
	•••	Разл.	•••	Н. р.	Н. р.	Н. р. сп.	830
	•••	Разл.	. •••	H. p.	Pear.	Н. р. сп.	831
	• • •	917 721	1470 1510		•••		832 833
	•••	1360	2230	•••		• • •	834
	•••	1010	1300	. 		•••.,	835
	•••	• • •	•••	H. p. 8,181	4,5240		836 837
	4,4160	36	116	Pear.	Реаг.	Р. сп., эф., хлф.,	838
	•••	•••	Возг. 136	Р. Сл. р.	 Сл. р.	CS ₂ Р. сп. Р. сп.,	839 840
•	3,1822° Ж. 3,24 ³⁴ 3,117 ¹⁵	27,2 13,92 101 (1,6 МПа)	97,4 разл. 97,4 77 разл.	Pear. Pear. Pear.	Pear. Pear. Pear.	эф., CS ₂ P. сп,. эф. P. сп., эф. P. бзл.,	841 842 843
			·			ССІ ₄ , сп., эф.	

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
	IF ₅	Фторид иода (V)	221,90	Бц. ж.
	IN _s	Азид иода (I)	168,93	Желт. крист.
040 R47	I ₄ O ₉ или I(IO ₃) ₃ IO ₂ или I ₂ O ₄	Иодат иода (III)	051,01	Желт, пор
	iog iva igog	Оксид иода (IV)	100,50	Бел. пор.
848	I ₂ O ₅	Оксид нода (V)	333,81	Бел. крист.
6				•
849	InBr	Бромид индия (I)	194,73	Крбур. крист.
	InBr ₂	Бромид индия (II)	274 64	Св. желт. крист.
851	InBr _a	Бромид	354,55	Свжелт. расплыв
852	InCl	индия (III) Хлорид индия (I)	150,27	иг. Желт. или темно кр
) f	*			крист.
503	InCl	Хлорид индия (II)	185,73	Бел. расплыв., ромб.
354	InCl ₃	Хлорид индия (III)	221,19	Бел. расплыв. тб
70	The state of the s		a*	
355	$In(ClO_4)_3 \cdot 8H_2O$	Перхлорат индия (III),	557,29	Бц. расплыв, крист
35 6	InF ₈	октагидр ат Фторид	171,82	Бц. пор.
57	In E OU O	индия (III)	005.00	
	InF ₃ ·3H ₂ O	Фторид индия (III), тригидрат	225,80	Бц. крист.
58	InF ₈ · 9H ₈ O	Фторил	333,96	Бц. иг.
		индия (III),	 	
	InI	нонагидрат Иодид индия (I)		Крбур. крист.
en En	Inia de de	in the state of th		
361	Inl ₃	Иодид индия (II)	368,63 405.53	Крист. Желт. крист.
Ť		Иодид индия (III)	490,00	желт. крист.
62	In(IO ₃) ₃	Monda wang (III)	630 53	Бел. крист.
63	$In(NO_3)_3 \cdot 3H_2O$	Иодат индия (III) Нитрат	354 88	рел. крист. Расплыв. тб.
	• • •	индия (III), тригидрат	00 1,0Q , ,	r activities. 10.
64	$2In(NO_3)_3 \cdot 9H_2O$	Нитрат	763,80	Расплыв. иг.
		индия (III),	1 216	**
65	In ₂ O	нонагидрат	945 64	Hanri ringan
		Оксид индия (I)	245,64	Черн. крист.
	InO	Оксид индия (II)		Сер. пор.
67	In ₂ O ₃	Оксид индия (III)	277,64	Желт., ам. или кб.

- 1	-	Температу	7pa, °C	Þ	астворимост	гь	
				ВВ	оде	в других	N₂
п	лотность	плавления	кипения	при 20 °С	при 100 °C	раствори- телях при 20 °C	n/n
	3,750	9,4	98	Реаг.	Pear.		844
	• • • •	Взр.	• • •	Pear.	Pear.	•••	845
		75 разл.	• • •			• • •	846
	4.210	Разл. 75	•••	Pear.	Pear.	Сл. р.	847
	-,~		*.		**	ац.; н. р.	
						сп., эф.	
4	,79925	Разл.	• • •	18712	•••	Сл. р. сп.;	848
	.,	300-350	57.			н. р. абс.	
	30 - 1			14 <u>1</u> 5 1		сп., эф.	
	4.9625	220	658	Pear.	Pear.		849
	4.2225	235	630	Pear.	Pear.	2 <u>2</u> 11 1 2 2 2	850
	3,7425	430	Bosr.	2470	700	Р. абс.	851
				·_		сп. (285)	050
	4,1925	225	550	Pear.	Реаг.	J. *** ::-	852
	3,65525	235	488	Pear.	Pear.		853
							054
	3,46	585 (под	Bosr.	1668	37480	Р. абс.	. 854
		давлением)				сп.; сл.	
	-				100	р. эф.	
		~80	Разл. 200	Р.	Pear.	Р. абс.	855
			244	J. 18.	1.5	сп.; сл.	
	North Asia					р. эф.	056
	4,3925	1170	>1200	8,5022	•••		856
	• • •	-3H ₂ O, 100	•••	P.	Pear.	√ H. p.	857
		7.	A POST OF BUILD		1.1	сп., эф.	
			per taken j	- 1	_		050
	• • • •	Разл.	• • •	Р.	Pear.	H. p.	858
				e dia		сп., эф.	
		000	#10 71F		M		850
14	5,31	869	710—715	. 1		Н. р. сп.,	003
	4 67 1 05				pear.	эф., хлф	860
	4,7125	212		Door	Pear.	D w.m.d.	861
	4,69	210	100	Реаг.	real.	Р. хлф., бзл.,	001
*			27.5	17 (1)		ксил.	
			Разл.	0.067		KCn/I.	862
	• • •	911.0 100	Разл. Разл.	P.		Р. сп.	863
	• • •	$-2H_2O$, 100	Разл.	F.		r. cii.	. 000
	4 1 1 1		1949 54 547	100	48.2		
	4	_4,5 H ₂ O,	Разл.	D	Р.	P. cn.	864
	•••	-4,5 H ₂ O,	r asm.		• •		
**	+4. +	100		the state of			
	6,9925	Возг. вак.	• • •	1,50 kg z	•••	• • •	865
	0,33	656—700	* 7 FM 45 H	estat 177			
				Н. р.	•••	• • •	866
	7,179	Разл. >850	1 (1)	Н. р.			867

Ng ⊓ j ⊓	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
868	In(OH) ₈	Гидроксид индия (III)	165,84	Бел., кб.
869	In ₂ S	Сульфид индия (I)	261,70	Желтовчерн. крист.
870	InS	Сульфид индия (II)	146,88	Ромб.
871	In ₂ S ₃	Сульфид индия (III)	325,83	Желт. или кр., кб.
872	$In_2(SO_4)_3$	Сульфат индия (III)	517,82	Свсер. расплыв. крист., мн.
873	$In_2(SO_4)_3 \cdot 9H_2O$	Сульфат индия (III)	67 9 ,9 6	Крист.
874	IrBr ₃ · 4H ₂ O	нонагидрат Бромид иридия (III),	504,0	Темно-з. крист.
875	IrBr ₄	тетрагидрат Бромид	511,8	Син., расплыв.
876	IrCl ₂	иридия (IV) Хлорид	263,1	Черно-з. крист.
877	IrCl ₃	иридия (11) Хлорид	298,6	Темно-з.
878	IrCl ₄	иридия (III) Хлорид	334,0	Темно-кор., ам.
879	IrF4	иридия (IV) Фторид	268,2	Темно-бур. ж.
880	IrF ₆	иридия (IV) Фторид иридия (VI)	306,2	Желт., стеклов. масса или тетраг. крист.
881	IrI ₃	Иодид	572,9	3. Kpner.
882	IrI4	иридия (III) Иодид	699,8	Черн.
883	Ir_2O_3	иридия (IV) Оксид	432,4	Сине-черн.
884	$Ir_2O_8 \cdot xH_2O$	иридия (III) Оксид иридия (III)	•••	Темно-з.
885	IrO_2	полигидрат Оксид	224,2	Черн., тетраг.
886	$IrO_2 \cdot 2H_2O$	иридия (IV) Оксид иридия (IV),	260,2	Син.
887	Ir(OH) ₃	дигидрат Гидроксид	243,2	3.
888	Ir(OH) ₄	иридия (III) Гидроксид иридия (IV)	260,2	Сине-черн.

Ī		Температ	Температура, °C		Растворимость		
				ВВ	оде	в других	N₂
	Ш лотность	плавления	кипения	при 20°C	при 100 °C	раствори- телях при 20 °C	π/n
		-H ₂ O,	•••	Н. р.	•••	•••	868
-	. 5,87 ²⁵	< 150 653	•••	• • • •	•••	· • • •	869
	5,1825	692	Возг.	•••	•••	•••	870
	4,90	1050	Возг. вак. 850	Н. р.	•••	•••	871
	• • •	Разл. >600	• • • •	P.	P .	• • •	872
	8,4 38	Разл. 250	•••	Ρ.	•••	•••	873
	• • •	—3 H ₂ O, 100	•••	P.	•••	Н. р. сп.	874
	•••	Разл.	•••	Pear.	Pear.	Р. сп.	875
	•••	Разл. 773	•••	•••			876
	5,30	Разл. 763	•••	Н. р.	•••	•••,	877
	•••	Разл.	•••	Р.	Pear.	Р. сп.	878
	• • •	•••	•••	Pear.	Pear.	•••	879
	6,0	44,4	53	Реаг.	Реаг.		880
	•••	•.••	•••	Сл. р.	Ρ.	Сл. р. сп.	881
	•	Разл. 100	•••	Н. р.	Н. р.	Р, сп.	882
	•••	Разл. ~400	•••	Н. р.	, •••	•••	883
		Разл.	•••	Н. р.	•••	•••	884
	3,15	Разл.	•••	0,0002	Н. р.		885
	. •••	-2 H ₂ O, 350	• • •	Н. р.	Н. р.	•••	886
	•••	Разл.	•••	Н. р.	•••	•••	887
	•••	•••	•••	•••	•••,	***	888

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
88 9	IrS	Сульфид	224,3	Сине-чери.
890	Ir ₂ S ₃	иридия (II) Сульфид	480,6	Буро-черн.
891	IrS ₂	иридия (III) Сульфид иридия (IV)	256,3	Кор.
892	$Ir_2(SO_4)_3 \cdot xH_2O$	иридия (IV) Сульфат иридия (III), полигидрат	• •••	Желт. пр.
89 3	IrTe ₂	Теллурид иридия (IV)	447,4	Темно-сер. крист.
894	KAsO ₂	Метаарсенит калия	146,02	Бел. пор.
	K ₃ AsO ₃	Ортоарсенит калия	240,22	Бц. иг.
896	K ₃ AsO ₄			
897	K ₃ AsS ₃	Ортоарсенат калия Тиоортоарсенит	256,22 288,42	Бц. расплыв. и г. Крист.
89 8	K ₃ AsS ₄	калия Тиоортоарсенат	320,48	Расплыв. крист.
89 9	$KBO_3 \cdot 0,5H_2O$	калия Перборат калия,	106,92	Бел. крист.
በብብ	$K_2B_2O_4$	гемигидрат Матабарат на пис	162.60	F
900	$K_2B_4O_7 \cdot 5H_2O$	Метаборат калия Тетраборат калия,	163,82 323,54	Бц., мн. Бц., гек с.
902	$K_2B_4O_7 \cdot 8H_2O$	пентагидрат Тетраборат калия,, октагидрат	377,58	Бц., мн.
903	$KB_5O_8 \cdot 4H_2O$	Пентаборат калия, тетрагидрат	293,21	Бц., крист.
904	KBr	Бромид калия	119,01	Бц., кб., 1,559
	$f_{\varphi(n)}^{*}=\varphi_{1}^{*}$			•
905	KBrO ₃	Бромат калия	167,00	Би., триг.
	K ₂ CO ₃	Карбонат калия	138,21	Бц., мн.
	$K_2CO_3 \cdot 2H_2O$	Қарбонат калия, дигидрат	174,24	Би., ромб.
908	$2K_2CO_3 \cdot 3H_2O$	Карбонат калия,	330,47	Бц., мн.
909	KCN	тригидрат Цианид калия	65,12	Бел. расплыв. крист., кб.
910	KCNO	Цианат калия	81,12	Бел., иг.
)11	KCNS	December	16.070	MCCNI
	KCNSe	Селеноцианат	:м. № 970 114,08	КSCN Расплыв. иг.
913	K ₂ CS ₃	калия Тиокарбонат калия	186,41	Желт. расплыв. крист.

	Температу	pa, °C	Pa	астворимост	'b		
			ВВ	воде	в других	№	
Плотность	плавления	кипения	при 20 °С	при 100 °С	раствори- телях при 20°C	n/n	
	Разл.	•••	Н. р.	•••	• • •	889	
•••	Разл.	•••	Сл. р.	•••	•••	890	
•••	Разл. 300	•••	Н. р.	•••	•••	89,1	
• • •	Разл.	•••	P.		•••	892	
•			+ + *				
9,525	. • •	•••	•••	•••	• • a	893	
•••		. •••	P .	Ρ.	Сл. р. сп.	894	
• • •	•••	• • •;	. P.		Р. сп.	895	
• • •	•••	•••	. P.	Р.	Р. сп. (4)		
•••	Разл.	•••	Р.	•••	Н. р. сп.	897	
•••	Разл.	•••	Ρ.	•••	Н. р. сп.	898	
•••	•••	• • •	2,1515	•••	H. р. сп., эф.	899	
• • •	947—950		P.	7130		900	
1,74 бв.	Разл.	• • •	P.	21,315 бв.		901	
•••	Разл.	•••	Ρ.	P.	• • •	902	
•••	780	* ***	0,0070	• • •	•••	903	
2,7525	735	1435	52,80	104,8	Р. сп., глиц.;	904	
3,27 ^{17,5}	Разл. ~370	•••	3,10	49,75	сл. р. эф. Сл. р. сп.;	905	
2,42819	891	Разл.	m	155	н. р. ац. Н. р.	906	
•••	#		198	328	сп., ац.	907	
2,043	•••		169	266	Н. р. сп.	908	
1,56	634,5	•••	71,625	122	Р. глиц., мет. сп.;	909	
2,04816	Разл. 700—900	•••	P.	P	сл. р. сп. Н. р. сп.	910	
2,347	Разл. 100	•••	P.	P.	Р. сп.	911 912	
•••	Разл.		Ρ.	Р.	Сл. р. сп.; н. р. эф.	913	

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, покаватель преломления
	KCI KCIO KCIO ₈	Хлорид калия Гипохлорит калия Хлорат калия	74,56 90,55 122,55	Бц., кб., 1,490 Только в р-ре Бц., мн., 1,409; 1,517; 1,524
917	KClO ₄	Перхлорат калия	138,53	Би., ромб. или кб.
918	K ₂ CrO ₄	Хромат калия	194,20	Желт., ромб., β 1,74
919	K ₂ Cr ₂ O ₇	Дихромат калия	294,10	Оркр., мн. или трикл., 1,7380
920	K ₃ CrO ₈	Перхромат калия	297,30	Коркр., кб .
921	KF	Фторид калия	58,10	Бц. расплыв. крист., кб.
922	KF · 2H ₂ O	Фторид калия, дигидрат	94,13	Бп. расплыв.
923	K ₂ GeO ₃	Метагерманат калия	198,79	крист., ромб. Бел. крист.
924	$K_2Ge_2O_5$	Дигерманат калия	303,38	Бел. крист.
925	K ₂ Ge ₄ O ₉	Тетрагерманат калия	512,56	Бел. крист.
926	KH	Гидрид калия	40,11	Бел., кб.
927	KH ₂ AsO ₄	Дигидроорто- арсенат калия	180,03	Бц., тетраг., 1,518; 1,567
928	K ₂ HAsO ₄	Гидроортоарсенат калия	213,13	Бц. крист.
929	KHCO ₃	Гидрокарбонат калия	100,12	Бц., мн.
930	KHF ₂	Гидродифторид калия	78,11	Вц., тетраг.
931	KH ₂ PO ₃	Гидроортофосфит калия	120,08	Бел. расплыв. пор.
932 93 3	K ₂ HPO ₃ KH ₂ PO ₂	Ортофосфит калия Гипофосфит калия	158,18 104,09	Бел. расплыв. пор. Бел. расплыв., гекс.
934	KH ₂ PO ₄	Дигидроорто- фосфат калия	136,09	Бц. расплыв. крист., ромб. или тетраг., 1,4684; 1,510
935	K ₂ HPO ₄	Гидроортофосфат калия	174,18	Бц. расплыв. крист.
9 36	KHS	Гидросульфид калия	72,17	Расплыв. крист., триг. или кб.
9 37	KHSO3	Гидросульфит калия	120,17	Бц. крист.
938	KHSO ₄	калия Гидросульфат калия	136,17	Бц. расплыв. крист., мн. или ромб.

1		Температура, °С		Растворимость				
١		ATHOUT !		В В	оде	в других раствори-	N ₂	
	Плотность	плавления	кипения	при 20° C	при 100 °C	раствори- теляк при 20°C	π/π	
	1,98—1,99	768—770 Разл.	1406	34,2 P.	56,2 P.	Сл. р. сп.	914 915	
	2,32	368,4	Разл. 400	7,3	56	P. cn.	916	
	2,524	610	•••	0,760	22,2	(0,33) H. p.	917	
,	2,73218	968,3	•••	62,9	79,2	сп., эф. Н. р. сп.	918	
	2,684	398	Разл. > 500	4,70	102	Н. р. сп.	919	
	•••	Разл. 170	• • •	Сл. р.	•••	Н. р.	920	
	2,48-2,50	857	1500	96^{25}	150	сп., эф. Н. р. сп.	92	
	2,454	41	•••	38425	P.	Н. р. сп.	92	
	$3,40^{21,5}$	823	•••	P.	•••	• • •	92	
	4,31 ^{21.5}	> 83	•••	P.		•••	92	
	$4,12^{21,5}$	1033	•••	Р.	•••	• • •	92	
	1,43-1,52	Разл.	•••	Pear.	Pear.	H. p. CS ₂ , эф., бзл.	920	
	2,867	288	•••	196	P.	Н. р. сп.	92	
		• • •	•••	18,866	P.	Н. р. сп.	92	
	2,17	Разл.	•••	33,5	7670	Н. р. сп.	92	
	2,35	100—200 2 38,7	Разл.	24,50	11480	Н. р. сп.	93	
	•••	Разл.	• • • • •	220	P.	Н. р. сп.	93	
	•••	Разл. Разл.	•••	170 P.	P. P.	Н. р. сп. Р. хлф.	93 93	
	2,338	252,6	•••	22,6	83,590	(11,1 ²⁵) Н. р. сп.	93	
	•••	Разл.	411	160	Р.	Р. сп.	93	
	2,0	455	• • •	Pear.	Pear.	Р. сп.	93	
	•••	Разл. 190	, •••	49	115	Н. р. сп.	93	
	2,24 —2,61	218,6	Разл.	36, 30	121,6	Н. р. сп., ац.	93	

					-	, v	Темпера	тура, °С	F	астворимос	ть		
N₂			Молеку-	Цвет, кристалличе- ская форма,	•				ВВ	оде	в других	N₂	
n/n	Формула	Название	лярная масса	ская форма, показатель преломления		described.	плавления	кипения	при 20°C	при 100 °C	раствори-	n/n	
939	K ₂ H ₂ Sb ₂ O ₇ · 4H ₂ O	Дигидродисти- биат калия,	507,77	Бел. крист.	•	• • •	•••	·	2,82	Р.		939	
940	KHSeO ₄	тетрагидрат Гидроселенат	183,07	Бц., ромб.		2,64	•••	Разл.	P.	. P.	Н. р. сп.	940	
941	KHSi ₂ O ₅	калия Гидродисиликат калия	176,28	Ромб.		2,41715	515	•••	. • • •	•••	/ • • •·	941	
942	$K_2H_4TeO_6 \cdot 3H_2O$	Тетрагидроорто- теллурат калия,	359,88	Бп. расплыв. крист., ромб.		•••	• • •	•••	Сл. р.	Р.	Н. р. сп.	942	
943	K ₆ H ₂ W ₁₂ O ₄₀ ·18H ₂ O	калия,	3407,08	Кб.		***	930	•••	Р.	P.	. •••	943	
944	KI	октадекагидрат Иодид калия	166,01	Бц., кб., 1,66718		3,13	680—686	1323	127,80	206,4	Р. сп. (14,3),	944	
946	KIO ₃ KIO ₄ K ₂ MnO ₄	Иодат калия Периодат калия Манганат калия	214,00 230,01 197,14	Бц., тетраг.		3,89 3,618 ¹⁸	560 582 Разл. 190	Разл. 300	4,6° 0,17° Pear.	32,3 7,87 Pear.	NH ₃ H. р. сп.	945 946 947	
948	KMnO ₄	Перманганат калия	158,04	Пурп., ромб., 1,59		2,703	Разл. < 240	. •••	6,36	3275	Р. мет. сп., ац.	948	-1
	$K_2MoO_4 \cdot xH_2O$	Молибдат калия, полигидрат	•••	Бел. расплыв. пор. или пр.		2,34864	920		184 бв.	P.	Н. р. сп.		- 1
950 951	K ₃ N KNH ₂	Нитрид калия Амид калия	131,31 55,12	Зеленовчерн. Бел. или желтовз.			Разл. 335 (под	Bosr.	Pear. Pear.	Pear. Pear.	Pear. cn.	950 951	
52	KN ₃	Азид калия	81,12	крист. Бц. крист.		2,056	давлением) 350—352	•••	46 ,5 ^{10,5}	105,8	Р. сп. (0,16°);	952	;
53	KNO2	Нитрит калия	85,11	Бц. расплыв.		1,915	440	•••	2800	413	н. р. эф. Р. сп.	953	
54	KNO ₃	Нитрат калия	101,11	крист., мн• Бц., ромб. или триг., 1,5056; 1,5064		2,10916	336	Разл. 400	31,6	245	Н. р. cn., эф.	954	r
55 56	K ₂ O K ₂ O ₂	Оксид калия Пероксид калия	94,20 110,20	1,0004 Бц., кб. Бел. пор.		2, 32	 490	•••	Pear.	Pear.	Р. сп., эф.	955 956	
5 7 5 8	KOH KOH	Пероксид калия Гидроксид калия	142,20 56,11	Желт. лист. Бел. расплыв. крист., а ромб.,		2,14 2,044	~400 410	Разл. 1320—1326	Pear. 95,30	Pear. 178	Pear. сп. Р. сп.; н. р. эф.,	957 958	
5 9	K ₂ OsO ₄ -2H ₂ O	Осмат калия,	368,43	β кб. Фиол., кб.		•••	- H ₂ O,	***	Сл. р.	Pear.	NH ₃ H. p.	959	
60	КРО _э	дигидрат Метафосфат калия	118,07	Бц. крист., 1,458;	-	2,39325	> 100 807	1320	Н. р.	A 1.	еп., эф.	960	
61	K ₃ PO ₄	Ортофосфат калия	212,28	1,487 Бц. расплыв.		2,56417	1340	* * • • •	98,5	178,560	Н. р. еп.	961	
62	$K_4P_2O_7 \cdot 3H_2O$	Дифосфат калия, тригидрат	384,40	крист , ромб. Бц расплыв крист.		2,83	-2 H ₂ O, 180	$-3H_2O$, 300	P.	P.	Н. р. сп	962	

							Темпера	тура, °С		астворимос	ть	
N₂		***	Молеку-	Цвет, кристалличе- ская форма,	i				вв	оде	в другия	№
n/n	Формула	Название	лярная масса	пок азатель преломления		Нлотность	плавления	кипения	при 20 °С	при 100 °C	раствори- теляж при 20°C	n/n
963	KReO ₄	Перренат калия	289,30	Бел., тетраг.,		4,887	550	1375	1,225	14	Сл. р. сп.	963
964	K ₂ S	Сульфид калия	110,27	1,643 Расплыв. крист.,		1,80514	471	•••	Ρ.	Р.	Р. сп.,	964
965	$K_2S \cdot 5H_2O$	Сульфид калия,	200,34	кб. Бц., ромб.		•••	60	-3H ₂ O, 150	P.	•••	глиц. Р. сп.,	965
967	K ₂ S ₂ K ₂ S ₃ K ₂ S ₄	пентагидрат Дисульфид калия Трисульфид калия Тетрасульфид	174,40	Желтовкр. крист, Желтовкор. крист. Кркор. крист.		•••	470 252 145	 Разл. 850	P. P P.	Pear. Pear.	глиц. Р. сп. Р. сп. Р. сп.	966 967 968
969	K_2S_5	калия Пентасульфид	2 38,53	Ор. крист.	-	•••	206	•.• •	Ρ.	Pear.	Сл. р. сп.	969
970	KSČN	калия Тиоцианат калия	97,18	Бц. расплыв. крист., ромб.	,	1,886	173,2	Разл. 500	217,0	670	Р. сп., ац., амил.	970
971	$K_2SO_3 \cdot 2H_2O$	Сульфит калия,	194,30	Желтовбел., мң.		•••	Разл.	• • •	900 бв.	124 бв.	сп. Сл. р. сп.; н. р. NH ₃	971
972	K ₂ SO ₄	дигидрат Сульфат калия	174,27	Бц., ромб. или гекс., 1,494;		2,662	1076	> 2000	7,40	24,1	Н. р. сп., ац.,	972
973 974	$K_2S_2O_7$ $K_2S_2O_3$	Дисульфат калия Тиосульфат калия	254,33 190,33	1,495; 1,497 Бц. иг. Бц., кб.		2,27 2,23	> 300 Разл.	Разл.	P. 960	Pear. 309 ⁹⁰	CS_2	973 974
975	$3K_2S_2O_3 \cdot H_2O$	Тиосульфат калия, гидрат	589,00	Бц. расплыв.		2,590	430—470 —H ₂ O, 180	Разл.	Р.	P.	Н. р. сп.	975
976	$K_2S_2O_5$	Дисульфит калия	222,33	крист., мн. Бц. мн. пл.		2,34	Разл.	•••	2,50	133	Сл. р. сп.;	976
977	$K_2S_2O_6$	Дитионат калия	238,33	Бц. триг. пр.,		2,277	Разл.	•••	6,64	63,3	н. р. эф.	977
978	K ₂ S ₃ O ₆	Тритионат калия	270,39	1,455; 1,515 Бц., ромб., 1,475;		2,304	•••	• • • *	P.	Pear.	Н. р. сп.	978
979 980	$K_{2}S_{4}O_{6}$ $2K_{2}S_{5}O_{6} \cdot 3H_{2}O$	Тетратионат калия Пентатионат	302,46 723,09	1,480; 1,487 Бц., мн. Бц., ромб.		2,296 2,112	 Разл.	•••	P	•••	Н. р. сп.	979 980
981	$K_2S_2O_8$	калия, тригидрат Персульфат калия	270,33	Бц., трикл, 1,461;		2,477	Разл.	•••	53	•••	Н. р. сп.	- 981
982	KSO ₃ F	Фторсульфонат	138,16	1,467; 1,566 Бел. пр.	-	•••	< 100 311	•••	6,919	• • • •		982
984 985	K ₃ Sb KSbO ₃ 2K ₃ SbS ₄ · 9H ₂ O	калия Стибид калия Метастибиат калия Тиоортостибиат калия, нонагид- рат		Желтовз., гекс. Кор. крист. Желт. крист.		•••	812	•••	Реаг. Н. р. 306° бв.	Реаг. Сл. р. 380 ⁸⁰ бв.	 Н. р. CS ₂ Н. р. сп.	983 984 985
986 987	K₂Se K₂SeO₃	Селенид калия Селенит калия	157,16 205,16	Бел. расплыв.		2,85115	•••	•••	P. 203	P. 217	Сл. р. сп.	986 987
9 88	K₂SeO₄	Селенат калия	221,16	крист. Бц., ромб., 1,535; 1,539; 1,545		3,066	•••	•••	107,5°	122,2	•••	988

№ n/n	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
989	K ₂ SiO ₃	Метасиликат калия	154,29	Бц., ам.
990 991	$K_2Si_2O_5$ $K_2SnO_3 \cdot 3H_2O$	Дисиликат калия Станнат калия,	214,37 298,94	Крист., β 1,500 Бц., триг.
		тригидрат		_
992	$K_2SnS_3 \cdot 3H_2O$	Тиостаннат калия, тригидрат	347,13	Темно-бур. маслянистая ж.
9 93	K ₂ Te	Теллурид калия	205,80	Бц., кб.
994	K ₂ TeO ₃	Теллурит калия	253,80	Бел. расплыв. крист.
995	K ₂ TeO ₄	Теллурат калия	269,80	Бц. крист.
9 96	K ₂ UO ₄	Уранат калия	380,23	Оржелт. крист.
997 998	KVO_3 $K_2WO_4 \cdot 2H_2O$	Метаванадат калия	138,04	Би. крист.
330	1\2 W O4 · 2112O	Вольфрамат калия, дигидрат	362,09	Бц. расплыв. крист., мн.
99 9	$K_6W_7O_{24} \cdot 6H_2O$	Паравольфрамат калия, гекса- гидрат	2013,64	
1000	LaB ₆	Борид лантана	203,78	Пурпкр., кб.
1001	LaBr ₃	Бромид лантана	378,64	Бц., гекс.
1002	$La(BrO_3)_3 \cdot 9H_2O$	Бромат лантана, нонагидрат	684,77	Гекс. пр.
1003	LaC ₂	Карбид лантана	162,93	Желт., тетраг.
1004	$La_2(CO_3)_3 \cdot 8H_2O$	Карбонат лантана, октагидрат	602,00	Бел. крист.
1005	LaCl _s 6	Хлорид лантана	245,27	Бц. расплыв. крист., гекс.
	La ₂ (CrO ₄) ₃ · 8H ₂ O	Хромат лантана, октагидрат	769,92	Желт., мн.
	LaF ₃	Фторид лантана `	195,90	Бц., гекс.
	LaH ₃ LaI ₃	Гидрид лантана		Черн., кб.
		Иодид лантана	019,02	З., ромб.
1010	La(IO ₃) ₃	Иодат лантана	663,62	Бц. крист.
	La ₂ (MoO ₄) ₃	Молибдат лантана	757,63	Тетраг.
1012 1013	LaN La(NO3)3 6H2O	Нитрид лантана	152,92 433,02	Черн., ко.
2010	24(1108/3 01120	Нитрат лантана, гексагидрат	700,02	Бц. расплыв. крист., трикл.
1014	La ₂ O ₃	Оксид лантана	325,82	Бел., триг. или кб.
1015	La(OH) ₃	Гидроксид лантана	189,93	Бел., ам. пор. или
1016	La ₂ S ₃	Сульфид лантана	374,01	гекс. Кржелт., кб.
1017	La ₂ (ŠO ₄) ₃	Сульфат лантана	566,01	Бц. пор.

		Температура, °С		 Растворимость 			
	ľ			в воде		в других	N
1	de la controri	плавления	кипения	при 20 °C	при 100 °C	раствори- телях при 20°C	n/0
		976		Р.	P.	Н. р. сп.	989
	2.45624	1015	•••		• • •	•••	990
	3,197	•••	•••	110,5 бв.	•••	Н. р. сп., ац.	991
) 3	1,84718	-3 H ₂ O, 100	****	₽.	~ ••••	Н. р. сп.	992
	2,51		•••	Ρ.	P.	•••	993
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•••	460—470	•••	Р.	Р.	• • •	994
À:		разл.		27,5	Pear.	•••	995
32 2000	•••	200 разл.	• • • •	H. p.	H. p.	·	996
			4	Сл. р.	P.	Н. р. сп.	997
Ŷ.	3,113	•••		P.	Р.	Н. р. сп.	998
	-:·•	Разл.		Р.	P.	Н. р. сп.	999
				4			
	2,61	2210		H. p.	Н. р.	• • •	
	5,05725	783	1462	Р.		и	7 2 2 3
4	•••	37,5	$-7H_2O$, 100	184,00	Р.	Н. р. сп.	1002
	5,02			Pear.	Pear.		1003
	2,6	$-7H_2O, 100$	-8H ₂ O, 200	H p.	• • •		100
	3,84225	872	1750	92,80	17092	Р. сп.,	
		.i				пир.; н. р. эф., ац.,	•
						бзл.	
	•••	••• •••	. 4 • • • • • • • • • • • • • • • • • • •	0,0225 бв	• • • •	• • •	1000
	• • • ***	1493	6.0	Н. р.	Н. р.	•	100
	5.83	Разл.	* • • ·	Pea r.	Pear.		
	5,05725	761	1405	Р.	•••	Р. сп., пир	100
			100	1,725		unp.	101
	4.7716	1101	•••	Сл. р.			101
	4,7716	1181	• • • •	Реаг.	Pear.		
*	•••	40	Разл. 126	151,125	Ρ.		101
	6,51 ¹⁵	2320	4200	0,000425	Реаг.	ац. Р. мет.	101
, CAN	0,01	2020	1200	0,000		сп.; н. р.	
		Разл.		Н. р.	•••	ац.	101
	4:01111	2100—2150		Pear.	Pear.		101
-		Разл. 1150		2,14225		Сл. р.	
	0,00-	1 agn. 1100		,		сп.; н. р	
						эф.	

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма. показатель преломления
1018	$La_2(SO_4)_3 \cdot 9H_2O$	Сульфат лантана, нонагидрат	728,14	Бц., гекс., 1,564
1019 1020	$\begin{array}{c} \text{La}_2\text{Se}_3\\ \text{La}_2(\text{SeO}_4)_3\cdot \ 5\text{H}_2\text{O} \end{array}$	Селенид лантана Селенат лантана,	514,70 796,77	Кирпично-кр, пор. Бц. иг.
1021	$La_2(WO_4)_3$	пентагидрат Вольфрамат	973,36	Тетраг.
1022	$LiAlO_2$	лантана Метаалюминат	65,92	Бел. пор.
1023	Li ₃ AsO ₄	лития Ортоарсенат лития	159,74	Бел., ромб.
1024	LiBO ₂	Метаборат лития	49,74	Бел., трикл.
	$LiBO_2^2 \cdot 8H_2O$	Метаборат лития,	193,87	Бел. триг.
1026	$\text{Li}_2\text{B}_4\text{O}_7\cdot 5\text{H}_2\text{O}$	октагидрат Тетраборат лития,	259,19	Бел. крист.
1027	LiBr	пентагидрат Бромид лития	86,85	Бел. расплыв. крист., кб., 1,784
1028	Li_2C_2	Карбид лит ия	37,97	Бц. крист.
1029	LiCNS	Роданид лития	см. № 1058	Liscn
1030	Li ₂ CO ₃	Карбонат лития	73,89	Бц., мн., 1,428; 1,567; 1,572
1031	LiCl	Хлорид лития	42,39	Бц. расплыв. крист., кб., 1,662
1032	$\rm LiCl\cdot H_2O$	Хлорид лития, гидрат	60,41	Бц., кб. или тетраг.
1033 1034	LiClO ₃ LiClO ₄	Хлорат лития Перхлорат лития	90,39 106,39	Бц., ромб. Бц. расплыв. крист.
1035	LiClO ₄ · 3H ₂ O	Перхлорат лития,	160,44	Бц., гекс.
1036	$\text{Li}_2\text{CrO}_4 \cdot 2\text{H}_2\text{O}$	тригидрат Хромат лития,	165,90	Оржелт. расплыв, крист., ромб.
1037	$\text{Li}_2\text{Gr}_2\text{O}_7 \cdot 2\text{H}_2\text{O}$	дигидрат Дихромат лития,	265,90	темно-кор. расплыв. крист.
1038	LiF	дигидрат Фторид лития	25,94	Бц., кб., 1,3915
1039	$\text{Li}_{2}\text{GeO}_{3}$	Метагерманат	134,47	Мн., 1,7
	LiH	лития Гидрид лития	7,95	Бел. или сер., кб.
	LiH ₂ PO ₄ LiHSO ₄	Дигидроорто- фосфат лития Гидросульфат лития	103,93	Бц. крист. Бц. крист.

T	<u> </u>	Температ	ypa, °C	Растворимость				
1				в в	оде	в других	№	
	Плотность	плавления	кипения	при 20 °C	при 100 °C	раствори- теляж при 20 °C	n/n	
<u>.</u> !-	2,821	Разл.	•••	Сл. р.	Сл. р.	Сл. р. сп.	1018	
	6,19	_5H ₂ O,	•••	Н. р. 50° бв.	Н. р. 2 бв.	•••	1019 1020	
	•••	180—200	•••	0,14	0,0194	•••.	1021	
ン - -	2,55425	1625	• • •	Н. р.		•••	1022	
*	3,0715	• • •	•••	P.	Р.	Н. р. пир.	1023	
	 1,38 ^{14,7}	840—845 47	•••	0,9° P.	16 ⁴⁵ P.	•••	1024 1025	
		-2H ₂ O, 200	•••	P.	•••	Н. р. сп.	1026	
	3,46425	552	1265	15516	254 ⁹⁰	Р. сп.,	1027	
	1,6518.	Разл.	•••	Pear.	Pear.	ац., эф. Реаг. ктами	1028 1029	
	2,11	735	Разл.	1,33	0,72	Н. р. сп.,	1030	
	2,06825	613	1360	83,2	128,3	ац., NH ₃ Р. сп. (3,80), мет. сп.	1031	
	1,78	$-H_2O, > 98$	•••	183	Р.	(43,8)	1033	
	 2,43	129 236	Разл. 270 Разл. ~ 400	430 51,2	1900 244 ⁹⁷	Р. сп., мет. сп.	1033 1034	
	1,841	95	-3H ₂ O,150	-P.	P.	Р. сп., мет. сп.	103	
	•••	-2H ₂ O, 150	•••	14118	• • •	mer. cir.	103	
	•••	-2H ₂ O, 130	Разл.	1240	188	***	103	
ź	2,295 ^{21,5}	870	1670	0,2718	0,13535	Н. р. ац., сп.	103	
	3,5321	1239	•••	0,8525	•••	ац., сп.	103	
	0,76—0,8 2,461	~680 >100	∼850 разл.	Реаг. 1260	Pear.	Сл. р. эф.	104 104	
	2,12313	120	•••	Р.	• • •	•••	104	

1		1]	1	
№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатёль преломления	
1043 1044	Li ₂ HIO ₃ LiI	Метагафнат лития Иодид лития	240,37 ~ 133,84	Бел. крист. Бц. расплыв. крист., кб., 1,955	
1045 1046	LiIO ₃ LiMnO ₄ · 3H ₂ O	Иодат лития Перманганат	181,84 179,92	Бц., гекс. Фиол., кб.	
1047 1048	Li ₂ MoO ₄ Li ₃ N	лития, тригидрат Молибдат лития Нитрид лития	173,82 34,82	Гекс. или триг. Кркор., ам. или серо-черн., кб.	
1049 1050	LiNH ₂ LiNO ₂ · H ₂ O	Амид лития Нитрит лития, гидрат	22,96 70,96	Бц., кб. Бц. иг.	
1051	LiNO ₃	Нитрат лития	68,94	Бц. расплыв. крист., триг. 1,735; 1,435	
1052	Li ₃ O	Оксид лития	29,88	Бц., кб. 1,644	
	LiOH	Гидроксид лития	23,94	Бел., тетраг.	
	LIOH · H ₂ O	Гидроксид лития, гидрат	41,96	Бел., мн.	
1055 1056	Li ₃ PO ₄ Li ₃ PO ₄ · 12H ₂ O	Ортофосфат лития Ортофосфат лития, додекагидрат		Бел., ромб. Бел., триг.	
1057 1058	Li ₂ S LiSCN	Сульфид лития Тиоцианат лития	45,94 65,02	• • • • • • • • • • • • • • • • • • •	
1059	LI ₂ SO ₄	Сульфат лития	109,94	крист. Бц., а мн., в гекс., у кб., 1,465	
1060	Li ₂ SO ₄ · H ₂ O	Сульфат лития, гидрат	127,95		
1061	$\text{Li}_2\text{S}_2\text{O}_6 \cdot 2\text{H}_2\text{O}$	Дитионат лития, дигидрат		Ромб., 1,5602	
1002	LiSO ₈ F	Фторсульфонат лития	106,00	Бел. пор.	
. 1063	Li ₃ Sb	Стибид лития	142,57	α гекс., β кб.	
1064	Li ₆ Si ₂	Силицид лития	97,81	Син. расплыв. крист.	
	Li ₂ SiO ₃	Метасиликат лития	89,96	Бц., ромб., α 1,584; γ 1,604	
	Li ₄ SiO ₄	Ортосиликат лития	119,84	Бц., ромб., а 1,594; у 1,614	
1067	Li ₂ WO ₄	Вольфрамат лития	261,72	Бц., триг.	
16.4.5	Li ₂ ZrO ₈	Метацирконат лития	. 153,10	Бц. крист.	
1069	LuCl ₃	Хлорид лютеция	281,33	Бц., мн.	
	Lul	Иодид лютеция	555,68	Кор. крист.	
1071	Lu ₂ O ₃	Оксид лютеция	397,94	Бц. крист.	
					_

40 I	· •	Темпера	тура, °С	P	астворимост	ГЬ	
	Плотность			вв	оде	в других	N ₂
		плавления	кипения	при 20° С	при 100 °C	раствори- телях при 20°C	11/11
	4,453 4,061 ²⁵	>1500 453	1170	Pear. 162 ²⁵	Pear. 43788	 Р. NH ₃ , сп.	1043 1044
	2,06	Разл. 190	•••	125 ¹⁶ 71,43 ¹⁶	•••	•••	1045 1046
	•••	705 845	•••	Pear.	 Pear.	•••	1047 1048
	1,178 ^{18,5} 1,615°	390 <100	430 Разл.	Реаг. 98,5 ¹⁸ бв.	Реаг. 323 бв.	 Р. абс. сп.	1049 1050
•	2,38	261	Разл. > 600	72,8	19475	Р. сп., NH ₃ , ац.	1051
	2,013 ²⁵ 1,43 1,83	> 1700 471 —H ₂ O,	2600 ~925 разл. Разл.	$\substack{6.670\\12,4^{25}\\22,3^{10}}$	10,02 15,481 26,880	Сл. р. сп. Сл. р. сп.	
	2,537 ^{17,5} 1,645	>600 837 100	•••	0,030 Сл. р.	Сл. р. Сл р.	Н. р. ац.	1055 105 6
	1,66	* * * * * * * * * * * * * * * * * * *	•••	P. 114	P.	Р. мети-	
	2,221	860	• • •	33,7	31 4	лацетате Н. р.	1059
•	2,06	—H ₂ O, 130	•••	41,5	38	ац., сн. Н. р. сп.	
	2,158	Разл.	. ••• * * * * * * * * * * * * * * * * *	Ρ.	•••	•••	1061
-	•••	360	••• : 10 :-) P:	Р.	Р. сп., эф., ац., амил. сп.	1062
	3,217	> 950 Разл. >500	•••	Pear.	Pear.	н. р.	1063 1064
e e	2,5225	1201	• • •	Н. р.	Pear.	NH ₃	1065
	2,28	1256	*•*• ** · · · ·	Н. р.	Pear.	•••	1066
	4,123	500	•••	P. H. p.	P. Pear.	Н. р. сп.	1067 1068
	3,98 9,4	890—895 1045	1480 1210	P. P.	P. P.		1069 1070 1071

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1072	Lu ₂ (SO ₄) ₃ · 8H ₂ O	Сульфат лютеция, октагидрат	782,25	Бц. крист.
1073	$Mg(AlO_2)_2$	Метаалюминат	142,27	Бц., кб., 1,723
1074	$Mg(BO_2)_2 \cdot 8H_2O$	магния Метаборат магния,	254,05	Би., тетраг., 1,565; 1,575
	$Mg_3(BO_3)_2$ $MgBr_2$	октагидрат Ортоборат магния Бромид магния	190,55 184,13	Бц., ромб. Бц. расплыв. крист., триг.
1077	$MgBr_2 \cdot 6H_2O$	Бромид магния, гексагидрат	2 92,22	Бц., гекс. или мн.
1078	$Mg(BrO_3)_2 \cdot 6H_2O$	Бромат магния,	388,22	Бц., кб., 1,514
1079	MgCO ₃	гексагидрат Карбонат магния	84,32	Бел., триг., 1,515; 1,717
1080	$MgCO_3 \cdot 3H_2O$	Карбонат магния, тригидрат	138,37	Бел. ромб. иг., 1,495; 1,501; 1,526
1081	${\rm MgCO_3\cdot 5H_2O}$	Карбонат магния,	174,40	
1082	MgCl ₂	пентагидрат Хлорид магния	95,22	Бц., гекс.
1083	$MgCl_2 \cdot 6H_2O$	Хлорид магния, гексагидрат	203,31	Бц. расплыв. крист., мн., 1,495; 1,507; 1,528
1084	$Mg(ClO_3)_2 \cdot 6H_2O$	Хлорат магния, гексагидрат	299,30	Бц. расплыв. крист.
1085	Mg(ClO ₄) ₂	Перхлорат магния	223,21	Бел. расплыв. пор.
1086	$Mg(ClO_4)_2 \cdot 6H_2O$	Перхлорат магния, гексагидрат	331,30	Бел., ромб. или гекс.
1087	$MgCrO_4 \cdot 7H_2O$	Хромат магния, гептагидрат	266,41	Желт., ромб., 1,521; 1,550; 1,568
1088	MgF ₂	Фторид магния .	62,31	Бц., тетраг., 1,378; 1,390
1089	MgHAsO ₄ · 7H ₂ O	Гидроортоарсенат магния,	290,33	
1090	Mg(HCO ₃) ₂ · 2H ₂ C	гептагидрат) Гидрокарбона т магния, дигидрат	*	Бц., ромб.

	Температура, °C Растворимость						
	Плотность			ВІ	воде	в других	N₂
	илогность	плавления	кипения	при 20 °C	при 100 °C	раствори- телях при 20 °C	п/п
:	3,333	•••	• • •	66	2240	•••	1072
	3,6	2135	•••	•••	•••	•••	1073
	2,30	•••	•••	Н. р.	Сл. р.	•••	1074
-	2,99 ²¹ 3,72	~700	•••	P. 101	P. 125,4	Р. сп. (6,9°), мет. сп.	1075 1076
	•••	165 разл.	•••	390	P.	мет сп. (21,8) Р. сп., ац.; сл. р. NH ₃	1077
	2,29	—6H ₂ O, 200	Разл.	4212	Р.	н. р. сп.	1078
	3,037	Разл. >350	•••	Сл. р.	•••	Н. р. Сн _а соон,	1079
•	1,850	165	•••	0,12925	Pear.	NH ₃	1080
	1,69-1,73	•••	•••	Сл. р.	•••	•••	1081
	2,316	714	1412	54,6	73,4	P. cn.	1082
	1,56	-4H ₂ O, 120	-6H ₂ O, 150	306	P.	(50) Р. сп.	1083
	1,8025	35	Разл. 120	130 ¹⁸ бв.	28193 бв.	Р. сп.	1084
	2,6025	251 разл.	•••	49,9025	•••	Р. сп., мет. сп.,	1085
	1,97025	147	Разл. > 250	Р.	Ρ.	ац.	1086
	1,695	•••	•••	72,518	~ P.	• • • •	1087
	2,9 —3,2	1396	2239	0,007618	Н. р.	Н. р. сп.	1088
	3,15515	-5H ₂ O, 100	•••	Pear.	Pear.	•••	1089
	• • •	•••	•••	190	34,2	Н. р. сп., эф.	1090
	4-					сп., эф.	_

№ n/n	Формула	Название	Молеку- лярная масса	Цвет, кристалли- ческая форма, показатель преломления
1091	Mg(H ₂ PO ₂) ₂ · 6H ₂ O	магния,	262,39	Бел. крист.
1092	MgHPO ₄ · 3H ₂ O	гексагидрат Гидроорто- фосфат магния,	174,33	Бел., ромб., 1,514; 1,518; 1,553
1093	MgHPO ₄ · 7H ₂ O	тригидрат Гидроортофосфат магния,	246,39	Бел., мн.
1094	MgI ₂	гептагидрат Иодид магния	278,12	Бел. расплыв. лист.
1095	$Mg(IO_3)_2 \cdot 4H_2O$	Иодат магния, тетрагидрат	-	Бц., мн.
1096	$Mg(MnO_4)_2 \cdot 6H_2O$	Перманганат магния, гексагидрат	370,27	Темно-пурп. расплыв. иг.
1097 1098	Mg_3N_2 $Mg(NO_3)_2 \cdot 2H_2O$	Нитрид магния Нитрат магния, дигидрат	100,94 184,35	Желтовз., кб. Бц. пр.
€⊴ 108 9	$Mg(NO_3)_2 \cdot 6H_2O$	Нитрат магния, гексагидрат	•	Бц., мн.
	MgO Mg(OH) ₂	Оксид магния Гидроксид магния	58,32	Бел., кб., 1,736 Бн., триг., 1,599; 1,580
1102	$\begin{array}{c} \text{MgCO}_3 \cdot \text{Mg(OH)}_2 \cdot \\ \cdot 3\text{H}_2\text{O} \end{array}$	Гидроксид- карбонат магния, тригидрат	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Бел., ромб., 1,489; 1,534; 1,557
110	$3 \text{ MgCO}_3 \cdot \text{Mg(OH)}_2 \cdot 3 \text{H}_2 \text{O}$	Гидроксид- карбонат магния,	365,33	Бел., ромб. 1,527; 1,530; 1,540
:110	$4 Mg_3(PO_4)_2 \cdot 8H_2O$	тригидрат Ортофосфат магния, октагид- рат	•	Бел., мн., 1,510; 1,520; 1,543
110	$5 Mg_2P_2O_7$	Дифосфат магния		Бел., мн., 1,602; 1,604; 1,615
110	6 Mg2P2O7 · 3H2O	Дифосфат магния, тригидрат		Бел., ам.
110 110	7 MgS 8 MgSO ₃ · 6H ₂ O	Сульфид магния Сульфит магния, гексагидрат		Бел., кб. Бел. крист.
€;1,10	9 MgSO ₄	Сульфат магния	120,37	Бц., ромб.
111	0 MgSO ₄ • 7H ₂ O	Сульфат магния, гептагидрат	246,48	Бц., ромб. или мн., 1,433; 1,455; 1,461

		Темпер	атура, °С	Растворимость			
	Плотность			ВВ	оде	в других	Ne
	,	плавления	кипения	при 20 °С	при 100 °С	раствори-	n/n
٠,	•••	•••	•••	20	•••	Н. р. сп., эф.	1091
	2,10	•••	•••	Сл. р.			1092
,	• • •	-4H ₂ O, 100	•••	0,3	0,2	Н. р. сп.	1093
	4,244	700 разл.	•••	120,80	185,780	Р. сп., эф., NH ₃ ,	1094
	3,313,5	-4H ₂ O, 210	Разл.	10,2	19,3	мет. сп.	1095
	2,18	Разл.	•••	P. (1)	Pear.	Р. Сн.соон,	
	2,71 2,0256 ²⁵	Разл. 1500 129,0—129,5	•••	Реаг. 67,8 ¹⁵ бв.	Pear. 250 ав.	мет. сп.	1097 1098
	1,464	95	• • •	23215	Ρ.	P. cn., NH ₃	1099
÷	3,58 2, 35—2,46	2800 Разл. вак. 200	3600	0,00062° 0,00064225	0,0086 ³⁰ 0,004	Н. р. сп.	1100 1101
	2,02		•••	Сл. р.	Сл. р.) • • • • • • • • • • • • • • • • • • •	1102
	2,16	Разл.	•••	0,04	0,011	* *** * 1 **** ***	1103
	2,41		•••	0,023	•••) ,, A	1104
	2,559	1383	•••	Н. р.	Н. р.	Н. р. сп.	1105
	2,56	Разл. 150	•••	Н. р.	Сл. р.	Н. р. сп.	1106
	2,86 1,725	> 2000 разл. —6H ₂ O, 200	Разл.	Сл. реаг. 0,52 ¹⁵ бв.	Реаг. 0,62 бв.	Н. р. сп	1 107 1 108
	2,66	1127 разл.	•••	33,7	50	NH ₃ Р. сп., глиц., эф.;	1109
	1,636	—6H ₂ O, 150	—7H ₂ O, 200	107	215	н. р. ац. Р. сп., глиц.	1110

№ n/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1111	$MgS_2O_3 \cdot 6H_2O$	Тиосульфат магния, гексагидрат	244,52	Бц. пр.
	Mg₂Sì MgSiO₃ .	Силицид магния Метасиликат магния	76,71 100,39	Син., кб. Бел., мн.
. 1114	$Mg_8Si_4O_{11} \cdot H_2O$	Тетрасиликат магния, гидрат	379,28	Бел., мн. или ромб., 1,589
1116 1117	Mn ₂ As MnAs MnB ₂ MnBr ₂	Арсенид марганца Арсенид марганца Борид марганца Бромид	184,80 129,86 76,56 214,76	Тетраг. Черн., ромб. Серо-фиол. крист. Свроз., триг.
1119	MnBr ₂ · 4H ₂ O	марганца (II) Бромид марганца (II), тетрагидрат	286,82	α свроз., мн _• , β бц., ромб.
	Mn ₃ C MnCO ₃	Карбид марганца Карбонат марганца (II)	176,82 114,95	Тетраг. Кор. ам. пор. или роз., ромб., 1,597; 1,817
1122	MnCl ₂	Хлорид марганца (II)	125,84	Роз. расплыв. крист., кб.
1123	$MnCl_2 \cdot 4H_2O$	Хлорид марганца (II),	197,90	Роз. росплыв. крист., мн.
1124	MnCl ₃	тетрагидрат Хлорид марганца (III)	161,30	бур., триг.
1125	5 MnF ₂	Фторид марганца (II)		Кр., тетраг.
1126	6 MnF ₃	Фторид марганца (III)		Кр. крист.
1127	$7 \text{ Mn(H}_2\text{PO}_2), \cdot \text{H}_2\text{O}$	Гипофосфит марганца (II), гидрат	202,93	Роз. крист.
112	8 MnHPO ₃ · H ₂ O	Ортофосфит марганца (II),	152,93	Свкр. крист.
112	9 MnI ₂	гидрат Иодид	308,75	Желтовкор. крист. масса
113	$0 Mn(NO_3)_2 \cdot 6H_2O$	марганца (II) Нитрат марганца (II),	287,04	
113	1 MnO	гексагидрат Оксид	70,94	3., кб., 2,16
113	2 Mn ₃ O ₄	марганца (II) Оксид марганца (II, III	228,81	Черн., тетраг. или ромб., 2,15; 2,46

		Темпера	тура, °С	Растворимость			
l	Плотность			ВВ	оде	в других	N₂
	TIMOTHOCIB	плавления	кипения	при 20° С	при 100 °C	раствори-	п/п
	1,81824	—3H ₂ O, 170	Разл.	. P.	P.	Р. сп.	111
	1,94	1100	*		_		
	3,28	1102 Разл. 1557	• • •	Н. р.	Pear.	•••	1111
	2,6-2,8			TT -			
	2,02,0	•••	•••	Н. р.	Н, р.	•••	1114
	6.17	1400	• • •	Н. р.	Н. р.	•••	111
	6,17 6,9	Разл. 400	•••	Н. р.	Н. р.	• • •	1110
	4,38525	Разл.	•••	Pear.	Pear.		1117
	4,000		•••	127,30	228	Н. р. NН ₃	1118
	•••	64,3 разл.	Разл.	296,70	P.	3	1119
	6,8917	1520		D	ъ		
	3,125	Разл.	•••	Pear. 0,00010818	Pear.	11 -	1120
	0,120			0,000100	•••	Н. р. NH ₃ , сп.	112
	2,97725	650	1231	74	115	Р. сп.;	1129
					1.0	н. р. эф.,	
	2,01	58	411.0 100	000	=00	NH ₃	
	2,01		$-4H_2O$, 198	203	532	Р. сп.; н. р. эф.	1123
		D					
	• • •	Разл.	• • •	• • •	•••	P. абс. сп.	1124
	3,98	856	•••	1,06	Pear.	Н. р.	1125
	3,54	Разл.	•••	Pear.	Pear.	сп., эф.	1126
	•••	-H ₂ O, 150	•••	12,5	16,7	Н. р. сп.	i 127
						. •	
	• • •	H ₂ O, 200	:··	Сл. р.	• • • •	•••	1128
	5,01	Разл. 80	• • •	P.	•••	•••	1129
	1,82	25,8	190.4		•	_	
	1,02	20,0	129,4	426,40	Р.	Р. сп.	1130
	5,43—5,46	1785	•••	Н. р.	Н. р.	•••	1131
	4,856	1705		Н. р.	Н, р.		1132
				11. p.	11. h.		1102

. № п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1133	Mn ₂ O ₃	Оксид марганца (III)	157,87	Черн., кб. или тетраг.
1134	MnO_2	Оксид (IV)	86,94	Черн. или кор., ромб. или гекс.
1135	Mπ ₂ O ₇	Оксид	221,87	Темно-кр. ж.
1136	Mn(OH) ₂	марганца (VII) Гидроксид	88,95	Свроз., триг., 1,681; 1,723
1137	MnO(OH)	марганца (II) Оксид-гидроксид	87,94	Буро-черн., мн.
1138 1139	$\begin{array}{l} Mn_{3}P_{2} \\ MnP \\ Mn_{3}(PO_{4})_{2} \cdot 3H_{2}O \end{array}$	марганца (111) Фосфид марганца Фосфид марганца Ортофосфат	226,76 85,91 408,80	Темно-сер. пор. Темно-сер., ромб. Роз. или
1140	MII3(PO4)2 · 01120	марганца (II), тригидрат		желтов. бел., ромб., 1,651; 1,656; 1,683
1141	$Mn_2P_2O_7$	Дифосфат марганца (II)	283,82	Розовато-кор., мн.
1142	MnS	Сульфид марганца (II)	87,00	3., кб., кр., кб. или гекс.
1143	MnS ₂	Сульфид	119,07	Черн., кб., 2,69
1144	MnSO ₄	марганца (IV) Сульфат	151,00	Свроз., гомб.
1145	MnSO ₄ · H ₂ O	марганца (II) Сульфат марганца (II), гидрат	169,02	Свроз., мн., 1,562; 1,595; 1,632
1146	MnSO ₄ · 7H ₂ O	Сульфат марганца (II), гептагидрат	277,10	Роз., ромб. или мн.
1147	Mn ₂ (SO ₄) ₃	Сульфат марганца (III)	398,06	3. расплыв. крист.
1148	MnS ₂ O ₆	Дитионат марганца (II)	215,06	Трикл.
1149	MnSi -	Силицид марганца	83,02	K6.
	MnSe	Селенид марганца	133,90	Сер., кб.
	MnSeO ₄ · 2H ₂ O	Селенат марганца (II), дигидрат	233,92	Ромб.
1152	MnSiO ₃	Метасиликат марганца (II)	131,02	Трикл., 1,733; 1,740; 1,744
1153	Mn ₂ SiO ₄	Ортосиликат марганца (II)	201,96	Pom6., 1,759; 1,786; 1,797
1154	MoB	Борид молибдена	106,75	Тетраг.
	MoBr,	Бромид	255,76	Желтовкр.
	MoBr ₃	молибдена (II) Бромид молибдена (III)	335,67	Темно-з. иг.

Температура, °С		P				
			ВВ	оде	в других	№
Плотность	плавления	кипения	при 20 °С	при 100 °C	раствори- телях при 20 °C	g/ a
4,50	Разл. 1080	• • •	Н. р.	Н. р.	•••	1133
5,026	Разл. 535		Н. р.	Н. р.	•••	1134
> 1,84	<-20	Взр. 70	P.	Pear.	• • • •	1135
3,25813	Разл.	* * • • •	0,000218	* * *	•••	1136
4,2—4,4	Разл.	•••	Н. р.	Н. р.	•••	1137
5,12 ¹⁸ 5,39 ²¹ 3,102	1096 1190		H. p. H. p.	H. p. H. p.	•••	1138 1139 1140
3,70725	1196		Н. р.	•••	• • • 4 (*)	1141
3,99	1615	* ; •••	0,0004718	•••	Р. сп.	1142
3,463	Разл.	• • •	Н. р.	Н. р.	•••	1143
3,25	700	Разл. 850	63	40,880	Р. сп.;	1144
2,95	***	•••	P.	P.	н. р. эф.	1145
2,09	-7H ₂ O, 280	•••	243	14490	Н. р. сп.	1146
•••	Разл. 160	igo o	Реаг.	Pear.	• • • .	1147
1,757	• • •	•	P.	Р.	•••	1148
5,90 ¹⁵ 5,59 ¹⁵ 2,95—3,01	1280	•••	H. p. H. p. P.	H. p. H. p. 72 ⁶⁰		1149 1150 1151
3,7225	1323	•••	Н. р.	Н. р.	•	1152
4,04325	1300		• • •	•••	•••	1153
8,65 4,88 ^{17,5}	2180	•••	Н. р.	н. р.	•••	115 4 1155
•••	Разл.	.` . •••	Н. р.	Н. р.	•••	1156

№ #/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1157	MoBr ₄	Бромид молибдена (IV)	415,58	Черн. иг.
1158	MoC	Карбид молибдена	107,95	Черн., гекс.
	Mo ₂ C	Карбид молибдена	203,89	Черн., гекс,
1160	MoCl ₂	Хлорид молибдена (II)	166,85	Желт., ам.
1161	MoCl ₃	Хлорид молибдена (III)	202,30	Темно-кр. иг.
1162	MoCl ₄	хлорид молибдена (IV)	237,75	Кркор., гигр.
	MoCl ₅	Хлорид молибдена (V)	273,20	Зеленовчерн. расплыв. крист.
1164	MoF ₆ Mo ₂ O ₃	Фторид молибдена (VI)	209,93 239,88	Бц. крист. Черн. пор.
	MoO ₂	Оксид молибдена (III) Оксид	127,94	Сине-сер., тетраг.
1167	Mo ₂ O ₅	молибдена (IV) Оксид	271,88	или мн. Фиолчерн. пор.
1168	MoO_3	молибдена (V) Оксид	143,94	Свжелт., ромб. или бц., кб.
1169	Mo(OH) ₈	молибдена (VI) Гидроксид молибдена (III)	146,96	Черн. пор.
1170	MoS ₂	Сульфид молибдена	160,07	Черн. гекс.
1171	Mo ₂ S ₃	Сульфид молибдена	288,07	Сер. иг.
	MoS ₄	Сульфид молибдена	192,13 224,20	Кр. или темно-кор. Кор. пор.
	•	Сульфид молибдена	* '	_
	Mo ₂ S ₅	Сульфид молибдена	352,20	Темно-кор. ам. пор.
	MoSi ₂	Силицид молибдена	152,11	Сер., тетраг.
1176	N ₂ C ₂	Дициан	52,03	Бц. г.
Ц77	NCl ₃	Трихлорид азота	120,37	Желт. маслянистая ж.
1178		Хлоразид	77,47	Бц. г. или ор. ж.
1179		Дифторид азота	52,01	Γ.
1180 1181	NF ₃ N ₂ F ₂	Трифторид азота Фторид азота	71,00 66,01	Бц. г. Бц. г.

		Темпер	оатура, °C	Растворимость			Ť
	Плотность			В	воде	в других	₩
1	мистность	плавления	кипения	при 20 °С	при 100 °С	раствори-	n/a
1	• • • • • • • • • • • • • • • • • • • •	Разл.	•••	Р,	• • •		1157
	8,78 9,18 8,714 ²⁵	2692 2680 Разл.	•••	H. p. H. p. H. p.	H. р. H. р.	 Р. эф., сп.; н. р.	1158 1159 1160
	3,57825	Разл.	•••	Н. р.	Сл. pear.	тол. Сл. р.	1161
	•••	Разл.	•••	Pear.	Pear.	сп., эф.	1162
	2,92825	194	268	Pear.	Pear.	P. CCl ₄ ,	1163
Y.	Ж. 2,55	17	36	Pear.	Pear.	хлф.	1164
	•••	•••	•••	Н. р.	Н. р.	:•••,	1165
	6,47	•••	•••	Н. р.	Н. р.	•••	1166
	•••		•••	•••	• • •		1167
	4,7	795	1155	0,138	2,10780		1168
	•••	Разл.	•••	•••	•••		1169
	4,8014	1185	•••	Н. р.	Н. р.	• • •	1170
	5,9115	Разл. 1100	. •••	•••	. •••	,• •,•	1171
	. • • •	Разл.	. •••	Сл. р.	P.	•••	1172
	•••	Разл.	•••	Н. р.	Н. р.	• • •	1173
	•••	• • •	•••	Н. р.	Н. р.	•••	1174
	5,88-6,2	2037	•••	•••	•••		1175
	2,335 г/дм ³	34,4	20,7	450 см ³		Р. сп. (230 см³), эф.	1176
	1,653	<-40	∼71; взр. 95	Pear.	Pear.	(500 см ³) Р хлф., бзл., ССІ ₄ , CS ₂ , эф.	1177
	•••	~ −100 ···	~ —15; взр. —125	Pear.	Pear.	ОЗ ₂ , эф. Р. эф.	1178 11 79
	•••	-216,6 ···	-129	Сл. р.	•••	• • •	1180 1181
-		· · · · · · · · · · · · · · · · · · ·					

							Темпера	тура, °С	P	астворимо	сть	
Ne		Название	Молеку- лярная	Цвет, кристалличе- ская форма,					ВВ	оде	p *DVruy	Ne.
n/n	Формула	Пазвание	масса	показатель преломления	_	Плотность	плавления	кипения	при 20 °С	при 100 %	в других раствори- телях при 20°C	12/01
1182 1183	N ₃ F NH ₃	Фторазид Аммиак		Зеленовжелт. г. Бц. г.		0,771 г/дм ⁸	—154 —77,75	—82, вэр. —33,35	Pear. 52,6	Pear. 18,4 ⁵⁶	Р. сп.,	1182 1183
1184	ND ₃	Дейтероаммиак	20,05	Бц. г.		•••	—74,0	-31,1	/ · ·	•••	эф. Р. сп.,	1184
1185	NH ₄ AsO ₂	Метаарсенит	124,96	Бц. ромб. пр.		•••	•••	•••	Ρ.	Pear.	эф. Н, р.	1185
1186	$(NH_4)_3AsO_4 \cdot 3H_2O$	аммония,	247,08	Бц., ромб.		. •••	Разл.	•••	P.	Pear.	сп., ац.	1186
1187	(NH ₄) ₃ AsS ₄	тригидрат Тиоортоарсенат	257,29	Ви. пр.		•••	Разл.	•••	9. •	•••	Сл. р. сп.	1187
1188	$\mathrm{NH_4BO_3} \cdot \mathrm{0.5H_2O}$	аммония Перборат аммония, гемигидрат	85,68	Бц. крист.		• • •	Разл.		1,55 ^{17,5}	Pear.	Н. р. сп.	1188
1189	$(NH_4)_2B_4O_7 \cdot 4H_2O$	Тетраборат аммония,	263,38	Би., тетраг.		•••	Разл.	. ਭ •••	7,2718	11190	- X - • • • ·	1189
1190	NH ₄ Br	тетрагидрат Бромид аммония	97,95	Бц., кб., 1,712 ²⁵		2,429	Boar. 394,4	•••,	59,50	134,7	Р. сп., ац.,	1190
1192	NH ₄ BrO ₃ NH ₄ CN NH ₄ CNO	Бромат аммония Цианид аммония Цианат аммония		Бц., гекс. Бц., тетраг. Бц. иг.		•••	Вар. Разл. 36 Разл. 60	• • • • · · · · · · · · · · · · · · · ·	P. P. P.	P. Pear. Pear:	эф., NH ₃ Сл. р. сп. Р. сп. Сл. р. сп.;	1192
1194	NH ₄ CNS	Роданид аммония	см. № 12	229 NH ₄ SCN			• *		and the second	-	н. р. эф.	1194
1195	(NH ₄) ₂ CO ₈	Карбонат аммония	96,09	Бц., кб.	9. 3	•••	Разл. 58	• • • • • • •	10015	Pear.	Н. р. сп.,	1195
1196	(NH ₄) ₂ CS ₃	Тиокарбонат аммония	144,28	Жел. расплыв. крист.			Возг.	•••	Р.	Pear.	CS ₂ , NH ₃ Сл. р.	1196
1197	NH₄CI	Хлорид аммония	53,49	Бц., кб., 1,642		1,527	Возг. 337,6	•••	29,40	78,6	сп., эф. Р. сп. (0.6 ¹⁹),	1197
1198 11 9 9	NH ₄ ClO ₃ NH ₄ ClO ₄	Хлорат аммония Перхлорат аммония	101,49 117,49	Бц. иг. Бц., ромб., 1,482		1, 95	Взр. 102 Разл.	•••	P. 120	p. 74,285	NH ₃ Сл. р. сп. Р. ац.;	
1200	(NH ₄) ₂ CrO ₄	Хромат аммония	152,07	Желт., мн.		1,9112	Разл. 180	•••	24,70	70,178	сл. р. сп. Сл. р. NH ₃ , ац.;	1200
1201	(NH ₄) ₂ Cr ₂ O ₇	Дихромат аммония	252,06	Ор., мн		2,1525	Разл.	• • • • • • • •	35,6	11580	•	1201
1202	(NH ₄) ₃ CrO ₈	Перхромат аммония	234,11	Кркор., кб.		••••	Разл. 40	Вэр. 50	Сл. р.	Pear.	н. р. ац. Сл. р. NH ₃ ; н. р.	1202
1203	NH ₄ F	Фторид аммония	37,04	Бц. расплыв. крист., гекс.		3,315	Boar.	◆◆♥IC LHE	74,110	11160	сп., эф. Р. сп.;	1203
1204	NH ₄ H ₂ AsO ₄	Дигидроорто- арсенат аммония	•	Бц., тетраг., 1,5766		2,319	Разл. 300	• • • • • • • • • • • • • • • • • • • •	33,740	122 ⁹ 9	н. р. NH ₃	1204
					_ =							

	*	1					Темпера	тура, °С	F	астворимос	ть	T
.			Молеку-	Цвет, кристалличе- ская форма,					ВВ	оде	в других	N ₂
JÆ D/B	Формула	Название	лярная масса	показатель преломления	-	Плотность	плавления	кипения	при 20 °C	при 100 °С	раствори-	п/п
1205	(NH ₄) ₂ HAsO ₄	Гидроортоарсенат аммония	176,00	Бц., мн.		1 989	Разл.	•••	33,940 pear.	122,4 pear,	•••	1205
12 06	NH ₄ HB ₄ O ₇ · 3H ₂ O	Гидротетраборат аммония,	228,33	Бц. крист.		2,6	Разл.	•••	10	Р.	Н. р. сп.	1206
12 07	NH ₄ HCO ₃	тригидрат Гидрокарбонат аммония	79,06	Бц., ромб. или мн., 1,423; 1,536; 1,555		1,58	Разл. 36—60	•••	11,90	Pear.	Н. р. сп., ац.	1207
1208	NH ₄ F HF	Гидродифторид аммония	57,04	Бц. расплыв. крист., ромб. или тетраг. 1,390		•••	Возг.	•••	39,760	592	Сл. р. сп.	1208
1209	$NH_4H_2PO_3$	Гидроортофосфит	99,03	Бц. мн. пр.		•••	123	Разл. 145	1710	26031	Н. р. сп.	1209
12 10	$NH_4H_2PO_2$	аммония Гипофосфит аммония	. 83,03	Бц. ромб. тб.		2,515	200	Разл. 240	80	P.	Р. сп., NH ₃ ;	1210
12 11	$NH_4H_2PO_4$	Дигидроорто-	115,03	Бц., тетраг.,	1	1,80319	190		22,60	173,2	н. р. ац. Н. р. ац.	1211
1212	$(NH_4)_2HPO_4$	фосфат аммония Гидроортофосфат	132,06	1,479; 1,525 Бц., мн., 1,53		1,619	Разл.	Разл.	43,90	106,070	Н. р.	1212
1213	NH ₄ HS	аммония Гидросульфид	51,11	Бц., тетраг.		•••	Bosr. 120	Разл.	128,10	Pear.	сп., ац. Р. сп.	1213
1214	NH ₄ HSO ₃	аммония Гидросульфит	99,11	Бц., гекс. или ромб.	<u> </u>	2,03	Разл.	•••	2550	55460	•••	1214
12 15	NH ₄ HSO ₄	аммония Гидросульфат	115,11	Бц., ромб., 1,473		1,78	146,9	490	100	Р.	Сл. р. сп.;	, 1215
12 16	NH ₄ HSeO ₄	аммония Гидроселенат	162,01	Бц., ромб.		2,162	Разл.	•••		• • •	н. р. ац.	1216
1217	NH ₄ I	аммония Иодид аммония	144,94	Бц. расплыв. крист., кб., 1,701 ²⁵		2,514	Возг. 404,7	•••	154,20	250,3	Р. сп., ац., NH ₃ ;	
12 18	NH ₄ IO ₃	Иодат аммония	192,94	Би., ромб.		3,309 ²¹ 3.056 ¹⁸	Разл. 150	•••	2,615	14,5	сл. р. эф.	1218
	NH4IO4 (NH4)2MnO4	Периодат аммония Перманганат	208,94 136,97	Бц., тетраг. Ромб.		2,208	Взр. 60	• • •	2,716 7,9 15	Pear.	•••	1219 1220
12 21		аммония Молибдат аммония	196,01	Бц. мн. пр.		2,27	Разл.	•••	Pear.	Pear.	H. р. сп., NH ₃ , SO ₂ ,	
1222	(NH ₄) ₆ Mo ₇ O ₂₄ · : 4H ₂ O	Парамолибдат аммония,	1235,86	Бц., мн.		2,498	Разл.	•••	4425	Pear.	ац. Н. р. сп.	1222
122 3	NH ₄ N ₃	тетрагидрат Азид аммония	60,06	Бц., ромб.		1,346	160	Возг., взр.	25,3	36,650	Р. сп. (1,06), NH ₃ ;	1223
1224	NH ₄ NO ₂	Нитрит аммония	64,04	Желтовбел. крист.		1,69	Разл.	•••	180,1 ^{19,5}	Pear.	н. р. эф.	1224

1	the second second		g e				. Темпера	тура, °С	P	астворимост	ГЬ	
76	1 - 1 - 1	Usos suus	Молеку-	Цвет, кристалличе- ская форма,		*			B.B	оде	в других	№
n/n	Формула	Название	лярная масса	показатель преломления		Плотность	плавления	кипения	при 20 °C	при 100°C	раствори-	п/п
1225	NH ₄ NO ₃	Нитрат аммония	80,04	Би., ромб.		1,72525	169,6	Разл. 210	122 0	60080	Р. сп. (3,8), мет.	
~				•	* 14 * .						сп. (17,1), ац., NH ₃)
1226	NH ₄ OH	Гидроксид	35,05	Только в р-ре	ŕ	• • •		•••	P.	• • •	•••	1226
1227	NH ₄ ReO ₄	аммония Перренат аммония	268,24	Тетраг.		3,63	Разл. > 200		6,234	32,3480	•••	1227
1228	$(NH_4)_2S$	Сульфид	68,14	Бц. или желтов.		•••	Разл.		Ρ.	Pear.	P. NH ₃ ,	1228
1229	NH ₄ SCN	аммония Тиоцианат аммония	76,12	расплыв. крист. Бц. расплыв. крист., мн.,		1,305	149,6	Разл. 170	1200	431 70	сп. Р. сп., ац., NH ₃	1229
1230	$(NH_4)_2SO_3 \cdot H_2O$	Сульфит аммония.	134 16	1,5016 Бц., мн.		1 4195	D . 150	n	20.40	152 6-	•	4
		гидрат				1,4125	Возг. 150	Разл.	32,40		Сл. р. сп. н. р. ац.	
1231	(NH ₄) ₂ SO ₄	Сульфат аммония		Бц., ромб., 1,521		1,769	Разл. > 350	•••	70,10	102	H. р. сп., NH ₃ , ац.	1231
1232	$(NH_4)_2S_2O_3$	Тиосульфат аммония	148,20	Бц., мн.		• • •	Разл. 150	•••	Р.	103,3	Сл. р. ац.	; 1232
1233	(NH ₄) ₂ S ₂ O ₆ · 0,5H ₂ O	Дитионат аммония, гемигидрат	206,21	Бц., мн.		1,704	Разл. 130	•••	178,519	Ρ.	н. р. сп. Н. р. сп.	1233
1234	$(NH_4)_2S_2O_8$	Персульфат аммония	228,20	Бц., мн., 1,498; 1,502; 1,587		1,982	Разл. 120	• • •	58,20	Р.	•••	1234
1235	NH ₄ SO ₃ F	Фторсульфат аммония	117,10	Бц. иг.		•••	245	•••	Ρ.	Р.	Р. мет. сп.; сл.	1235
1026	AUCLO OUO		002.00	E.,			. 2.		••		р. сп.	1000
1230	NH ₄ SbO ₃ · 2H ₂ O	Метастибиат аммо- ния, дигидрат		Бц. крист.		•••	Разл.	•••	Н. р.	•••	•••	1236
	(NH ₄) ₃ SbS ₄ • 4H ₂ O	Тиоортостибиат аммония,	376,18	Желт. пр.	4.0000 Villa	•••	Разл.	•••	71,20 бв.	Pear.	Н. р. сп.	1237
1238	(NH ₄) ₂ SeO ₄	тетрагидрат Селенат аммония	179,03	Бц., мн., 1,561		2,194	Разл.	•••	117	197	Н. р. сп., ац., NH ₃	
1239 1240	$(NH_4)_2$ TeO ₄ NH_4 VO ₃	Теллурат аммония Метаванадат		Бел. пор. Бц. или жел-	*	3,01 ²⁵ 2,326	Разл. Разл.	•••	P. 4,8 ²⁰	P. 17,8 ⁵⁰	H. р. сп. H. р.	1239 1240
1241	$(NH_4)_2W_2O_{13} \cdot 8H_2O$	аммония Метавольфрамат аммония,	1123,59	товбел., ромб. Бц. крист.	*	•••,	-7H ₂ O, 100	•••	12015	Ρ.	эф., сп. 	1241
1242	(NH ₄) ₆ W ₇ O ₂₄ · · 6H ₂ O	октагидрат Паравольфрамат аммония,	1887,26	Бц., ромб.		•••	-4H ₂ O, 100	•••	2,815	• • •	Н. р. сп.	1242
1243 1244	$ \begin{array}{c} N_2H_4\\N_2H_4\\\cdot \end{array} $ HCl	гексагидрат Гидразин Хлорид		Бц., ж. или мн. Бц. иг.		1,01215	2 92,6	113,6	∞ P.	∞ P.	Р. сп. Сл. р. сп	
1245	N ₂ H ₄ · 2HCl	гидразиния Дихлорид	104,97	Би., кб.		1,42	198	•••	270,423	Р.	Сл. р. сп.	1245
1246	$N_2H_4 \cdot HN_3$	гидразиния Азид гидразиния	75,07	Бц. расплыв. крист.		<u> </u>	75,4	•••	Р.	P.	Р. сп.	1246

1250 № № 0,5 № 2 № 0 № 0 № 0 № 0 № 0 № 0 № 0 № 0 № 0	X 4	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1248 N2H4 · 2HNO3 Динитрат гидразиния 158,07 Бц. иг. 1249 N2H4 · H2O Гидрат гидразиния 50,06 Бц., ж. или п 1250 N2H4 · O,5H2SO4 Сульфат гидразиния 81,08 Бц. расплыв. 1251 N2H4 · H2SO4 Сульфат гидразиния 130,12 Бц., ромб. 1252 NH2CI Хлорамин гидроксиламин 51,48 Бц., ж. или 1253 NH2OH · HCI Хлорид гидроксиламин 64,49 Бц., ж. или 1255 NH2OH · HNO3 Нитрат гидроксиламиния 69,49 Бц. крист. 1256 NH2OH · H3PO4 Ортофосфат гидроксиламиния 197,08 Бел. пор. 1258 NI3 Моноамминакат иодида азота Оксид азота (П) 394,72 Черн. тв. 1260 N2O Оксид азота (П) 44,01 Бц., г. или ж бел. крист. 1261 NO [или (NO)2] Оксид азота (П) 30,01 Бц., г. или ж бел. крист. 1263 N2O5 Оксид азота (П) 76,01 Крбур. г., и сен. ж., ил бел. крист. 1265 NOBr Бромид нитрозила 109,92 Бур. г. или ж бел. ж., и бе	247	N ₂ H ₄ · HNO ₃		95,06	Бц. иг.
1249 N2H4 · H2O Гидрат гидразина 50,06 Бц., ж. или п 1250 N2H4 · O,5H2SO4 Сульфат гидразиния 81,08 Бц. расплыв. гидразиния 1251 N2H4 · H2SO4 Сульфат гидразиния 130,12 Бц., ромб. гидразиния 1252 NH2CI Хлорамин гидроксиламин 51,48 Бц., ж. или 1253 NH2OH · HCI Хлорид гидроксиламин 64,49 Бц., ж. или 1254 NH2OH · HNO3 Нитрат гидроксиламиния 69,49 Бц., крист. 1255 NH2OH · HNO3 Нитрат гидроксиламиния 82,07 Бц., мн. 1256 NH2OH · H3PO4 Ортофосфат гидроксиламиния 197,08 Бел. пор. 1257 3NH2OH · H3PO4 Ортофосфат гидроксиламиния 197,08 Бел. пор. 1258 NI3 Иодида азота 197,08 Бел. пор. 1259 NH3 · NI3 Моноамминакат иодида азота 411,75 Ромб. 1260 N2O Оксид азота (II) 30,01 Бц., г. или желт. к., илен. желт. ж., илен. жел	248	$N_2H_4 \cdot 2HNO_3$	Динитрат	158,07	Бц. иг.
1251 N ₂ H ₄ · H ₂ SO ₄ Сульфат гидразиния гидразиния гидразиния 51,48 Бп. 33,03 Бп., ж. или 1253 NH ₂ OH Гидроксиламин 33,03 Бп., ж. или 1254 NH ₂ OH · HCl Хлорид гидроксиламин 1255 NH ₂ OH · HNO ₃ Нитрат гидроксиламин 1256 NH ₂ OH · O,5H ₂ SO ₄ Сульфат гидроксиламиния 1257 3NH ₂ OH · H ₃ PO ₄ Ортофосфат гидроксиламиния 1258 NI ₃ Иодид азота ксиламиния 1259 NH ₃ · NI ₃ Иодид азота иодида азота иодида азота иодида азота иодида азота (11) 1260 N ₂ O Оксид азота (11) Оксид азота (1264 NO ₂ [или (NO ₂) ₂ Оксид азота (17) Оксид азота (18) Оксид азота (18) Оксид азота (19) Оксид	249	$N_2H_4 \cdot H_2O$		50,06	Бц., ж. или кб.
130,12 Бц., ромб. 130,12 Бц., ромб. 1252 NH2CH 130,12 Бц., ромб. 1253 NH2CH 1254 NH2CH 1255 NH	250	N ₂ H ₄ · 0,5H ₂ SO ₄		81,08	Бц. расплыв. тб.
1252 NH ₂ Cl NH ₂ OH Хлорамин Гидроксиламин 51,48 Бп. 33,03 Бц., ж. или 1254 NH ₂ OH · HCl Хлорид гидроксиламин 64,49 Бц., мн. или 1255 NH ₂ OH · HNO ₃ Нитрат гидроксиламмония 69,49 Бц. крист. аммония 1256 NH ₂ OH · O,5H ₂ SO ₄ Сульфат гидроксиламмония 82,07 Бц., мн. ксиламмония 1257 3NH ₂ OH · H ₃ PO ₄ Ортофосфат гидроксиламмония 197,08 Бел. пор. ксиламмония 1258 NI ₃ NH ₃ · NI ₃ Моноаммиакат иодида азота иодида азота обксид азота (II) 394,72 Черн. тв. Ромб. 1260 N ₂ O Оксид азота (II) 44,01 Бц., г. или ж би., г. или ж бел. крист. 1261 NO [или (NO) ₂] Оксид азота (III) 76,01 Крбур. г., и син. ж., ил бел. крист. 1262 N ₂ O ₃ Оксид азота (IV) Оксид азота (IV) 108,01 Бц., гекс. или 46,01 Крбур. г., и желт. ж., и бел. кб. 1263 N ₂ O ₅ NOBr Пробромид нитрозила интрозила хлорид нитрозила хлорид нитрозила хлорид нитрозила 109,92 Бур. г. или желтов-кр.	251	$N_2H_4 \cdot H_2SO_4$	Сульфат	130,12	Бц., ромб.
1253 NH2OH Гидроксиламин 33,03 Бц., ж. или 1254 NH2OH · HCl Хлорид гидроксиламин аммония 64,49 Бц., мн. 1255 NH2OH · HNO3 Нитрат гидроксиламмония 69,49 Бц. крист. 1256 NH2OH · H3PO4 Сульфат гидроксиламмония 82,07 Бц., мн. 1257 3NH2OH · H3PO4 Ортофосфат гидроксиламмония 197,08 Бел. пор. 1258 NI3 Иодид азота иодида азота (II) 44,01 Бц., г. или ж бел. крист. 1260 N2O Оксид азота (II) 30,01 Бц. г. или ж бел. крист. 1261 NO [или (NO)2] Оксид азота (III) 76,01 Крбур. г., и син. ж., ил бел. крист. 1262 N2O3 Оксид азота (IV) 108,01 Бц., гекс. или 46,01 Крбур. г., и син. ж., ил бел. крист. 1263 N2O5 Оксид азота (IV) 108,01 Бц., гекс. или 46,01 Крбур. г., и желт. ж., и бец. кб. 1265 NOBr Бромид нитрозила нитрозила хлорид нитрозила хлорид нитрозила 109,92 Бур. г. или желтов-кр. 1267 NOCI Келт. г. или желтов-кр.	252	NH ₂ Cl			
аммония 1255 NH ₂ OH · HNO ₃ Нитрат гидроксил- аммония 1256 NH ₂ OH · 0,5H ₂ SO ₄ Сульфат гидро- ксиламмония 1257 3NH ₂ OH · H ₃ PO ₄ Ортофосфат гидро- ксиламмония 1258 NI ₃ Иодид азота 1259 NH ₃ · NI ₃ Моноаммакат 1259 NH ₃ · NI ₃ Моноаммакат 1260 N ₂ O Оксид азота (1) Ок	25 3	NH₂OH		33,03	Бц., ж. или ромб.
1256 NH2OH · 0,5H2SO4 Сульфат гидро- 1257 3NH2OH · H3PO4 Ортофосфат гидро- 1258 NI3	254	NH₂OH · HCl	• • • •	64,49	Бц., мн.
1256 NH ₂ OH · 0,5H ₂ SO ₄ Сульфат гидро- ксиламмония 197,08 Бел. пор. ксиламмония 117,75 Ромб. 117,75	255	NH₂OH · HNO₃		69,49	Бц. крист.
1257 ЗNH ₂ OH · H ₃ PO ₄ Ортофосфат гидро- ксиламмония Иодид азота 1259 NI ₃ Иодид азота 1260 N ₂ O Оксид азота (I) 44,01 Бц., г. или ж 1261 NO [или (NO) ₂] Оксид азота (II) 30,01 Бц. г. или си 1262 N ₂ O ₃ Оксид азота (III) 76,01 Крбур. г., и син. ж., ил бел. крист. 1263 N ₂ O ₅ Оксид азота (IV) 46,01 Бц., гекс. или бел. крист. 1264 NO ₂ [или (NO ₂) ₂] Оксид азота (IV) 46,01 Крбур. г., и син. ж., ил бел. крист. 1265 NOBr Бромид нитрозила 1266 NOBr ₃ Трибромид нитрозила Хлорид нитрозила 1267 NOC1 Желт. г. или желтов-кр.	25 6	NH ₂ OH · 0,5H ₂ SO ₄	Сульфат гидро-	82,07	Бц., мн.
1258 NI3 NI3 NI3 NI3 NH3 NH3 NI3 NH3 NH3 NH3 NH3 NH3 NH3 NH3 NH3 NH3 NH	257	3NH ₂ OH · H ₃ PO ₄	Ортофосфат гидро-	197,08	Бел. пор.
1260 N ₂ O Оксид азота (I) Оксид азота (I) Оксид азота (II) 44,01 Бц., г. или ж 30,01 Бц. г. или ж 6и. кр. син. ж., ил 6ел. крист. 1262 N ₂ O ₃ Оксид азота (III) 76,01 Крбур. г., и син. ж., ил 6ел. крист. 1263 N ₂ O ₅ Оксид азота (V) Оксид азота (IV) 108,01 Бц., гекс. или 46,01 Крбур. г., и желт. ж., и би. кб. 1265 NOBr Бромид нитрозила 1266 NOBr ₈ Бромид нитрозила 109,92 Бур. г. или 269,73 Бур. ж. 1267 NOCl Хлорид нитрозила Хлорид нитрозила 65,46 Желт. г. или желтов-кр.	258	NI ₃			
1260 N ₂ O Оксид азота (I) 44,01 Бц., г. или ж 1261 NO [или (NO) ₂] Оксид азота (II) 30,01 Бц. г. или ж 1262 N ₂ O ₃ Оксид азота (III) 76,01 Крбур. г., и 1263 N ₂ O ₅ Оксид азота (V) 108,01 Бц., гекс. или 1264 NO ₂ [или (NO ₂) ₂] Оксид азота (IV) 46,01 Крбур. г., и 1265 NOBr Бромид нитрозила 109,92 Бур. г. или ж 1266 NOBr ₃ Трибромид 269,73 Бур. ж. 1267 NOCl Хлорид нитрозила 65,46 Желт. г. или желтов-кр.	259	$NH_3 \cdot NI_3$		411,75	Ромб.
1261 NO [или (NO)2] Оксид азота (III) 30,01 Бц. г. или си 1262 N2O3 Оксид азота (III) 76,01 Крбур. г., и син. ж., ил бел. крист. 1263 N2O5 Оксид азота (V) 108,01 Бц., гекс. или 46,01 Крбур. г., и желт. ж., и би. кб. 1265 NOBr Бромид нитрозила 1266 NOBr3 Трибромид 109,92 Бур. г. или 269,73 Бур. ж. 1267 NOCl Хлорид нитрозила Хлорид нитрозила 65,46 Желт. г. или желтов-кр.	260	N ₂ O			Вц., г. или ж.
1263 N ₂ O ₅ Оксид азота (V) 108,01 Бц., гекс. или Крбур. г., и мелт. ж., и бц. кб. 1264 NO ₂ [или (NO ₂) ₂] Оксид азота (IV) 46,01 Крбур. г., и мелт. ж., и бц. кб. 1265 NOBr Бромид нитрозила 109,92 Бур. г. или мелтовила 269,73 Бур. ж. 1267 NOCl Хлорид нитрозила (5,46 Желт. г. или желтов-кр.	1261	NO [или (NO) ₂]	Оксид азота (II)	30,01	Бц. г. или син. ж.
1263 N ₂ O ₅ Оксид азота (V) 108,01 Бц., гекс. или Кр. бур. г., и желт. ж., и бц. кб. 1264 NO2 [или (NO ₂) ₂] Бромид нитрозила трибромид нитрозила хлорид нитрозила хлорид нитрозила 109,92 Бур. г. или з бур. ж. 1267 NOCl Хлорид нитрозила желтов-кр. 65,46 Желт. г. или желтов-кр.	262	N ₂ O ₃	Оксид азота (III)	76,01	Крбур. г., или син. ж., или бел. крист.
1265 NOBr Бромид нитрозила 109,92 Бур. г. или за 269,73 Бур. ж. 1267 NOCl Трибромид нитрозила хлорид нитрозила 65,46 Желт. г. или желтов-кр.	263 1264	N_2O_5 NO_2 [или $(NO_2)_2$]			Бц., гекс. или р емб. Крбур. г., или желт. ж., или
1266 NOBr ₈ Трибромид 269,73 Бур. ж. 1267 NOCl Хлорид нитрозила 65,46 Желт. г. или желтов-кр.	1265	NOBr	Бромид нитрозила		Бур. г. или ж.
1267 NOC1 Хлорид нитрозила 65,46 Желт. г. или желтов-кр.	1266	NOBr ₈	Трибромид	269,73	Бур. ж
1000 NOCIO TIO - 147.47 Fig. 117.47	1267	NOC1		65,46	Желт. г. или желтов-кр. ж
тапил спис	1268	$NOCiO_4 \cdot H_2O$		147,47	_ <u>-</u>
3ила, гидрат Фторид нитрозила 49,00 Бц. г. или ж 1270 NOHSO ₄ Нитрозилсуль- фатная кислота 127,07 Бц., ромб.		1101100	Фторид нитрозила Нитрозилсуль-		Бц. г. или ж. Бц., ромб.

	Темпера	тура, °С	P	астворимост	ГЬ	
			вв	оде	в других	№
Плотность	плавления	кипения	при 20 °С	при 100 °C	раствори- телях при 20°C	π/0
•••	70,7	Возг. 140	266	•••	Сл. р. сп.	124
•••	104 разл.	•••	P.	• • • ,	* * * *	124
1,0321	<-40	118,5 (95 кПа)	∞ .	∞	Р. сп.; н. р. эф.,	
•••	85	•••	20025	55060	хлф. Н.р. ca.	125
1,378	254	•••	3,0522	1480	Н. р. сп.	125
1,204	66 34,0	Разл. Взр. > 100	P. P.	Pear.	Р. сп., мет. сп.	125 125
1,6717	157	Разл.	8317	Р.	Р. сп., мет. сп.,	125
•••	48	Разл. <100	Р.	Pear.	глиц. Р. сп.	128
•••	170	Разл.	63,725	68,5**	Р. эф.;	125
• • •	Разл.	•••	P.	•••	н. р. сп.	125
3,5	Взр. Разл. > 20	Возг. вак. Взр.	H. p. Pear.	Pear. Pear.	•••	125 1 25
1,9778 г/дм ³ 1,3402 г/дм ³		—88,5 —151,8	130,0° см ³ 7,38° см ³	54,4 ²⁵ см ³ 2,6 см ³	Р. сп. эф. Р. сп. (26,6 см ³), CS ₂	126
1,4472	-102	3,5 разл.	Реаг.	Pear.	Р. эф .	126
1, 642¹⁸ 1,491°	Bosr. 32,3 —11,2	20,7	Pear. Pear.	Pear. Pear.	Р. хлф. Р. СS ₂ , хлф.	126 126
2,637	-55,5 -40	—2 32 разл.	Pear. Pear.	Pear. Pear.	•••	126 126
2,992 г/дм ³		52 pasn. —5,5	Pear.	Pear.	•••	126
	—61,5 Разл. > 108		Pear.	Pear.	Pear.	126
2,176 г/дм ³	134 73	60,0	Реаг. Реаг.	Pear. Pear.	мет. сп.	126 127

... 1271

Pear. cn., 1272

эф., хлф. ... 1273

P. CS₂; 1274 сл. р. сп.; эф. Сл. р. сп. 1275 ... 1276 ... 1277 P. cn., 1278 (1,67),глиц.

Н. р. сп. 1280

Н. р. сп., 1281 эф. ··· 1282

Р. глип.; 1283 н. р. сп.

Р. глиц.; 1285 н. р. сп.

1286 ... 1287

Реаг. сп. 1288

Р. сп., 1289 мет. сп., NH₃, пир. Р. мет. 1290

сп., сп.; сл. р. ац. Р. NH₃, 1291

№ п/п

1		-						Темпера	тура, °С	P	астворимост	Гь	
N₂			Молеку-	Цвет, кристалличе- ская форма,			in the second of the second			ВВ	оде	в других раствори-	
n/n	Формула	Название	лярная масса	показатель преломления			П лот ность	плавления	кипения	при 20 °C	при 100 °C	Tengy	1
1271	(NOSO ₃) ₂ O	Ангидрид нитро- зилсульфатной	236,14	Тетраг.			•••	217	360	Pear.	Pear.	•••	Ľ
1272	NO ₂ F	кислоты Фторид нитрила	65,00	Бц. г.			2,90 г/дм ³	-166	_72,6	Pear.	Pear.	Pear. cn.,	
1273	NO ₂ CI	Хлорид нитрила	81,46	Желтовбур. г.		,	2,57 г/дм ³	<-31	5	Pear.	Pear.	эф., хлф.	1:
1274	N ₂ S ₅	Сульфид азота	188,33	или свкор. ж. Кр. ж. или фиолсер. крист.			1,90118	11	Разл.	Н. р.	•••	Р. CS ₂ ; сл. р. сп.; эф.	1:
1275	NaAsO ₂	Метаарсенит	129,91	Свсер. расплыв.			1,87	•••	•••	P.	•••	Сл. р. сп.	. 1
1276	NaAsO ₃	натрия Метаарсенат	145,91	Бц., ромб.	!		2,301	•••	•••	P.	. •••	•••	1
1277	Na ₃ AsO ₄	натрия Ортоарсенат	207,89	Тв.			2,835	•••	•••	23,430	•••	•••	1
1278	Na ₃ AsO ₄ · 12H ₂ O	натрия Ортоарсенат натрия,	424,07	Бц., гекс., 1,4589; 1,4669			1,759	86,3	• • • • • • • • • • • • • • • • • • •	38,9 ^{15,5}	•••	Р, сп., (1,67), глиц.	1
1279	Na ₃ AsO ₄ · 8H ₂ O	додекагидрат Тиоортоарсенат натрия,	416,27	Мн., β 1,6802			•••	Разл.	****	Р.	•••		13
1280	NaAlO ₂	октагидрат Метаалюминат	81,97	Бел., ам.			•••	1650	•••	Ρ.	Ρ.	Н. р. сп.	1
1281	NaBO ₂	натрия Метаборат натрия	65,80	Бц., триг.			2,464	966	1434	16,40	125,2	Н. р. сп.,	, I
1282	NaBO ₂ · 4H ₂ O	Метаборат натрия,	137,88	Бц. крист.			***	53,5	•••	7320	27550	эф.	1
1283	Na ₂ B ₄ O ₇	тетрагидрат Тетраборат натрия	201,22	Бц. крист.			2,37	742	1575 разл.	11,10	52,5	Р. глиц.; н. р. сп.	
1284	$Na_2B_4O_7 \cdot 5H_2O$	Тетраборат натрия, пентагидрат	291,30	Бц., кб. или триг., 1,461; 1,474	ļ		1,815	Уст. 60—150	•••	25,250	96,2		1
1285	$Na_2B_4O_7 \cdot 10H_2O$	Тетраборат натрия, декагидрат	381,38	Бц., мн., 1,447; 1,469; 1,472	ļ		1,69—1,72	75	$-10H_2O$, > 200	2,120	22,050	Р. глиц.; н. р. сп.	
1286	NaBO ₃ · 4H ₂ O	Перборат натрия, тетрагидрат	153,86	Бц., мн.				57	Разл. > 60	3,915	5,782		
1287 1288	Na ₃ Bi NaBiO ₃	Висмутид натрия Метависмутат	277,95 279,97	Сине-фиол., гекс. Желтовкор.			•••	775	•••	Pear. H. p.	Pear. Pear.	 Реаг. сп.	1:
1289	NaBr	Бромид натрия	102,90	крист. Бц., кб., 1,6439			3,211	755	1392	94,625	121,2	Р. сп., мет. сп.,	
1290	NaBr · 2H ₂ O	Бромид натрия, дигидрат	138,93	Бц., мн., 1,5128; 1,5192; 1,5252			2,176	-2H ₂ O, 50,2	•••	19125	290	NH ₃ , пир. Р. мет. сп., сп.;	. 15
1291	NaBrO ₃	Бромат натрия	150,09	Бц., кб., 1,5943			3,3 39 ^{1 7,5}	381	•••	39,525	90,8	сл. р. ац. Р. NH ₃ , гидразине	13

.76 B/II	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1292	Na ₂ C ₂	Карбид натрия	70,00	Бел.
1 29 3	Na ₂ CO ₈	Карбонат натрия	105,99	Бел. крист., 1,410; 1,537; 1,544
1294	Na ₂ CO ₃ · H ₂ O	Карбонат ңатрия, гидрат	124,00	Бел., ромб., 1,506; 1,509
1295	$Na_2CO_3 \cdot 7H_2O$	Карбонат натрия,	232,10	Бц., ромб.
1296	Na ₂ CO ₃ · 10H ₂ O	гептагидрат Карбонат натрия,	286,14	Бц., мн., 1,405;
1297	NaCN	декагидрат Цианид натрия	49,01	1,425; 1,440 Бел., кб., 1,452
1298	NaCN · 2H ₂ O	Цианид натрия,	85,04	Бц. крист.
1299	NaCNO	дигидрат Цианат натрия	65,01	Бц. гекс. иг., 1,389; 1,627
1300	NaCNS	Роданид натрия	см. № 1376	NaSCN
1301	NaCl	Хлорид натрия	58,44	Бц., кб., 1,5443
	NaClO NaClO • 5H ₂ O	Гипохлорит натрия	74,44 164,52	Только в p-pe Расплыв. крист.
	NaClO ₃	Гипохлорит натрия, пентагидрат Хлорат натрия	106,44	
1305	NaClO ₄	Перхлорат натрия	122,44	Бел. расплыв. крист., ромб., 1,46060; 1,461 70
1306	NaClO ₄ · H ₂ O	Перхлорат натрия, гидрат	140,46	1,47303 Бц. расплыв. крист., ромб.
1307 1308	Na ₂ CrO ₄ Na ₂ CrO ₄ · 4H ₂ O	Хромат натрия Хромат натрия, тетрагидрат	161,97 231,03	Желт., ромб. Желт. крист., 1,321; 1,447; 1,561
1309	$Na_2CrO_4 \cdot 10H_2O$	Хромат натрия,	342,13	Желт., мн.
1310	$Na_2Cr_2O_7 \cdot 2H_2O$	декагидрат Дихромат натрия, дигидрат	298,00	Кр., мн., 1,661; 1,699; 1,751

1		Темпера	гура, ∘С	P	астворимост	ъ	
I	Плотность			В В	оде	в других	M
	11301 ROCTS	плавления	ки пени я	при 20 °С	при 100 °C	раствори- телях при 20 °C	a/a
	1,57518	Разл.	***	Pear.	Pear.	Н. р. органи- ческих раствори-	1292
	2,533	854	Разл.	21,5	Р.	телях Р. глиц.; сл. р. сп.;	1 29 3
	2,25	—H ₂ O, 107	•••	48,540 бв.	44,8 бв.	н. р. ац. Р. глиц.; н. р. сп.,	1294
	1,51	-H ₂ O, 32	• • •	Ρ.	Ρ.	эф.	1295
,	1,44617	34,5	• • • •	6,950 бв.	39,4 ³⁰ бв.	Н. р. сп.	1296
	1,596	562	1497	81,835	$82,5^{55}$	P. NH ₃ ;	
	. • • •	•••	•••	128,510	Р.	сл. р. сп.	1298
	1,937	•••	•••	Р.	Р.	Н. р. сп.,	1299
		ļ	X.			эф.	1300
	2,165	800,8	1413	35,710	39,2	Р. NH₃,гидрази- не, мет.	1301
	• • •	Разл. 24,5	Разл.	29,40 1010	13050	сп., сп.	1302 1303
	2,49015	261	Разл.	100,525	204	Р. NH ₃ , глиц., сп., ац.	1304
	•••	482 разл.	•••	169°	330	Р. NH ₃ , мет. сп., сп., ац.;	1305
	2,02	-H ₂ O, 130	•••	2580	525 50	сл. р. эф. Р. сп., ац.; сл.	1306
	2,723	•••	***	31,7° 2083°	126 340 ⁶⁰	р. эф. 	1307 1308
	1,483	—4H ₂ O, 19,9	•••	24010	P.	Сл. р. сп.	1309
	2,5213	320 бв.	Разл. 400.	1630 бв.	508 ⁸⁰ бв.		1310

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристаллическая форма, показатель преломления
1311	NaF	Фторид натрия	41,99	Бн., кб., 1,3258
	en versioner in de la company			
1312 1313	$Na_2Fe_2O_4$ Na_2GeO_3	Феррит натрия Метагерманат натрия	221,67 166,57	Желт., триг. Мн., 1,59
1314	NaH	Гидрид натрия	24,00	Свсер., кб., 1,470
1315	$NaH_2AsO_4 \cdot H_2O$	Дигидроортоар- сенат натрия,	181,94	Бц., ромб. или мн., 1,5535
1316	Na ₂ HAsO ₄ · 7H ₂ O	гидрат Гидроортоарсе- нат натрия,	312,01	Бп., мн., 1,4622; 1,4658; 1,4782
1317	NaHCO ₈	гептагидрат Гидрокарбонат	84,01	Бел., мн., 1,376; 1,500; 1,582
1318	NaHF ₂	натрия Гидродифторид	61,99	
1319	$Na_2H_8IO_6$	натрия Тригидроорто-	271,90	Бп. крист.
1320	$NaH_2PO_2 \cdot H_2O$	периодат натрия Гипофосфит	105,99	Бц., мн.
1321	2NaH ₂ PO ₃ · 5H ₂ O	натрия, гидрат Гидроорто- фосфит натрия,	298,03	Бц., мн., 1,419; 1,431; 1,449
1322	Na ₂ HPO ₃	пентагидрат Ортофосфит	125,96	Бел. крист.
1323	$Na_2H_2P_2O_6 \cdot 6H_2O$	фосфат натрия,	314,03	Бц. мн., 1,486; 1,490; 1,504
1324	$Na_3HP_2O_6 \cdot 9H_2O$	гексагидрат Гидрогипофосфат натрия, нонагид- рат	390,06	Крист.
1325	NaH ₂ PO ₄ · H ₂ O	Дигидроорто- фосфат натрия,	137,99	Бц., ромб., 1,456; 1,485; 1,487
1326	NaH ₂ PO ₄ · 2H ₂ O	гидрат Дигидроорто- фосфат натрия,	156,01	Бц., ромб., 1,4401; 1,4629; 1,4815
1327	Na ₂ HPO ₄	дигидрат Гидроорто-	141,96	Бел., расплыв.
1328	Na ₂ HPO ₄ · 12H ₂ O	фосфат натрия Гидроорто- фосфат натрия, додекагидрат	358,14	Бц., мн., 1,4361

-		Температура, °С		P	астворимост	ъ	Ī
	W			ВЕ	оде	в иругих	НБ, 1311 . сп. 1313, п. 1313, п. 1313, п. 1313 1313 1314 1315 1315 1316 1316 1318 1318 1319 1.; сл. 1320 NH ₃ 1321 1322 2. 1323 OH; сп. сп.
	Плотность	плавления	кипения	при 20 °C	при 100°C	в других раствори- телях при 20°C	
	2,55841	1040	1605	4,28	4,9694	Р. HF, мет. сп. (0,413),	1311
						сп. (0,095); сл. р. ац.	
	3,3122	1345 1083	•••	Реаг. 2 3,6	Pear. 13284	•••	
	1,396	Разл. 425	•••	Pear.	Pear.	Р. рас- плав. Na	1314
	2,53	$-H_2O$, 100—130	Разл. 200—250	199	•••	•••	1315
	1,871	125	Разл.	85	198 бв.	Сл. р. сп.	1316
	2,20	—CO ₂ , 160	•••	9,6	23,6		1317
	•••	Разл. 270	•••	3,25	7,590	· · ·	1318
	•••	200 разл.	•••	0,1525	0,43	•••	1319
	1,000	—H ₂ O, 200	***	10025	667		1320
	•••	42	-5H ₂ O, 100	56,00	193,042	p. NH ₃	1321
	•••		•••	4190	Р.	•••	1322
	1,849	250 бв.	-6H ₂ O, 100	P.	P.	P. NH ₄ OH;	1323
	•••		•••	4,67 ²⁵ бв.	15,050 бв.	н. р. сп.	1324
~	2,040	-H ₂ O, 100	Разл. 200	•••	24080	Н. р. сп.	1325
	1,9096	60	•••	910	30740	***	1326
	•••	• • • •	Разл.	1,630	102,4	Н. р. сп.	1327
	1,52	-5H ₂ O, 35,1	•••	35,325	Ρ,	Н. р. сп.	1328
	•	•					

1							Темпера	гура, °С	-,	астворимос		Ť
NG.			Молеку-	Цвет, кристалличе- ская форма,					В	воде	в других	
Me n/n	Формула	Название	лярная масса	показатель преломления		Плотность	плавления	кипени я	при 20 °C	при 100 °C	раствори-	n/n
1329	Na ₂ H ₂ P ₂ O ₇	Дигидроди- фосфат натрия	221,94	Бц., мн., 1,510		1,862	Разл. 220	•••	4,50	2140	•••	132
1330	$Na_2H_2P_2O_7 \cdot 6H_2O$	Дигидроди- фосфат натрия,	330,03	Бц., мн., 1,4599; 1,4645; 1,4649		1,848	-H ₂ O, 220	•••	22,218		***	1330
1331	$Na_3HP_2O_7 \cdot 9H_2O$	натрия,	406,06	Бц. крист.	.	•••	•••	•••	16,5 ^{20,7} б в.	23,3 ^{49,5} бв.	***	133
1332	NaHS · 3H ₂ O	нонагидрат Гидросульфид натрия, тригидрат	110,11	Бц., ромб.		•••	22	Разл.	Ρ.	•••	Р. сп.	133
1333	NaHSO ₃	Гидросульфит натрия	104,07	Бц., мн., 1,474; 1,526; 1,685	•	1,48	Разл.	•••	Р.	Ρ.	Н. р. сп.; ац.	1333
1334	NaHSO ₄	Гидросульфат натрия	120,07	Би., трикл., 1,43; 1,46; 1,47		2,742	> 315	Разл.	28,6	50	Pear. cn.; н. р. NH;	; 133
1335	NaHSO ₄ · H ₂ O	Гидросульфат натрия, гидрат	138,08	Бц., мн., 1,43; 1,46; 1,47		2 ,103 ^{13,5}	58,5	Разл.	P.	Р.	Pear. сп.	133
1336	$Na_2H_2Sb_2O_7 \cdot H_2O$	Дигидродисти- биат натрия,	421,51	Бц. крист.		***	•••	• • •	0,073825	0,3		133
1337	$Na_2H_4TeO_6 \cdot xH_2O$	теллурат натрия,	• • •	Бц., гекс.		•••	Разл.		0,7718	2,0	•••	133
1338	NaI	полигидрат Иодид натрия	149,89	Бц., кб., 1,7745	-	3,6654	662	1300	179,3	302	Р. сп., мет. сп.,	,
		•		•							ац., NH ₃ , пир.	,
1339	NaI · 2H ₂ O	Иодид натрия, дигидрат	185,92	Бц., триг.		2,44 8 ^{20,8}		•••	40625	834	Р. NH ₃ , мет. сп.	
				•							(78), сп. (42,57),	
1340	NaIO ₃	Иодат натрия	197,89	Бц., ромб.		4,40	Разл.		9,525	33	ац. Р. С 1 ₂ СООН;	1340
1341	NaIO ₃ · 5H ₂ O	Иодат натрия,	287,97	Бц., ромб.	ľ	***		***	14,425	56,5	н р. сп. Р.	134
1 34 2 1343	NaIO ₄ Na ₂ MnO ₄ · 10H ₂ O		213,89 345,07	Бц., тетраг. З., мн.	,	3,86516	Разл. 300 17	***	27 ³⁵ P.	3950 Pear.	сн соон	1343 1343
1344	$NaMnO_4 \cdot 3H_2O$	декагидрат Перманганат	195,97	Пурп., расплыв.		2,46	Разл. 170	•••	\mathbf{P}_{\bullet}	P.	•••	1344
1345	Na ₂ Mo ₂ O ₇	натрия, тригидрат Димолибдат	349,86	Ромб. иг.		***	612	• • •	Р.	P.	:	134
1346	$Na_2Mo_3O_{10} \cdot 7H_2O$	натрия,	619,90	Бц. иг.		***	-6H ₂ O, 120		3,9 бв.	13,7 бв.	•••	1346
1347	Na ₃ N	гептагидрат Нитрид натрия	82,98	Сер. пор.	} '		Разл.	• • •	Pear.	Pear.		134

		·		
№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристаллическая форма, показатель преломления
1348	NaN ₃	Азид натрия	65,01	Бел., триг.
1349	NaNH ₂	Амид натрия	39,01	Бел. или зеленов.
1350	NaNO ₂	Нитрит натрия	69,00	Бел. или желт., ромб., 1,354; 1,460; 1,648
1351	$Na_2N_2O_2$	Гипонитрит	105,99	TB.
1352	NaNO ₃	натрия Нитрат натрия	84,99	Бц., ромб. или триг., 1,336; 1,587
1353	Na ₂ O	Оксид натрия	61,98	Бел. расплыв. ам. или кб.
1354	Na ₂ O ₂	Пероксид натрия	77,98	Желтовкор.,
1355	$Na_2O_2 \cdot 8H_2O$	Пероксид натрия,	222,10	тетраг. Бел., гекс.
1356	NaOH	октагидрат Гидроксид натрия	40,00	Бел. расплыв. крист., ромб., 1,458 (1,3576)
1357	NaOH · H ₂ O	Гидроксид натрия,	58,01	Бел. крист.
1358	Na _s P	гидрат Фосфид натрия	99,94	Гекс.
	Na ₄ P ₂ O ₆	Гипофосфат натрия	249,94	Бел. крист.
13 60	Na ₄ P ₂ O ₆ · 10H ₂ O	Гипофосфат натрия, декагид- рат •	430,05	Бц., мн., 1,477; 1,482; 1,504
1361	NaPO ₃	Метафосфат	101,96	Бел. крист., 1,474; 1,478; 1,480
1362	$Na_4P_4O_{12}$	натрия Тетраметафосфат	407,83	Бц. крист.
1363	$Na_6P_6O_{18}$	натрия Гексамета-*	611,76	Бц. крист.
1364	Na ₃ PO ₄	фосфат натрия Ортофосфат	163,94	Бел. крист.
1365	$Na_8PO_4 \cdot 12H_2O$	натрия Ортофосфат натрия,	380,13	Бц., триг., 1,4458; 1,4524
1366	Na ₄ P ₂ O ₇	додекагидрат Дифосфат натрия	265,89	Бел., 1,425

	Темпера	атура, °С	P	астворимос	гь	
		1	В В	оде	в других	N ₂
Плотность	плавления	кипения	при 20°C^	при 100°C	раствори-	n/n
1,8460	Разл. 275	• •••	390	55	Р. NH ₃ ; сл. р. сп., бзл.;	1348
•••	210	400	Pear.	Pear.	н. р. эф. Р. NH ₃ ;	1349
2,1680	271	Разл. > 320	92 ,9	160	реаг. сп. Р. NH ₃ , сп., пир.; сл. р.	1350
2,466 ⁴	> 100	Разл. 300	P.	P.	хол. сп. Н. р. сп.	1351
2,257	306,8	Разл. 380	88	176	P. гидра- зине, NH ₃ ; сл. р.	1352
2,39	Возг. 1275	•••	Pear.	Pear.	сп. Реаг. сп.	1353
2,5	460 разл.	, •••	Pear.	Pear.	Реаг. сп.	1354
•••	$-H_{2}O$, 30	•••	Pear.	Pear.	•••	1355
2,130	327,6	1378	107	337	Р. сп., глиц., фен.; н.	1356
•••	64,3		299	129060	р. эф., ац.	1357
•••	Разл. 	•••	Pear. 1,49 ^{25,2}	Реаг. 3,19 ⁶⁰	•••	1358 1359
1,832	•••	•••	1,5 ²⁵ бв.	3,1 ^{50.} бв.	•••	1360
2,476	627,6	•••	14,525	32,5	• • •	1361
2,476	616 разл.	•••	Ρ.	• • •	•••	1362
2,484	•••	•••	> 50		•••	1363
2, 536 ^{17,5}	1340	•••	14,625	94,5	•,••	1364
1,62	73,4	-12H ₂ O, 100	28,0	P.	H. p. CS ₂	1365
2,373	880	•••	2,290	45,2 ⁹⁶	• • •	1366

ж.	1		Молеку-	Цвет, кристалличе- ская форма,
n/n	Формула	Название	лярная масса	показатель преломления
1367	Na ₄ P ₂ O ₇ · 10H ₂ O	Дифосфат натрия, декагидрат	446,05	Бц., мн., 1,450; _ 1,453; 1,425
	NaReO ₄ Na ₂ S	Перренат натрия Сульфид натрия	273,19 78,04	Бц., тетраг. Розбел., ам. или кб.
	$Na_2S \cdot 6H_2O$	Сульфид натрия, гексагидрат	186,14	Бц. крист.
1371	Na ₂ S · 9H ₂ O	Сульфид натрия, нонагидрат	240,18	Бц. расплыв. крист., тетраг.
	Na ₂ S ₂	Дисульфид натрия	110,11	Желт. крист.
	$Na_2S_3 \cdot 3H_2O$	Трисульфид натрия, тригидрат	196,22	Желт.
	Na ₂ S ₄	Тетрасульфид натрия	174,23	Желт., кб.
	Na ₂ S ₅ NaSCN	Пентасульфид натрия Тиоцианат натрия	206,31 81,07	Желт. Бц., ромб., 1,545; 1,625; 1,695
	Na ₂ SO ₃	Сульфит натрия	126,04	1,565
	Na_2SO_3 $Na_2SO_3 \cdot 7H_2O$	Сульфит натрия Сульфит натрия,	126,04 252,15	Бц., гекс., 1,515; 1,565 Бц., мн.
1379	Na ₂ SO ₄	гептагидрат Сульфат натрия	142,04	Бц., ромб., 1,464; 1,474; 1,485
1380	Na ₂ SO ₄ · 7H ₂ O	Сульфат натрия,	268,15	Бц., тетраг. или ромб.
	$Na_2SO_4 \cdot 10H_2O$	гептагидрат Сульфат ⁄натрия, декагидрат	322,19	Бц., мн., 1,396
	Na ₂ S ₂ O ₃	Тиосульфат натрия		Бц., мн.
	$Na_2S_2O_3 \cdot 2H_2O$	Тиосульфат натрим, дигидрат		Бц. крист. Би крист. 1.4886
1354	Na ₂ S ₂ O ₃ ·5H ₂ O	Тиосульфат натрия,	248,19	Бц. крист., 1,4886; 1,5079; 1,5360
1385	Na ₂ S ₂ O ₄	пентагидрат Дитионит натрия	174,10	Бел. пор.
1386	$Na_2S_2O_4 \cdot 2H_2O$	Дитионит натрия, _ дигидрат	210,14	Бел. пор.
1387	Na ₂ S ₂ O ₅	Дисульфит (мета- бисульфит) нат- рия	190,10	Бел. крист.
1388	$Na_2S_2O_5 \cdot 6H_2O$	Дисульфит натрия, гексагидрат	298,20	Тв.

!	Температур	a, °C	P	астворимос	ГЬ	!
Плотность			ВВ	оде	в других раствори-	34 15/13
	плавления	кипения	при 20 °С	при 100 °С	TOTICY	. 11/14
1,836	—Н ₂ О, 93,8	• • •	11,625	85,670	H. р. сп., NH ₃	1367
1,856	414 950	•••	103,3° 18,6	173 ⁵⁰ 57,2 ⁹⁰	Р. сп. Сл. р. сп.	1368 1369
•••	•••		Р.	36,550 бв.	* ***	1370
2,471	-3,5H ₂ O, 48,9	Разл.	47,510	96,750	Сл. р. сп., этилаце-	1371
•••	445	•••	P.	***	тате Сл. р. хол. сп.	1372
•••	2H ₂ O, 100	•••	. P.	•••	• • • •	1373
• • •	275	•••	P.	•••	Р. сп.	1374
•••	255	***	P.	•••	Р. сп.	1375
1,7320	323	•••	16625	225	Р. мет. сп. (35 ¹⁶),	1376
2 ,633 ¹⁸	Разл.	•••	30,725	26,6	сп. (18,37 ^{18,8}) Сл. р. сп.	1377
1,561	-7H ₂ O, 150	Разл.	P.	P.	Сл. р. сп.	1378
2,698	890	•••	52,9	42,5	Р. глиц., мет. сп.;	1379
•••	-7H ₂ O, 24,4		53 бв.	•••	сл. р. сп.	1380
1,4639	Разл. 32,4	***	19,2 бв.	•••	Н. р. сп.	1381
1,667	•••	•••	66,718	266	P. NH ₃ ;	1382
9.6.6	-2H ₂ O, 66,5	***	P,	46860	сл. р. сп.	1383
1,71527	-3H ₂ O, 48.5	•••	Р.	Р.	Н. р. сп.	1384
•••	 Разл. 52	•••	24,1 P.	Pear.	Н. р. сп.	138 5 138 6
1,48	Разл. > 150	•••	65,3	88,780	Р. глиц.; сл. р. сп.	1387
•••	•••	•••	106º	•••		1388

_		-		
№ n/n	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1389	Na ₂ S ₂ O ₆ • 12H ₂ O	Дитионат натрия, додекагидрат	242,13	Бц., ромб., 1,4920; 1,4953; 1,5185
1390 1391	$Na_2S_2O_7$ $Na_2S_2O_8$	Дисульфат натрия Персульфат натрия	222,10 238,10	Бел. крист. Бц. крист.
1 39 2 1 3 93	Na ₃ Sb NaSbO ₂ ·3H ₂ O	Стибид натрия Метастибит натрия,	190,72 230,78	Темно-син., гекс. Бц., ромб.
1394	2NaSbO ₃ · 7H ₂ O	тригидрат Метастибиат натрия,	511,58	Кб.
1395	Na ₃ SbS ₄ · 9H ₂ O	гептагидрат Тиоортостибиат натрия, нонагидрат	481,12	Желт., кб.
1396	NaSe	Селенид натрия	124,94	Расплыв., кб.
	Na ₂ SeO ₃	Селенит натрия	172,94	Бел.
1398	$Na_2 SeO_3 \cdot 5H_2O$	Селенит натрия, пентагидрат	263,01	Би., тетраг.
1399	Na ₂ SeO ₄	Селенат натрия	188,94	Бц., ромб.
1400		Селенат натрия, декагидрат	369,09	Бц., мн.
1401	Na₂SiO₃	Метасиликат натрия	122,06	Бц., мн., 1,513; 1,520; 1,528
1402	Na ₂ SiO ₃ · 9H ₂ O	Метасиликат натрия,	284,20	
1403	Na ₄ SiO ₄	нонагидрат Ортосиликат натрия	184,04	Бц. крист.
1404	$Na_2SnO_3 \cdot 3H_2O$	натрия Станнат натрия, тригидрат	266,71	Гекс. тб.
1405	Na ₂ Te	Теллурид натрия	173,58	Бел. расплыв. крист., кб.
	Na ₂ TeO ₄ · 2H ₂ O	Метателлурат натрия, дигидрат	273,60	Тв.
1407	$^{\prime}$ Na ₂ TeO ₄ · 4H ₂ O	Метателлурат натрия, тетрагидрат	309,63	Тв.
1408	Na ₂ TiO ₃	Метатитанат натрия	141,88	Бц. крист.
1409	Na ₂ UO ₄	Уранат натрия	348,01	Желт. или кр.
1410	$Na_2^2U_2O_7$	Диуранат (пиро- уранат) натрия	634,06	Оржелт., ромб.
1411	. •	Метаванадат натрия	121,93	Бц. мн. пр.
1412	Na ₃ VO ₄	Ортованадат натрия	183,91	Бц. гекс. пр.

-		Температ	ypa, °C	. Р	астворимост	Ть	
				ВЕ	оде	в других	N₂
	Плотность	плавления	кипения	при 20 °C	при 100 °C	раствори- телях при 20°C	π/n
	2,189	—H ₂ O, 110	_SO ₃ , 267	18,7	85,8	Н. р. сп.	1389
	2,658	400,9	Разл. 460 Разл.	P. P.	•••	•••	1390 1391
	2,864	856 Разл.	•••	Pear. Pear.	 Реаг.	•••	1392 1393
	•••	-2H ₂ O, 200	•••	0,03112,3	•••	Сл. р. сп.	1394
	1,839	87	• • •	200	$\sim 200^{79,5}$	Н. р. сп.	1395
	2,61	> 875	•••	Pear. 60 ³⁷ P.	Pear. 85 ⁸⁹ P.	H, р. NH H. р. сп.	1396 1397 1398
	3,098 1,61	•••	•••	13,2° P.	74,8 ⁷⁵ P.	•••	1399
•	2,4	1089	•••	Ρ.	92,390	H. p. cn	. 1401
	•••	47	$-6H_2O_1$ 100	58,2	P.	•••	1402
	•••	1120 разл.	•••	Р.	•••	•••	140
	•••,	Разл. 140	•••	61,3 ^{15,5}	50		1404
	•••	953	. • • •	• p.	• • • •	сп., ац. Р. NH ₃	140
	•••	•••	•••	0,8818	2,4	\(\)	140
	. • • •	• • • •	•••	1,918	3,450	•••	140
	3,19	1030	* * ; • • •	•••	•••	•••	140
	,	•••	•••	Н. р. Н. р.	H. p.	•••	140 141
	• • •	630	• • •	21,125	38,875	• • •	141
	•••	850—866	•••	Ρ.	Р,	Н, р. сп	. 141
	,						

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1	Температ	rypa, °C	F	астворимост	ГЬ	
N ₂	_		Молеку-	Цвет, кристалличе- ская форма,						ВВ	оде	в других	N ₂
nfa	Формула	Название	лярная масса	показатель преломления		ě.	Плотность	плавления	кипения.	при 20 °C	при 100 °C	раствори- телях при 20°C	מ/מ
1413	Na ₂ WO ₄	Вольфрамат натрия	293,83	Бц., ромб.			4,179	698	•••	57,50	96,8	•••	1413
1414	Na ₂ WO ₄ · 2H ₂ O	Вольфрамат натрия, дигидрат	329,86	Бц., ромб., 1,5526; 1,5553; 1,5695			3,245	-H ₂ O, 100	•••	Р.	P.	Сл. р. NH ₃ ; н. р. сп.,	
1415	$Na_2ZnO_2 \cdot 4H_2O$	Цинкат натрия,	215,41	Бел.			•••	•••	•••	75,230	•••	CS	1415
1416	Na ₂ ZrO ₃	тетрагидрат Метацирконат натрия	185,20	Крист., 1,720; 1,800	,		****	• • •	•••	•••	•••	***	1416
1418	NbB ₂ NbBr ₅	Борид ниобия Бромид ниобия (V)	114,53 492,45	Гекс. Пурпкр. крист.			6,97	3000 ~150	362	Pear.	Pear.	 Р. сп., С ₂ Н ₅ Вг	1417 1418
1419 1420	NbC NbCl ₅	Карбид ниобия Хлорид ниобия (V)	104,92 270,18	Черн., кб. Свжелт. расилыв. иг.			7,82 2,75	3900 210	250	H. p. Pear.	Pear.	Р. CCl ₄ , хлф.,	1419 1420
1421	NbF ₅	Фторид ниобия (V)	187,90	Бц. мн. пр.			3,92	79,0	233	P	Pear.	сп., эф. Р. сп.; сл. р.	
1423 1424 1425 1426 1427	$\begin{array}{c} \text{NbH} \\ \text{NbN} \\ \text{NbO} \\ \text{Nb}_2\text{O}_3 \\ \text{NbO}_2 \\ \text{Nb}_2\text{O}_5 \\ \text{NbOBr}_3 \end{array}$	Гидрид ниобия Нитрид ниобия Оксид ниобия (II) Оксид ниобия (III) Оксид ниобия (IV) Оксид ниобия (V) Оксид-бромид ниобия (V)	93,92 106,91 108,91 232,82 124,91 265,82 348,64	Сер., кб. Черн., кб. или гекс. Чернкор., кб. Сине-черн. крист. Черн., тетраг. Бел., ромб. Желт. крист.			6,6 8,4 7,26 4,5—5,0	Разл. 2573 1780 1512 Возг.	•••	H. p. H. p. H. p. H. p. H. p. Pear.	H, p. H, p. H, p. H, p. H, p. Pear.	CS ₂ , хлф.	1422 1423 1424 1425 1426 1427 1428
1429	NbOCl _s	Оксид-хлорид ниобия (V)	215,27	Бц. иг.			10,19100	Возг. 400	•••	Pear.	Pear.	Pear. сп.	1429
1430 1431	$ NdBr_3 $ $ Nd(BrO_3)_3 \cdot 9H_2O $	Бромид неодима	383,97 690,10	3., ромб. Кр., гекс.	,. (i C	•••	687 66,7	1540 —9H ₂ O, 150	Сл. р. 128	 Р.	Р. сп., ац	(. 1430 1431
1432 1433	NdC ₂ NdCl ₃	Карбид неодима Хлорид неодима	168,26 250,60	Желт., тетраг. Фиол., гекс.	•		5,15 4,134 ²⁵	Разл. 784	1690	Pear. 96,8°	Pear. 140	Р. сп. (44,5); н. р.	1432 1 433
1434	NdCl ₈ · 6H ₂ O	Хлорид неодима,	358,69	Кр., ромб. или мн.		A	2, 282 ^{16,5}	124	-6H ₂ O, 160	2380	505	эф., хлф Р. сп.	1434
1435	Nd(ClO ₄) ₃ • 6H ₂ O	гексагидрат Перхлорат неодима, гексагидрат	550,68	Фиолроз. расплыв. крист.	Š		•••	—H ₂ O, 170	Разл. > 180	P,		•••	1 435
1437 1438	NdF ₈ NdI ₃ Nd ₂ (MoO ₄) ₃ NdN	тексатидрат Фторид неодима Иодид неодима Молибдат неодима Нитрид неодима	201,24 524,95 768,29 158,25	Фиол., гекс. Черн. крист. Тетраг., 2,005 Черн., кб.			5,14 ¹⁸	1413 775 1176	2330 1370	0,02 ²⁸ Pear.	Pear.	•••	1436 1437 1438 1439

をありま

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления		Плотность
1440	Nd(NO ₃) ₃ · 6H ₄ O	Нитрат неодима,	438,35	Трикл.		•••
1442	Nd ₂ O ₃ Nd(OH) ₃ NdPO ₄	гексагидрат Оксид неодима Гидроксид неодима Ортофосфат	336,48 195,26 231,21	Син., триг. или кб. Гол., гекс. Мн.		7,24
1444	Nd ₂ S ₃ Nd ₂ (SO ₄) ₃ · 8H ₂ O	неодима Сульфид неодима Сульфат неодима,	384,67 720,79	Темно-з., кб. Кр., мн., 1,5413;		5,179 ¹¹ 2 2,850 —
1446	Nd ₂ (WO ₄) ₃	октагидрат Вольфрамат	1032,02	1,5505; 1,5621 Тв.		•
1448	Ni ₃ As ₂ NiAs Ni ₃ (AsO ₄) ₂	неодима Арсенид никеля Арсенид никеля Ортоарсенат	325,97 133,63 4 53,91	Тетрат. Гекс. Желт., ам.	To the state of th	7,86 7,57 4,98
	NiB NiBr ₂	никеля Борид никеля Бромид никеля	69,52 218,53	 Желт. расплыв. крист., триг.		7,38 ¹⁸ -4,64 ²⁸
1452	NiBr ₂ · 3H ₂ O	Бромид никеля, тригидрат	272,57	Желтовз. расплыв. крист.		
1453	$Ni(BrO_3)_2 \cdot 6H_2O$	Бромат никеля, гексагидрат	422,62	3., мн.		2,575
1455	Ni ₃ C Ni(CN) ₂ Ni(CN) ₂ · 4H ₂ O	Карбид никеля Цианид никеля Цианид никеля, тетрагидрат	188,14 110,75 182,81	Гекс. 3. пор. 3. тб. или пор.		7,957 ²⁵ –
1457	Ni(CNS) ₂	Роданид никеля	см. №	1469 Ni(NCS) ₂		
	NiCO ₃ NiCl ₂	Карбонат никеля Хлорид никеля	118,72 129,62	Свз., ромб. Желт. расплыв. крист., триг.		3,55
1460	$NiCl_2 \cdot 6H_2O$	Хлорид никеля,	237,72	З. расплыв. крист.,		•••
1461	$Ni(ClO_8)_2 \cdot 6H_2O$	гексагидрат Хлорат никеля,	333,72	мн., ~1,57 Кр. крист.	ó	2,07
1462	$Ni(ClO_4)_2 \cdot 5H_2O$	гексагидрат Перхлорат никеля, пентагидрат	347,70	Сине-з., гекс.	• 1 € Na	***
1463	$Ni(ClO_4)_2 \cdot 6H_2O$	Перхлорат никеля, гексагидрат	365,72	Сине-з., гекс., ~1,55		•••
1464	NiF ₂	Фторид никеля	96,71	3., тетраг.	• • • • • • • • • • • • • • • • • • •	4,63
1465	$Ni(H_2PO_2)_2 \cdot 6H_2O$	никеля,	296,80	З., кб.		1,8220
1466	NiI ₂	гексагидрат Иодид никеля	312,52	Черн. расплыв. крист., триг.		5,834

		Температу	pa, °C	P	астворимост	ь	
	, -			в вс	оде	в других	No.
	Плотность	плавления	кипения	при 20° С	при 100°C	раствори-	n/o
	• • •	•••	•••	40625	•••	Р. сп., ац.	1440
	7,24	1900 Разл. 300	•••	0,0019 ¹⁸ 0,00007	0,003 ⁷⁵	•••	1441 1442 1443
	5,179 ¹¹ 2,850	2000 разл. -8H ₂ O, 350	: Разл. 700—800	H. p. 9,0	Pear. 1,5	•••	1444 1445
	•••	•••	•••	0,021	0,027	•••	1446
	7,86 7,57 4,98	1000 968 	•••	 Н. р. Н. р.	Н. р.	•••	1447 1448 1449
	7,38 ¹⁸ - 4,64 ²⁸	963	•••	Pear. 131	Pear. 155	 Р. сп.,	1450 1451
	•••	$-3H_{2}O$, 200	•••	241	315	эф. Р. сп.,	1452
	2,575	Разл.	•••	27,5 бв.	•••		1453
	7,95725	•••	•••		•••		1454
,	•••	-4H ₂ O, 200	 Разл.	0,00618	• • •	• • • •	1455 1456
		-					1457
	3,55	Разл. Возг. 973—98 7	•••	0,0093 ²⁵ 59,5 ¹⁰	H. p. 87,7	 Р. сп.; н. р.	1458 1459
	•••	•••	•••	21318	600	NН ₃ Р. сп.	1460
	2,07	Разл. 80	•••	•••		•••	1461
		•••	•••	111 ¹⁸ бв.	118 ⁴⁵ бв.		1462
	•••	140	•••	Ρ.	Ρ,	н. р. хлф Р. сп., ац.; н. р	1463
	4,63	***	•••	2,5510	2,5890	хлф. Н. р. сп.	, 1464
	1,8220	Разл. 100	•••	Ρ,	•••	эф. , NH	1465
	5,834	_ 797	•••	124,290	188,290	Р. сп.	1466

Ne n/n	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1467	Ni(IO ₃) ₂	Иодат никеля	408,52	Желт. иг.
1468	$Ni(IO_3)_2 \cdot 4H_2O$	Иодат никеля, тетрагидрат	480,58	Желт., гекс.
1469	Ni(NCS) ₂	Изотиоцианат никеля	174,87	Темно-кор. пор.
1470	$Ni(NO_3)_2 \cdot 6H_2O$	Нитрат никеля, гексагидрат	290,81	3. расплыв. крист.
471 472	NiO. Ni ₃ O ₄	Оксид никеля (II) Оксид	74,71 240,13	Темно-з., кб., 2,37 Темно-сер. пор.
1473	Ni ₃ O ₄ · 2H ₂ O	никеля (II, III) Оксид никеля (II, III),	276,16	Темно-сер. пор.
474	$Ni_2O_3 \cdot xH_2O$	дигидрат Оксид никеля (III), полигидрат	•••	Серо-черн. пор.
1475	Ni(OH) ₂	Гидроксид никеля (II)	92,73	Свз., ам. или крист.
476	NiO(OH)	Оксид-гидроксид никеля (III)	91,72	Черн. пор.
477	NiO(OH)	Оксид-гидроксид никеля (III)	91,72	Черн. блест. крист.
478	Ni ₂ P	Фосфид никеля	148,40	Сер., триг.
1479 1480	4/2	Фосфид никеля Ортофосфат никеля, окта- гидрат	238,09 510,30	Темно-з. или черн. З. пл.
	$Ni_2P_2O_7 \cdot 6H_2O$	Дифосфат никеля, гексагидрат	399,48	3. крист.
483	Ni ₂ S Ni ₃ S ₂	Сульфид никеля Сульфид никеля	149,47 240,21	Желт. крист. Желт. блест., триг.
484	NiS	Сульфид никеля	90,78	Черн., триг. или гекс.
485 486	Ni ₃ S ₄ NiSO ₃ • 6H ₂ O	Сульфид никеля Сульфит никеля,	304,35 246,88	Серо-черн., кб. З., триг.
487	NiSO ₄	гексагидрат Сульфат никеля	154,78	Желт., ромб.
	$NiSO_4 \cdot 6H_2O$	Сульфат никеля, гексагидрат	262,88	Крист.; α син., тетраг.; β з., мн., 1,487; 1,5109
	NiSO ₄ · 7H ₂ O	Сульфат никеля, гептагидрат	280,89	3., ромб., 1,467; 1,489; 1,492
	$NiS_2O_6 \cdot 6H_2O$	Дитионат никеля, гексагидрат	326,93	3., трикл.
491	NiSb	Стибид никеля	180,47	Роз., гекс.

Ī		Температ	гура, ⁰С	P:	астворимост	ъ	
١				в вс	рде	в других	Ne
	Плотность	плавления	кипения	при 20 ∘С	при 100 °C	раствори-	n/n
	5,07	***	• • •	1,130	1,090	0,0 0	1467
	•••	Разл. 100	. • • •	0,80	• • •	•••	1468
	•••		•••	52,625	•••	•••	1469
	2,05	56,7	136,7	238,50	225 бв.	Р. сп.	1470
	7,45	1990	•••	H. p. H. p.	Н. р. Н. р.	•••	1471 1472
	3,41232	•••	•••	Н. р.	Н. р.	• • •	1473
. •	4,83	Разл. 600	•••	Н. р.	Н. р.		1474
	4,1	•••	•••	0,0000518		,	1478
	4,15	Разл,	•••	•••	• • •	• • • .	1470
	3,85	Разл. 138—140	•••	•••	•••	•••	147
	6,3115	112	•••	Н. р.		• • •	1478
	5,99	• • •	• • •	Н. р.	Н. р.	• • •	1479
	•••	Разл.	•••	Н. р.	Н. р.	***	1480
	3,93 ²⁵ бв.	***	•••	Н. р.	•••	•••	148
	5,52			Н. р.			148
	5,82	•••	• • •	H. p.	•••	•••	148
	5,3-5,65	797	•••	Н. р.	Pear.	• • •	148
	4,7	•••		Н. р.	• • •	•••	148
	•••	•••	•••	Н. р.	•••	• • •	148
	3,68	—SO ₃ , 840	•••	$38,3^{20}$	77100	Н. р. сп., эф., ац.	, 148
	2,07	-6H ₂ O, 280	•••	8920	283100	Р. сп., мет.	148
	1,948	-H ₂ O, 31,5	•••	10120	375100	сп. (12,5) Р. сп.	148
	1,908	Разл.	•••	• • •	•••	. •••	149
	7,54	1158	Разл. 1400	•••			149

ł							Темпер	ратура, °С	P	астворимост	ъ	Ī
№	**************************************		Молеку-	Цвет, кристалличе- ская форма,	Ã.				ВВ	оде	в лругия	No.
п/п	Формула	Название	лярная масса	показатель преломления		Плотность	плавления	кипения	при 20 °C	при 100 °С	в другия раствори- телях при 20 °C	
1493	NiSe NiSeO ₄ · 6H ₂ O ~	Селенид никеля Селенат никеля, гексагидрат	137,67 309,77	Серебрбел. крист. 3., тетраг. или мн., 1,5393		8,46 2,314	•••	•••	H. p. 31,40	19180	• • •	1492 · 1493
	Ni ₂ Si NpBr ₈	Сидицид никеля Бромид нептуния (III)	1 45,46 476,78	Ромб. или гекс. 3., гекс. или ромб.		7,2 ¹⁷ 6,62	1309	~ 1800	Н. р.		***	1494 1495
•	NpBr ₄	Бромид нептуния (IV)	556,69	Кркор., мн.		•••	~470	> 500 разл.	• • • .	***	8 + \$ Pa	1496
1497	NpCl ₃	Хлорид · нептуния (III)	343,42	Бел., гекс.	*	5,58	800	1527	•••	•••	***	1497
	NpCl ₄	Хлорид нептуния (IV)	378,87	Желт. или кркор., тетраг.		4,95	538	•••	Р.	P.	* ***	1498
1499	NpF ₃	Фторид нептуния (III)	294,05	Черн. или пурп., гекс.	· ·	9,12	1435	2223	Н. р.	•••	-	1499
1500	NpF ₄	Фторид нептуния (IV)	313,05	Свз., мн.		6,8	•••	1700—1800	Н. р.	•••		1500
1501	NpF ₆	Фторид нептуния (VI)	351,05	Оркор., ромб.		5,00	53	55,2	• • •	•••	•••	1501
	NpI ₃	Иодид нептуния (III)	617,77	Кор., ромб.		6,82	~970	. •••	• • •	***	•••	1502
	Np(IO ₃) ₄	Иодат нептуния (IV)	936,67	Ор. кор. крист.		•••		•••	•••		***	150 3
1504 1505	NpN NpO	Нитрид нептуния Оксид нептуния (II)	251,06 253,06	Черн., кб. Кб.		14,19 13,35	•••	•••	Н. р.	***	•••	150 4 150 5
1506	NpO_2	Оксид нептуния (IV)	269,06	Кор., кб.	1	11,1	•••	***			•••	150 6
1507	Np ₈ O ₈	Оксид нептуния (IV. VI)	839,17	Кор., ромб.		•••	•••	• • •	• • • •	•••	•••	1507
1508	NpO ₄ · 2H ₂ O	Пероксид нептуния, диги-	337,08	Бц. хлопья		*** *	•••	***	440		• •••	1508
1509	Np ₂ S ₃	драт Сульфид нептуния (III)	570,31	Черн., ромб.		8,9	•••	•••	***		,	150 9
1510	$Np(SO_4)_2 \cdot xH_2O$	Сульфат нептуния (IV),	•••	Ярко-з. крист.		•••	• • •	•••	•••	***	•••	151 0
1511 1512	NpSi ₂ OF ₂	полигидрат Силицид нептуния Фторид кислорода	292,23 54,00	Тетраг. Бц. г.		9,03 Ж. 1,52 ⁻¹⁴⁶	—223,8	-145,3	Н.р. Медленно	Pear.	•••	151 1 151 2
1513	O_2F_2	Фторид кислорода	70,00	Оркр. крист.		Ж. 1,45 ⁻⁸⁷	-169	—57	pear. Pear.	Pear.	•••	151 3
1514	OsCl ₂	Хлорид осмия (II)	261,1	или крж. Темно-кор. расплыв.		•••	Разл.	•••	Н. р.	Сл. реаг.	Р. сп.,	1514
1515	OsCl ₃	Хлорид осмия (III)	296,6	крист. Кор., кб.		• • •	Разл.	•••	Ρ.	•••	эф. Р. сп.;	151 5
1516	OsCl ₈ • 3H ₂ O	Хлорид осмия (III), тригидрат	350,6	Темно-э. крист.		•••	560—600 Разл.	• • •	Р.	•••	сл. р. эф. Р. сп.	

№ II/II	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
517	OsCi.	Хлорид осмия (IV)	332,0	Кркор. иг.
518	OsF ₄	Фторид осмия (IV)	266,2	Кор. пор.
519		Фторид осмия (VI)	304,2	3. крист.
520	OsF ₈	Фторид осмия (VIII)	342,2	Лимонно-желт. крист.
521	OsO	Оксид осмия (II)	206,2	Черн. пор.
522	Os ₂ O ₃	Оксид осмия (III)	428,4	Темно-кор. пор.
	OsO ₂	Оксид осмия (IV)	222,2	Кркор., кб. или гекс.
	OsO ₄	Оксид осмия (VIII)	254,2	α бц., мн.; β желт., крист.
	OsS ₂	Сульфид осмия (IV)	254,3	Черн., кб.
	OsS ₄	Сульфид осмия (VIII)	318,4	Корчерн.
	OsSO ₃	Сульфит осмия (II)	270,3	Сине-черн.
528	PBr ₃	Бромид фосфора (III)	270,70	Бц. дым. ж., 1,697 ^{26,6}
529	PBr ₅	Бромид фосфора (V)	430,52	Желт., ромб.
530	PBr ₂ F	Фторид-дибромид фосфора (III)	209,79	ж.
531	PCI _g	Хлорид фосфора (II)	101,88	Бц. ж.
532	PCI ₃	Хлорид фосфора (III)	137,33	Бц. дым. ж., 1,516 ¹⁴
533	PCl _s -	Хлорид фосфора (V)	208,24	Желтовбел., тетраг.
534	PF ₃	Фторид	87,97	Бц. г.
535	PF ₅	фосфора (III) Фторид	125,96	Бц., 1,006416 ± + 18 · 10 ⁻⁷
	PH ₃	фосфора (V) Фосфин	34,00	Бц. самовоспламе- няющийся г. или бц. ж.
537	P_2H_4	Фосфин	65,98	Бц. самовоспламе- няющаяся ж.
538	$(P_4H_2)_3$	Фосфин	377,73	Желт. тв.
539	PH ₄ Br	Бромид фосфония	114,91	Бц., кб.
540	PH ₄ Cl	Хлорид фосфония	70,46	Бц., кб.
1541	PH ₄ I	Иодид фосфония	161,91	Бц. расплыв. крист., тетраг.
542	$(PH_4)_2SO_4$	Сульфат фосфония	166,07	Бц. расплыв. крист.

120 205 Pear. Pear 120 205 Pear. Pear 34,4 47,3 P.; pear. P.; pear H. p. H. p 7,91 ²² Pasn. 650 H. p. H. p 4,906 ²² α39,5; 130 5,26° 67,01 ²⁵ P. CC απ., 9 44,00 μαsn H. p. H. p Pasn H. p. H. p Pasn H. p Pasn H. p 2,652 ¹⁸ −40 173,3 Pear. Pear. P. sφ ππφ. CS₂; pe απ. 2,652 ¹⁸ −40 173,3 Pear. Pear. P. sφ ππφ. CS₂; pe απ. 2,652 ¹⁸ −40 173,3 Pear. Pear. P. sφ ππφ. CS₂; pe απ. 2,652 ¹⁸ −40 173,3 Pear. Pear. P. sφ ππφ. CS₂; pe απ.	Ť
Плавления Кипения При 20 °C При 100 °C При 1	HX No
120 205 Pear. Pear 120 205 Pear. Pear 205 Pear. Pear 206 Pear. Pear 207 Pear. Pear 208 Pear. Pear 209 Pear. Pear 200 Pear. Pear 200 Pear. Pear 200 Pear. Pear 200 Pear. Pear. Pear 200 Pasa 201 Pasa 202 Pasa. 650 203 P. CC Cn., 9 203 P. CC Cn., 9 204 Pear. Pear. Pear. Pear. Pear. Pear. Pear. P. sф 205 Pear. Pear. Pear. Pear. Pear. Pear. Pear. P. cs 206 Pear. Pear	ри- п/п
120 205 Pear. Pear 120 205 Pear. Pear H. p. H. p H. p. H. p 14,906²² α39,5; 130 5,26⁰ 67,01²⁵ P. CC Cn., 9 Agan H. p. H. p Pasn H. p. H. p Pasn H. p Pasn H. p Pasn H. p Pear. Pear. Pear. Pear. Pear. Pear. P. sф xnф. CS₂; pe cn. CS₂; pe cn. 2,852¹⁵ —40 173,3 Pear. Pear. Pear. P. cn yh. CS₂; pe cn. 17,8567 —40 173,3 Pear. Pear. Pear. P. cn yh. CS₂; pe cn. 1,5567 —91 76,4 Pear. Pear. Pear. P. cn yh., CS₂; CC14, 6 yh., xn CS₁; Can., xn CS₁; Can., xn CS₂; CC14, 6 yh., xn CS₁; Can., xn CS₁; Can., xn CS₂; CC14, 6 yh., xn CS₁; Can., xn Can., xn Cn., xn Can., xn yh., xn	сп. 1517
34,4 47,3 P.; pear. P.; pear H. p. H. p H. p. H. p 7,91 ²² Pasn. 650 H. p. H. p 4,906 ²² α39,5; 130 5,26° 67,01 ²⁵ P. CC, 9 4,906 ²² α39,5; 130 5,26° 67,01 ²⁵ P. CC, 9 Pasn H. p. H. p Pasn H. p Pasn H. p 2,852 ¹⁵ —40 173,3 Pear. Pear. Pear. P. sф xnф. CS ₂ ; pe 2,852 ¹⁵ —40 173,3 Pear. Pear. Pear. P. c 2,852 ¹⁵ —40 173,3 Pear. Pear. Pear. P. c 2,100 pasn. 106 pasn. Pear. Pear. P. c 2,181° —115 78,4 Pear. Pear. Pear. P. c 1,5567 —91 76 Pear. Pear. Pear 1,5567 —91 76 Pear. Pear. Pear. P 2,11 166,8 (под возг. Pear. Pear. P 2,11 166,8 (под возг. Pear. Pear. P 1,5294 г/дм³ —94 —84,6 Pear. Pear. Pear. P 1,5294 г/дм³ —133,8 —87,8 27 см³ P 1,612 —99 51,7 H. p. H. p. H. p Bosr Pear. Pear. Pear 28 (4,6 МПа) Возг. Pear. Pear. Pear 28 (4,6 МПа) Возг. Pear. Pear. Pear	1518
Pasл H. p. H. p 7,91 ²² Pasл. 650 H. p. H. p 4,906 ²² α 39,5; 130 5,26° 67,01 ²⁵ P. CC cn., 9 Pasл H. p. H. p 100 Pasл H. p. H. p 110 Pasл H. p 111 Pasл H. p 112 Pasл H. p 1130 S,26° 67,01 ²⁵ P. CC cn., 9 Pasл H. p 114 p. H. p 115 Pasл H. p 115 Pasл H. p 116 Pasл. Pear. Pear. Pear. Pear. P. sф xлф. CS ₂ ; pe cn. 115 Pasл. Pear. Pear. Pear. Pear. P. cn. 115 Pasл. Pear. Pear. Pear. Pear. Pear. Pear. P. cn. 11567 —91 76 Pear. Pear. Pear. P. sф 63л. xл CS ₂ . CC	
Разл. 650 H. р. H. р. H. р. 4,906²²² α 39,5; 130 5,26° 67,01²⁵ P. CC сп., 9 β 41,0 H. р. H. р. 9	1520
7,9122 Разл. 650 H. р. H. р. 4,90622 α 39,5; 130 5,26° 67,0125 Р. СС Сп., 9 Разл. H. р. H. р. Разл. H. р. Разл. H. р. 2,65218 —40 173,3 Pear. Pear. P. эф хлф. —28 100 разл. Pear.	1521
4,906 ²² α 39,5; 130 5,26° 67,01 ²⁵ P. CC cn., 9 β 41,0 H. p. H. p. Pasn. H. p. Pasn. H. p. 2,652 ¹⁸ -40 173,3 Pear. Pear. Pear. P. 9ф <100 разл.	
β 41,0 СП., 9 № Разл. Н. р. Н. р. СП., 9 № Разл. Н. р. Н. р. Н. р. № Разл. Н. р. Н. р. Н. р. Н. р. № Разл. Н. р.	1523
Разл H. р. H. р Разл H. р н. р Разл H. р н. р Разл H. р н. р Разл H. р Н. р Разл H. р Н. р Разл H. р Н. р Разл. н. р. н. р . р Н. р н. р Л. р. н. р Реаг. Реаг 1,5294 г/дм³ —133,8 —87,8 27 см³ Реаг. Реаг эф. 1,012 —99 51,7 H. р. H. р. Р. сп. скипид возг Реаг. Реаг Реаг. Реаг Реаг. Реаг	
Разл H. р	•
2,65218 —40 173,3 Pear. Pear. Р. эф хлф. ССS2; ре сп. < 100 разл.	1526
хлф. CS ₂ ; ре сп.	1527
СS ₂ ; ре сп. 2,181° —115 78,4 Pear. Pear. P. сп. 2,181° —115 78,4 Pear. Pear. P. сп. —28 180 Pear. Pear. P. сп. ф., С 1,5567 —91 76 Pear. Pear. P. ф. бэл., хл. СS ₂ , С 2,11 166,8 (под давлением) 159—162 давлением) 159—162 3,907²° —151,6 —101,8 Pear. Pear. P. сп. г/дм³ 5,805 г/дм³ —94 —84,6 Pear. Pear. P. сп. 1,5294 г/дм³ —133,8 —87,8 27 см³ ••• Р. сп. эф. 1,012 —99 51,7 H. р. Н. р. Р. сп. оскипид. 1,831° Воспл. 160 Разл. Н. р. Н. р. Н. р. Возг. — Реаг. Реаг. Реаг. 28 (4,6 МПа) Возг. Реаг. Реаг.	
<100 разл. 106 разл. Pear. Pear. P. CS CCl ₄ , 6 2,181° —115 78,4 Pear. Pear. P. сп эф., С —28 180 Pear. Pear. Pear. P. эф. бал., хл СS ₂ , С 2,11 166,8 (под Возг. Pear. Pear. P. ССІ давлением) 159—162 CS ₂ 3,907²° —151,6 —101,8 Pear. Pear. P. сп г/дм³ 5,805 г/дм³ —94 —84,6 Pear. Pear. Pear 1,5294 г/дм³ —133,8 —87,8 27 см³ P. сп эф. 1,012 —99 51,7 H. р. H. р. СКипид. П. 1,831° Воспл. 160 Разл. Н. р. Н. р. СКипид Возг. Реаг. Pear. Pear 28 (4,6 МПа) Возг. Pear. Pear	ar.
2,181° —115 78,4 Pear. Pear. Pear. P. сп эф., С эф., С эф., С 1,5567 —91 76 Pear. Pear. P. эф. бал., хл СS₂, С 2,11 166,8 (под давлением) Bosr. Pear. Pear. Pear. P. сп 3,907²0 —151,6 —101,8 Pear. Pear. P. сп г/дм³ —94 —84,6 Pear. Pear. P. сп 1,5294 г/дм³ —133,8 —87,8 27 см³ ••• Р. сп эф. 1,012 —99 51,7 H. р. H. р. P. сп скипид 1,831° Воспл. 160 Разл. H. р. Pear.	₂ , 1 529 зл.
—28 180 Pear. Pear 1,5567 —91 76 Pear. Pear. P. эф бзл., хл СS ₂ , С ССS ₂ ССS ₂ , С ССS ₂ СССS ₂ ССS ₂ СССS ₂ ССS ₂ СССS ₂ ССS ₂ СССS ₂ ССS ₂ ССС	., 1530 S,
53л., хл CS₂, С 2,11 166,8 (под Возг. Реаг. Реаг. Р. ССІ давлением) 159—162 CS₂ 3,907²0 —151,6 —101,8 Реаг. Реаг. Р. сп г/дм³ 5,805 г/дм³ —94 —84,6 Реаг. Реаг 1,5294 г/дм³ —133,8 —87,8 27 см³ ··· Р. сп эф. 1,012 —99 51,7 H. р. Н. р. Скипид. 1,83¹0 Воспл. 160 Разл. Н. р. Н. р. Скипид. Возг Реаг. Реаг 28 (4,6 МПа) Возг. Реаг. Реаг	1531
давлением) 159—162 CS2 3,90720 —151,6 —101,8 Pear. Pear. P. сп г/дм³ —94 —84,6 Pear. Pear. Pear. 1,5294 г/дм³ —133,8 —87,8 27 см³ ••• P. сп эф. 1,012 —99 51,7 H. р. H. р. P. сп 1,8310 Воспл. 160 Разл. H. р. H. р. H. р. H. р. Возг. — Реаг. Реаг. Реаг. Реаг. 28 (4,6 МПа) Возг. Реаг. Реаг. Реаг.	., 1532 ф.,
3,90720 —151,6 —101,8 Pear. Pear. P. сп. г/дм³ 5,805 г/дм³ —94 —84,6 Pear. Pear. — 1,5294 г/дм³ —133,8 —87,8 27 см³ ••• Р. сп. эф. 1,012 —99 51,7 H. р. H. р. Р. сп. скипид. 1,8310 Воспл. 160 Разл. H. р. H. р. H. р. H. р. Возг. — Реаг. Реаг. Реаг. 28 (4,6 МПа) Возг. Реаг. Реаг. Реаг.	1533
5,805 г/дм³ —94 —84,6 Pear. Pear. 1,5294 г/дм³ —133,8 —87,8 27 см³ P. сп. эф. 1,012 —99 51,7 H. р. H. р. P. сп. скипид. 1,8310 Воспл. 160 Разл. H. р. H. р. H. р. H. р. Возг. Реаг. Реаг. 28 (4,6 МПа) Возг. Реаг. Реаг.	1534
эф. 1,012 —99 51,7 H. р. H. р. Р. сп скипид. 1,83 ¹⁰ Воспл. 160 Разл. H. р. H. р. H. р. Возг Реаг. Реаг. 28 (4,6 МПа) Возг. Реаг. Реаг	1535
1,8310 Воспл. 160 Разл. Н. р.	, 1536
1,83 ¹⁰ Воспл. 160 Разл. Н. р. Н. р. Н. р. Возг. Реаг. Реаг 28 (4,6 МПа) Возг. Реаг. Реаг	
Возг Pear. Pear 28 (4,6 МПа) Возг. Pear. Pear	сп. 1538
28 (4,6 МПа) Возг. Pear. Pear	1539
2.86 Boar, 62.3 Pear Pear	1540
tour louis	1541
··· Pear, Pear, ···	1542

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
543	P_2I_4	Иодид	569,56	Ор., трикл.
544	PI ₃	фосфора (II) Иодид	411,69	Кр. расплыв.
545 546	$\begin{array}{c} P_3N_5 \\ P_2O_4 \end{array}$	фосфора (III) Нитрид фосфора Оксид	162,95 125,94	
547	P ₂ O ₃ (или P ₄ O ₆)	фосфора (IV) Оксид фосфора (III)	109,94	крист., ромб. Бел. расплыв. крист., мн.
548	P ₂ O ₅ (или P ₄ O ₁₀)	Оксид фосфора (V)	141,94	Бел. расплыв. крист., мн.
549	POBr ₃	Оксид-бромид	286,70	Бц. пл.
550	POF ₃	фосфора (V) Оксид-фторид фосфора (V)	103,97	Бц. г.
551	POCI ₃	Оксид-хлорид фосфора (V)	153,33	Бц. дым. ж., 1,460 ^{25,1}
552	POCl ₂ Br	Оксид-хлорид- бромид	197,79	Бц. крист. или ж.
553	P ₄ S ₃	фосфора (V) Сульфид фосфора	220,09	Желт., ромб.
554	P ₄ S ₆	Сульфид фосфора	316,28	Серо-желт. крист.
555	P4S7	Сульфид фосфора	348,34	Свжелт. крист.
556	P ₃ S ₆	Сульфид фосфора	285,30	Желт. иг.
557	P_2S_5	Сульфид фосфора	222,27	Серо-желт. расплыв. крист.
558	P ₄ Se	Селенид фосфора	202,85	Желт. ж.
1559	P ₂ Se	Селенид фосфора	140,91	Крист.
1560 1561 1562	P ₄ Se ₃ P ₂ Se ₃ P ₂ Se ₅	Селенид фосфора Селенид фосфора Селенид фосфора	360,77 298,83 456,75	Сркр. крист. Темно-кр. пор. Темно-кр. иг.
1563	PaCl ₄	Хлорид протактиния (IV)	372,86	Желтовз., тетраг.

		,			40.		
	1	Темпера	тура, °С	P			
				. В В	оде	B #5V5UB	<u> </u>
	Плотность	плавления	кипения	при 20 °С	при 100 °C	в других раствори- телях при 20°C	n/n
	•••	124,5	Разл.	Pear.	Pear.	P. CS ₂	1543
	•••	61	Разл.	Pear.	Pear.	P. CS ₂	1544
	2,51 ¹⁸ 2,54	>100	Разл. 80	H. p. Pear.	Сл. р. Pear.	Н. р.	15 45 15 46
	2,13521	23,8	175,3	Реаг.	Pear.	P. CS ₂ , эф., хлф.,	1547
	2,39	563 (под давлением)	Возг. 347	Pear.	Pear.	бзл. Н. р. NH ₃ ,	1548
	2,8220	56-	192	Pear.	Pear.	CH,COOH P. H ₂ SO ₄ ,	1549
	4, 8 г/дм ³	-39,1	•••	Pear.	Pear.	CS ₂ , эф. Р. сп., ац., CCl ₄ ,	15 50
	1,675	2	105	Pear.	Реаг.	бзл. Реаг. сп.	1551
	Ж. 2,10414	13	137,6	Pear.	Pear.	•••	1552
	2,03	172,5	407,5	Н. р.	Pear.	Р. CS ₂ (60), бзл.,	1553
	•••	290	490	Pear.	Pear.	PCl ₃ P. сп., эф.;	1554
	2,1917	310	523	•••	•••	сл. р. CS ₂ Сл. р. CS ₂	15 55
•	•••	298	•••, •	•••	•••	Сл. р. СS₂	1556
	2,03	290	514	Реаг.	Pear.	P. CS_2 (0,22)	1557
	•••	12	Воспл.	Pear.	Pear.	Р. CS ₂ ; н. р. сп.,	15 58
	•••	. •••	•••	Pear.	Pear.	ац. P. CS ₂ ; н. р.	15 59
	1.31	242	360400	•••		сп., эф.	1560
		Разл.	•••	•••	Реаг.	H. p. CS ₂	
	•••	Разл.	•••	Pear.	Pear.	P. CCl ₄ ; н. р. CS ₂	1562
	• • •	Возг. вак. 400	• • • •		•••	n, p. 00g	1563

24. 11/11	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1564	PaCl ₅	Хлорид	408,31	Бц. иг.
1565	PaF ₄	протактиния (V) Фторид протактиния (IV)	307,04	Бур., мн.
1 56 6	PaF _s	Фторид протактиния (V)	326,04	Бц. крист.
1567	PaO	Оксид	247,04	Черн., кб.
1568	PaO ₂	протактиния (II) Оксид протакти- ния (IV)	263,04	Черн., кб.
1569	Pa ₂ O ₅	Оксид протактиния (V)	542,09	Бел., кб. или ромб.
1570	Pb(AsO ₂) ₂	Метаарсенит свинца (II)	421,03	Бел. пор.
1571	$Pb_8(AsO_3)_2 \cdot xH_2O$	Ортоарсенит свинца (II),	•••	Бел. пор.
1572	Pb(AsO ₃) ₂	полигидрат Метаарсенат	453,03	Триг.
1573	Pb ₃ (AsO ₄) ₂	свинца (11) Ортоарсенат свинца (11)	899,41	Бел. крист.
1574	Pb ₂ As ₂ O ₇	Диарсенат свинца (II)	676,22	Ромб., 2,03
1575	Pb(BO ₂) ₂ · H ₂ O	Метаборат свинца (II),	310,82	Бел. крист.
1576	PbBr ₂	гидрат Бромид свинца (II)	367,01	Бц., ромб.
1577	$Pb(BrO_3)_2 \cdot H_2O$	Бромат свинца (II),	481,04	Бц., мн.
1578	PbCO ₃	гидрат Карбонат	267,20	Бц., ромб., 1,804; 2,076; 2,078
1579	Pb(CN) ₂	свинца (II) Цианид	259,22	Желтовбел. крист.
1580	PbCl ₂	свинца (II) Хлорид свинца (II)	278,10	Бц., ромб., 1,199; 2,217; 2,260
1581	PbCl ₄	Хлорид свинца (IV)	349,00	Желт. маслянистая ж.
	Pb(ClO ₂) ₂	Хлорит свинца (II)	342,09	Желт., тетр.
1583	$Pb(C!O_3)_2$	Хлорат свинца (II)	374,09	Бел., мн.
1584	$Pb(ClO_3)_2 \cdot H_2O$	Хлорат свинца (II), гидрат	•	Бел., мн.
1 5 85	Pb(ClO ₄) ₂ · 3H ₂ O	Перхлорат свинца (II), тригидрат	460,14	Бел., ромб.

	Температ	ypa, °C	· F	растворимост	гь	
-		,	вв	оде	в других	N₂
Плотность	плавления	кипения	при 20 °C	при 100 °С	раствори- телях при 20 °C	n/B
 •••	301	• • •	Р.	•••	Р. эф.,	1564
•••	•••	•••	Pear.	Pear.	амил. сп,	1565
•••	• • •	•••	Р.	Р.		15 66
13,43	•••	, •••				1567
• • • .	. •••	•••	•••	•••		1568
9,0	800	•••		• • •	• • • •	1569
5,85	•••	• • •	Н. р.	•••	• • • •	1570
5,85	•••	•••	Н. р.	•••		1571
6,4218	•••	•••	Реаг.	Pear.	1 ***:	1572
7,30	1042 разл.	•••	Сл. р.	•••	•••	1573
6,85	802	•••	Н. р.	Pear.	1	1574
5, 598 бв.	-H ₂ O, 160	•••	Н. р.	H. p.		1575
6,66	373	918	0,84	4,75	Сл. р. NH ₃ ;	1576
5,52	Разл. 180	1166	1,38		н. р. сп.	1577
6,6	Разл. 315	, •••	0,000011	Pear.	Н. р.	1578
•••	•••	•••	Сл. р.	P	сп., NH ₃	1579
5,85	501	956	0,6730	3,25	Сл. р. NH ₃ ;	1580
3,18	-15	Взр. 105	Pear.	Pear.	н. р. сп.	1581
3,89 4,037	В зр. 126 Разл. Разл. 110	•••	0,095 P. 151,3 ¹⁸	0,42 171 ⁸⁰	Р. сп. Р. сп.	1582 1583 1584
2,6	Разл. 100	•••	499,725	•••	Р. сп.	158 5

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1586	PbCrO ₄	Хромат свинца (11)	323,18	Желт., мн., 2,31; 2,37; 2,66
1587	PbCr ₂ O ₇	Дихромат	423,18	Кр. крист.
1588	PbF,	свинца (II) Фторид	245,19	Бел., ромб. или кб.
1589	Pb(H ₂ AsO ₄) ₂	свинца (II) Дигидроортоар- сенат свинца (II)	489,07	Трикл., 1,74; 1,82
1590	PbHAsO ₄	Гидроортоарсенат	347,12	Бел., мн.
1591	PbHIO ₅	свинца (11) Гидропараперио-	416,10	Крист.
1592	PbHIO ₅ · H ₂ O	дат свинца (II) Гидропараперио- дат свинца (II),	433,11	Ам.
1593	Pb(H ₂ PO ₄) ₂	гидрат Дигидроортофос-	401,16	Бел. иг.
1594	PbHPO ₄	фат свинца (II) Гидроортофосфат	303,17	Бел., мн.
1595	Pb(HSO ₄) ₂ · H ₂ O	свинца (II) Гидросульфат свинца (II),	419,34	Бц. крист.
1596 1597	Pbl ₂ Pb(IO ₃) ₂	гидрат Иодид свинца (II) Иодат свинца (II)	461,00 556,99	Желт., гекс. Бел.
1598	PbMoO ₄	Молибдат	367,13	Желт., тетраг., 2.40
1599	$Pb(N_3)_2$	свинца (II) Азид свинца (II)	291,23	Бк., ромб.
1600	Pb(NO ₃) ₂	Нитрат свинца (11)	331,20	Бц., кб., 1,7815
	Pb₂O PbO	Оксид свинца (I) Оксид свинца (II)	430,38 223,19	Черн., ам. или кб. Желт. или кр., тетраг.
	PbO PbO ₂	Оксид свинца (II) Оксид свинца (IV)	223,19 239,19	Желт., ромб. Кор., ромб. или тетраг.
1605	Pb(OH) ₂	Гидроксид	241,20	Бел., ам. или гекс.
1606	5 Pb ₂ O (OH) ₂	свинца (II) Оксид-гидроксид	464,39	Бел., ам. или кб.
1607	Pb ₂ OCl ₂ ·H ₂ O	свинца (II) Оксид-хлорид свинца (II),	519,30	Бц. крист., 2,146
1608	B PbCl ₂ · 2PbO	гидрат Оксид-хлорид	724,47	Бп. или желт., 2,24; 2,27; 2,31
1609	PbCrO ₄ · PbO	свинца (II) Оксид-хромат свинца (II)	546,37	'

		Температура, ⁶ С		Р			
				в вс	оде	в других	Ne
Плотность	плавления	кипения	при 20 °С	при 100 °C	раствори- телях при 20°C	п/п	
1	6,1215	844	Разл.	0,000005825			1586
	•••	•••		Pear.		•••	1587
	8,24	855	1297	0,064		H. р. ац., NH ₃	1588
	4,4615	Разл. 140	•••	Pear.		•••	1589
	5,79	Разл. 200	•••	Н. р.	Сл. р.	•••	1590
	•••	Разл. 130		Н. р.	Н. р.	•••	1591
	•••	-H ₂ O, 110	•••	Н. р.	Н. р.	•••	1592
	•••	•••	•••	•••	•••	•••	1593
	5,66115	Разл.	•••	•••	•••	•••	1594
	•••	, Разл.	•••	0,000118	•••	• • •	1595
	6,16 ···	412 Разл. 300	868	0,07 0,03 ²⁵	0,436	H. р. сп H. р. NH ₃	. 1596 1597
	6,03—7,01	1060—1070	•••	Н. р.	•••	H. p. cn	. 1598
	α 4,71;	Взр. 350	•••	0,02318	0,0970	•••	1599
	β 4,93 - 4,53	Разл. 470	•••	52,2	127	Р. сп., NH ₃	1600
	8,342 9,53	Разл. 890	 1473	H. p. 0,0017	Н. р.	•••	1601 1602
	8,0 9,375	Разл. 290	•••	0,0023 ²² H. p.	H. p. H. p.	•••	1603 1604
	•••	Разл. 145	•••	0,0155	Сл. р.	Н. р. аг	. 1605
	7,592	Разл. 145	•••	0,014	Сл. р.	• • •	1606
	6,0515	Разл. 150	•••	•••	•••	•••	1607
	7,08	693	• • •	Н. р.	Н. р.	•••	1608
	•••	• • •	•••	Н. р.	Н. р.	• • •	1609

					
№ n/n	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления	
1610	PbSO ₄ · PbO	Оксид-сульфат свинца (II)	526,44	Бц., мн., 1,93; 1,99; 2,02	
1611	$2\text{PbCO}_3 \cdot \text{Pb(OH)}_2$	Гидроксид-карбонат свинца (II)	775,60	Бц. гекс. или ам. пор., 1,94; 2,09	٠
1612	$PbCl_2 \cdot Pb(OH)_2$	Гидроксид-хлорид свинца (II)	519,30	Бел., тетраг., 2,04; 2,15	ì
16 13	$PbCl_2 \cdot Pb(OH)_2$	Гидроксид-хлорид свинца (II)	519,30	Бел., ромб.	
1614	$PbCrO_4 \cdot Pb (OH)_2$	Гидроксид-хромат	564,39	Кр., ам. или крист.	
1615	Pb(OH)NO ₃	свинца (II) Гидроксид-нитрат	286,20		
1616	$\mathrm{Pb_{3}(PO_{4})_{2}}$	свинца (II) Ортофосфат	811,51	Бел., гекс., 1,936; 1,970	}
1617	$Pb_2P_2O_7$	свинца (II) Дифосфат	588,32	Бел., ромб.	
1618	Pb(PbO ₃) или Pb ₂ O ₃	свинца (II) Метаплюмбат	462,38	Кржелт., ам. или мн.	
1619	Pb ₂ (PbO ₄) или	свинца (II) Ортоплюмбат	685,57	Кр., ам. или тетраг.	
1620	Pb ₃ O ₄ PbS	свинца (II) Сульфид	239,25	Сине-сер., кб., 3,912	
1621	PbSO ₄	свинца (II) Сульфат	303,25	Би., ромб., 1,877 1,882	}
1622	Pb(SO ₄) ₂	свинца (11) Сульфат	399,31	Бц. крист.	
1623	PbS ₂ O ₃	свинца (IV) Тиосульфат	319,32	Бел. крист. пор.	
1624	$PbS_2O_6 \cdot 4H_2O$	свинца (II) Дитионат свинца (II),	439,37	Бц., триг., 1,6351 1,653	,
1625	$\mathrm{Pb_2Sb_2O_7}$	тетрагидрат Дистибиат	769,87	Темно-желт., кб.	
1626	PbSe	свинца (11) Селенид	286,15	Сер., кб.	
1627	PbSeO ₄	свинца (II) Селенат	350,15	Бел., ромб.	
1628	PbSiO ₃	свинца (11) Метасиликат	283,27	Бц., мн., 1,961	
1629	PbTe	свинца (11) Теллурид	334,79	Бел., кб.	
1630	PbTiO ₃	свинца (11) Метатитанат	303,09	Желт., ромб. или тетраг.	И
1631	Pb(VO ₃) ₂	свинца (II) Метаванадат	405,07	Желт. пор.	
1632	PbWO ₄	свинца (II) Вольфрамат свинца (II)	455,07	Бц., тетраг., 2,182 2,269	ie 79

					Продолжение таблицы			
20		Температ	rypa, °C	-	астворимост	<u>ъ</u>		
	Плотность	плавления	кипени я	в в при 20 °C	при 100 °C	в других раствори телях при 20°C	№ п/п	
	6,92	977	•••	0,0040	Сл. р.	•••	1610	
	6,14	Разл. 400	• • • •	Н. р.	Н. р.		161	
	7,21	Разл. 524	•••	0,009518	•••		161	
	6,24	Разл. 142	·		• • •	• • •	161	
	•••	920	•••	Н. р.	•••	•••	161	
	5,93	180 разл.	•••	19,4 ^{19,2}	P.	,	161	
	6,9-7,3	1014	•••	0,000014	Н. р.	•	161	
	5,8	824	•••	Н. р.	Н. р.	•••	161	
	•••	Разл. 370.	•••	Н. р.	Н. р.	•••	161	
	9,1	Разл. 500	•••	Н. р.	Н. р.	•••	161	
	7,5	1114	•••	8 10-14	• •	•••	162	
	6,2	Разл. 1000	•••	0,004525	0,005750	•••	162	
٠,	•••	•••	•••	Pear.	•••		162	
	5,18	Разл.	•••	0,03	•••	• • •	162	
	3,22	Разл.	•••	115,0 ^{20,5}	•••	•••	162	
į.			j					
	6,72			Н. р.	Н. р.	•••	162	
	8,1015	1065		Н. р.	•••	• • •	162	
	6,37	Разл.	•••.	Н. р.	Н. р.	•••	162	
	6,49	766	•••	Н. р.	•••	•••	162	
_	8,16	917	• • •	•••	•••	•••	162	
	7,52	•••	•••	Н. р.	Н. р.	• •••	163	
5	•••	•••	•••	Сл. р.	•••	•••	163	
	8,23	•••	•••	Н. р.	•••	***	163	

33 PbWO ₄ Вольфрамат свинца (II) 34 PdBr ₂ Бромид палладия (II) 35 PdCl ₂ Хлорид палладия (II) Xлорид палладия (II) Xлорид палладия (II) дигидрат	455,07 266,2 177,3 213,3	Бп., мн., 2,27; 2,27; 2,30 Кркор. крист. Крбур. расплыв. крист,, ромб. Крбур. расплыв. пр.
34 PdBr ₂ Бромид палладия (II) Xлорид палладия (II) Xлорид палладия (II) Xлорид палладия (II) хлорид палладия (II), дигидрат	177,3 213,3	Крбур. расплыв. крист,, ромб. Крбур. расплыв. пр.
палладия (II) 35 PdCl ₂ Хлорид палладия (II) 36 PdCl ₂ · 2H ₂ O Хлорид палладия (II), дигидрат	213,3	крист,, ромб. Кр. бур. расплыв. пр.
36 PdCl ₂ · 2H ₂ O палладия (II) Хлорид палладия (II), дигидрат	213,3	крист,, ромб. Кр. бур. расплыв. пр.
36 PdCl ₂ · 2H ₂ O	·	пр.
	144,4	Tornar
$37.~\mathrm{PdF}_2$ $\Phi_{\mathrm{TOPИД}}$		Тетраг.
палладия (II) 38 PdF ₃ Фторид	163,4	Черн. расплыв.
палладия (III)	213,8	крист., ромб. Серебр. пор.
39 Pd ₂ H Гидрид палладия 40 PdI ₂ Иодид	360,2	Черн. пор.
палладия (II) 41 Pd(NO ₃) ₂ Нитрат палладия (II)	230,4	Желтовбур. расплыв. крист.,
	100 4	ромб.
42 PdO Оксид палладия (II)	122,4	Черно-з., тетраг.
43 PdO ₂ Оксид палладия (IV)	138,4	Черн. пор.
44 Pd(OH)_2 Гидроксид	140,4	Бур. пор.
палладия (II) 45 Pd(OH) ₄ Гидроксид	174,4	Темно-кор. пор.
палладия (IV) 46 Pd ₂ S Сульфид	244,9	Серо-з.
палладия (I) 47 PdS Сульфид	138,5	Черно-кор.,
палладия (II)		тетраг.
348 PdS _a Сульфид палладия (IV)	170,5	Темно-бур.
649 PdSO₄ • 2H₂O Сульфат палладия (II),	238,5	Крбур. расплыв. крист.
550 PrBr ₃ Бромид	380,63	3., гекс.
празеодима (III) Бромат празеодима (III)	686,77	3., гекс.
нонагидрат 652 PrC ₂ Карбид	164,93	Желт., тетраг.
Б53 Рг ₂ (CO ₃) ₃ · 8H ₂ O празеодима карбонат празеодима (III),	605,96	3. тб.
октагидрат 654 PrCl _a Хлорид	247,27	Сине-з., гекс.

		Температура, °С		- Растворимость				
				вв	оде	в других	Μe	
Плотность	плавления	кипения	при 20 °C	при 100 °C	раствори-	M2 ∏/□		
	•••	1123 -	•••	0,03	•••	•••	1633	
	• • •	Разл.	•••	Н. р.	Н. р.	•••	1634	
1	• • •	500 разл.	•••	Ρ.	Р.	Р. ац.	1635	
4 <u>4</u> 3 .	• • • •	Разл.	• • •	P.	. P.	Р. ац.	1636	
		•						
	•••	• • •	•••	Сл. р.	•••	•••	1637	
	5,06	Разл.	•••	Pear.	Pear.	•••	1638	
	10,76	Разл. Разл. 360	•••	 Н. р.	Н. р.	 Н. р. сп., эф.	1639 1640	
- 	•••	Разл.	•••	Pear.	•••	•••	1641	
	8,31	Разл. 750		Н. р.	Н. р.	•••	1642	
	•••	—O, 200 Разл.	•••	Н. р. Н. р.	Н. р. Н. р.	• • •	1643 1644	
•	•••	Разл,	•••	Н. р.	Н. р.	•••	1645	
٠.	7,30315	Разл. 800	•••	Н. р.	Н. р.	•••	1646	
	•••	950 разл.	•••	Н. р.	Н. р.	•••	1647	
	•••	Разл.	•••	Н. р.	Н. р.	•••	1648	
	•••	Разл.	•••	P.	Pear.	•••	1649	
	•••	693	1550	Сл. р.	•••		1650	
	•••	56,5	-9H ₂ O, 130	92 бв.	P.	•••	1651	
	5,10	Разл.	. •••	Pear.	Pear.	• • •	1652	
	•••	-6H ₂ O, 100	•••	Н. р.	•••	***	1653	
	4,1225	823	1710	91,40	141,6 ⁸⁰	Р. сп., пир.; н. р. эф., хлф.		

					_
№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления	
1655	PrCl ₃ · 7H ₂ O	Хлорид празеодима (III),	373,37	З., трикл.	
1656	PrF ₃	гептагидрат Фторид	197,90	Желт., гекс.	
1657	PrI ₃	празеодима (III) Иодид	521,62	3. крист.	
1658	$Pr_2(MoO_4)_3$	празеодима (III) Молибдат	761,63	Тетраг.	
1659	PrN	празеодима (III) Нитрид	154,91	Черн., кб.	
1660	$Pr(NO_3)_3 \cdot 6H_2O$	празеодима (III) Нитрат празеодима (III),	435,01	3. крист.	
1661	Pr_2O_3	гексагидрат Оксид	329,81	Желтовз., ам.	
1662	PrO ₂	празеодима (III) Оксид	172,91	или триг. Черно-кор., кб.	
1663	PrO ₄	празеодима (IV) Пероксид	204,90	Черн. пор.	
1664	Pr (OH) ₃	празеодима Гидроксид празеодима (III)	191,33	3., гекс.	
1665	Pr ₂ S ₃	Сульфид	378,01	Бур., кб.	
1666	$Pr_2 (SO_4)_3$	празеодима (III) Сульфат	570,00	Свз. пор.	
1667	$Pr_2(SO_4)_3 \cdot 5H_2O$	празеодима (III) Сульфат празеодима (III),	660,08	3., мн.	
1668	$Pr_2(SO_4)_3 \cdot 8H_2O$	пентагидрат Сульфат празеодима (III),	714,12	3., мн., 1,540; 1,549; 1,561	
1669	$Pr_2(SeO_4)_3$.	октагидрат Селенат	710,68	Тв.	
1670	PtBr ₂	празеодима (III) Бромид	354,91	Кор., кб.	
1671	PtBr ₄	платины (II) Бромид	514,73	Темно-кор.	
1672	Pt(CN) ₂	платины (IV) Цианид	247,13	Желтовкор.	
1673	PtCl ₂	платины (11) Хлорид	266,00	Кор. пор.	
1674	PtCl ₄	платины (II) Хлорид платины (IV)	336,90	Кор. пор.	
167 5	PtCl ₄ · 8H ₂ O	Хлорид платины (IV), октагидрат	481,02	Кр., мн.	-

		Температура, °С		P			
1	Ti-amuse-			ВВ	оде	в других	Nº
	Плотность	плавления	кипения	при 20 °C	при 100 °C	раствори- телях при 20 °C	Π/fi
	2,2517	115		2580	76880	Р. сп.	1655
	•••	1373	2330	•••	•••	• • •	1656
	• • •	733	1380	• • •	•••	• • • •	1657
	4,84	1030	***	$0,0015^{25}$		• • •	1658
	•••	•••	• • •	Pear.	Pear.	• • •	1659
	•••	-4H ₂ O, 90	—6Н ₂ О, 165	145 ¹⁶ бв.	Р.	Сл. р. эф.	1660
	7,07	Разл.	. • • •	0,0000229	• • •	•••	1661
	6,82	• • •	• • •	,	•••	• • •	1662
٠.	5,978	•••	•••	• • •	•••	P. CS ₂	1663
	•••	•••	• • •	0,00013	•••	•••	1664
	5,235	Разл.	• • •	Н. р.	Pear.	•••	1 665
	3,72616	•••	• • •	12,6	0,9	•••	1666
	3,17616	• • •	•••	Р.	1,8586	•••	1667
	2,827 ^{13,3}	—3H ₂ O, 75	•••	16,3	4,480	• • •	1668
	4,3015	•••,	• • •	360	392	• • •	1669
	6,65	Разл. 300	•••	Н. р.	Н. р.		1670
	5,69	Разл. 180	•••	0,41	Сл. р.	P. cn.	1671
	• • •	•••	•••	Н. р.	Н. р.	••:	1672
	5,8711	Разл. 581	• • •	Н. р.	Н. р.	Сл. р.	1673
	•••	Разл. 370	•••	66,60	571 ⁹⁸	NH ₃ Р. сп., ац.; сл. р.	1674
	2,43	_4H ₂ O, 100	•••	Р.	P.	NН ₃ Р. сп., эф.	1675

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1676	PtF ₄	Фторид платины (IV)	271,08	Кор.
1677	PtI ₂	иматины (IV) Иодид платины (II)	448,90	черн.
678	PtI ₄	Иодид платины (IV)	702,71	Буро-черн., ам.
1679	PtO ₂	Оксид платины (IV)	227,09	Сине-черн. пор.
680	Pt(OH) ₂	Гидроксид платины (II)	229,10	Черн.
1681	Pt(OH) ₄	Гидроксид	263,12	Крбур, иг.
1682	PtS	платины (IV) Сульфид	227,15	Черн., тетраг.
1683	PtS ₂	платины (II) Сульфид	259,22	Черн. или сер.,
1684	Pt(SO ₄) ₂ • 4H ₂ O	платины (IV) Сульфат платины (IV),	459,27	триг. Желт. тб.
685	PtSi	тетрагидрат Силицид платины	223,18	Тетраг.
686	PuBr ₃	Бромид плутония (III)	481,80	Свз. расплыв. крист., ромб.
687	PuCl ₃	Хлорид плутония (III)	348,43	Зеленовгол., гекс.
688	PuF _s	Фторид плутония (III)	299,06	Свфиол, или черн., гекс.
689	PuF ₄	Фторид плутония (IV)	318,06	Свкор. или роз.,
69 0	PuF ₆	Фторид плутония (VI)	356,06	Кркор.
691	PuI ₃	Иодид	622,78	3., ромб.
692	PuO	плутония (III) Оксид	258,07	Черн. блест., кб.
693	PuO ₂	плутония (II) Оксид	274,07	Желтовз. или
694	$Pu(OH)_3 \cdot xH_2O$	плутония (IV) Гидроксид плутония (III),	•••	кор., кб. Гол. или серо-гол.
1695	$Pu(OH)_4 \cdot xH_2O$	полигидрат Гидроксид плутония (IV),	•••	Темно-з.
696	PuPO ₄ • 0,5H ₂ O	полигидрат Ортофосфат плутония (III), гемигидрат	346,05	Свпурп., гекс.

্ৰ		Темпера	rypa, °C	P	астворимост	гь	
	· · _ ·			ВВ	оде	в других	N ₂
	Плотность	плавления	кипения	при 20 °C	при 100 ℃	раствори-	n/n
**		Разл.	•••	P., pear.	•••		1676
	6,40325	Разл. 325	•••	Н. р.	Н, р.	Р. эти- ламине; н. р. сп.,	1677
	6,06425	Разл. 370	•••	Н. р.	• • •	ац. Р. NH ₃	1678
	10,2		•••	Н. р.	Н. р.	•••	1679
	•••	Разл.	•••	Н. р.	Н. р.		1680
	•••	0,5H ₂ O,	•••	Н. р.	Сл. р.	•••	1681
	8,847	Разл.	• • •	Н. р.	Н. р.	•••	1682
	5,27	Разл.	. •••	Н. р.	Н. р.	•••	1683
*	•••		•••	P:	Pear.	Р. сп., эф.	1684_
	11,63 ¹⁸ 6,69	1100 681	 1531	H. p. P.	H. p. P.	•••	1685 1686
	5,70	760	1770	P. •	•••	***	1687
	9,32	1410	•••	Н. р.	Pear.	•••	1688
	7.0	1037	• • •	Сл. р.	• • •	•••	1689
	•••	54	62,16	Pear.	• • •	•••	1690
	6,92	780		• • •	•••	•••	1691
	13,89	•••	,•••	•••	• • •	• • •	1692
	11,44	• • •	•••	***	•••	• • • •	1693
		•••	•••	•••	•••	•••	1694
	•	•••	•••	•••	•••	•••	1695
	6,04	. •••	. •••		•••	•••	1696

		1			
N n	6 /п Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления	
16	97 RaBr ₃	Бромид радия	386	Бц. или желтов. крист.	
16	98 RaCO ₃	Карбонат радия	286	Бел. крист.	
169	99 RaCl ₂	Хлорид радия	297	Бц. или желт., мн.	
170	$00 \operatorname{Ra}(IO_3)_2$	Иодат радия	576	Крист.	
170		Нитрат радия	350	Бц. крист.	
170	02 RaŠO ₄ "2	Сульфат радия	322	Бц. крист.	
170	O3 RbBr	Бромид рубидия	165,38	Бц., кб., 1,5530	
170	M DhD-O		040.00	_	
170	94 RbBrO ₃ 95 Rb ₂ CO ₃	Бромат рубидия	213,38	<u>Б</u> ц.	
170		Карбонат рубидия	230,95	Бц. расплыв.	
170	6 RbCl	Y HODUH DUGUENE	190.09	крист.	
		Хлорид рубидия	120,92	Бц., кб., 1,493	
170	7 RbClO ₃	Хлорат рубидия	168,92	Бц. крист.	
170	8 RbClO ₄	Перхлорат	184,92	Бц., ромб.	
	0.00	рубиди я		- dr. France	
170	9 Rb ₂ CrO ₄	Хромат рубидия	286,93	Желт., ромб.	
171	$0 \text{ Rb}_{2}^{2}\text{Cr}_{2}\text{O}_{7}$	Дихромат рубидия	386,93	Крор., трикл.	
171	$1 Rb_2^2 Cr_2^2 O_7$	Дихромат рубидия	386,93	Крор., мн.	
1/1	2 RbF	Фторид рубидия	104,47	Бц., кб.	
171	3 RbH	.	06.40	n :	,
171	4 RbHCO ₃	Гидрид рубидия	86,48 146,49	Бел., кб.	
	- 1,011.003	Гидрокарбонат	140,49	Би., ромб.	
171	5 RbHSO ₄	рубидия	182,54	Бц., ромб.	
		Гидросульфат рубидия	102,01	ъц., ромо.	
171	6 Rbl	Русидия Иодид рубидия	212,37	Бц., кб., 1,6474	
171	7 RbIO ₃		260,37	_	
171	8 RbIO ₄	Иодат рубидия	276,37	Бц., мн. или кб. Бц., тетраг.	
1719	9 RbMnO₄	Периодат рубидия Перманганат	204,40	Крфиол. крист.	
	-	рубидия	,	ttp: whom: upner.	
1720	O RbNO ₃	Нитрат рубидия	147,48	Бц., триг., кб. или	
				ромб., 1,51; 1,52; 1,524	
1721	l Rb ₂ O	Оксид рубидия	186,94	Желтов., кб.	
1722	2 Rb ₂ O ₂	Пероксид рубидия		Желт., кб.	
1723	RbO ₂	Пероксид рубидия		Желтов тетраг.	
1724	I RbOH	Гидроксид рубидия	100 10	Бел. расплыв.	
1705	DLC			крист., ромб.	
1725	Rb ₂ S	Сульфид рубидия		Бц., кб.	
1/20	$S Rb_2^2 S_2$	Дисульфид	235,07	Темно-кр. крист.	
1797	Rb ₂ S ₃	рубидия	007.10	***	
1121	1(0203	Трисульфид	267,13	Желтовкр. крист.	
		рубидия		·	

		Температ	пература, °С Раствој		оаствори мо с	гворимость	
	.			ВВ	оде	в других	N ₂
	Плотность	плавления	кипения	при 20 °C	при 100 °С	раствори- телях при 20°C	n/ø
	5,78	728	Boar.	70,6	Р.	Р. сп.	1697
	•••	• • •	•••	Н. р.	• • •	• • •	1698
	4,91	900	• • •	24,5	Р.	Р. сп.	1699
	•••	•••	• • •	0.0176°	0,170	• • •	170
	•••	• • •	•••	13,9	• • •	•••	170
	2.55	682	1352	0,0002 ²⁵ 89°	191	C	170
	3,35	002	1502	69°	191	Сл. р. ац.; н. р. сп.	170
	3,68	430		2.93^{25}	5.0840		170
	•••	Разл. 740	•••	223	Ρ.	Р. абс.	170
	2,76	715	1390	91,2	138,9	сп. (0,7) Р. сп. (0,08 ²⁵); сл. р.	170
	3,19		• • •	5,4	62,8	NH_3	170
	2,9	* • • •	Разл.	$0,5^{\circ}$	18100	H. р. сп.	170 170
	3,518	•••	• • •	620	95,660		170
	3,13	•••	• • •	4,9618	27,360	• • •	171
	3,02			5,4218	28,160		171
	Ж. 2,88 ⁸²⁰	7 75	1410	30018	• • •	H. р. сп., эф., NH ₃	171
•	2,6	Pазл. > 200	•••	Pear.	Pear.	1	171
	•••	Разл. 175	• • •	116	•••	Р. сп.	171
	2,89210	•••	•••	•••	• • .•		171
	3,55	642	1300	124,70	281	Р. ац.	171
	4,33 ^{19,5}	Разл.	• 5 • • ;	$2,1^{28}$	• • •		171
	3,91816	• • •	•••	$0,65^{13}$		• • •	171
	3,235		•••	0,50	4,760	•••	171
,	3,11	310—316	•••	53,5	452	Р. ац.	172
	3,72	•••	•••	Pear.	Pear.	•••	172
	3,650	600	• • •	Pear.	Pear.		172
	3,050	280	• • •	Pear.	Pear.	•••	172
	3,20311	301	•••	18015	Р.	P. cn.	172
	2,912	530 разл.		Ρ.	Ρ.	•••	172
	•••	420	• • •	. • • •	•••	• • •	172
	• • •	213		•••	• • • •		172

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1728	Rb ₂ S ₅	Пентасульфид рубидия	331,26	Кр. расплыв. крист.
1729	Rb ₂ S ₆	Гексасульфид	363,32	Коркр.
1730	Rb ₂ SO ₄	рубидия Сульфат рубидия	267,00	Бц., ромб. или
1731	Rb ₂ SeO ₄	Селенат рубидия	313,90	гекс., 1,513 Бц., ромб.
732	ReČl ₃	Хлорид рения (III)	292,6	Tewnorks roke
733	ReCl ₅		363,5	Темно-кр., гекс.
734	ReF ₄	Хлорид рения (V)	262,5	Темно-з. Тв.
735	ReF ₆	Фторид рения (IV)		
736	Pa O	Фторид рения (VI)	300,2	Свжелт.
737		Оксид рения (III)	420,4	Черн.
	ReO ₂	Оксид рения (IV)	218,2	Черн.
738	ReO ₃	Оксид рения (VI)	234,2	Кб.
739	Re ₂ O ₇	Оксид рения (VII)	484,4	Желтовбур. пл.
740	ReO₃Br	Оксид-бромид	314,1	Бел.
741	ReOC!4	рения (VII) Оксид-хлорид	344,0	TB.
74 2	ReO ₃ Cl	рения (VI) Оксид-хлорид рения (VII)	269,7	Бц. ж.
	ReOF ₄	Оксид-фторид рения (VI)	278,2	Вц.
744	ReO ₂ F ₂	Оксид-фторид рения (VI)	256,2	Бц.
	ReS ₂	Сульфид рения (IV)	250,3	Черн., гекс.
	Re ₂ S ₇	Сульфид рения (VII)	596,8	Черн.
	RhCl ₃	Хлорид родия (III)	209,31	Кркор. расплыв. пор.
	RhF ₃	Фторид родия (III) .	159,95	Кр., ромб.
	Rh(NO ₃) ₃ RhO	Нитрат родия (III)	288,95	Желтовкор. крист.
751	Rh_2O_3	Оксид родия (II) Оксид родия (III)	118,95 253,90	Сер., крист, или ам.
752	RhO ₂	Оксид родия (IV)	134,95	Kop.
753	Rh(OH) ₃	Гидроксид родия (III)	153,97	Черн., студ.
	Rh(OH) ₄	Гидроксид родия (IV)	170,97	3.
755	RhS	Сульфид родия (II)	135,01	Серо-черн. крист.

3,613 1074 42,610 81,8 173 3,90 15912 173 257 327 P. P. 173 4,9 Pash. Pear. Pear. 173 124,5	T		Темпера	тура, °С	P	астворимост	ть	
2,6181в 225 Реаг. 172 70%-ном сси.; н. р. эф., хлф. 172 3,613 1074 42,610 81,8 173 3,90 15912 173 4,9 257 327 P. P. 173 4,9 124,5		_			ВВ	оде	вдругих	
70%-ном сп.; н. р. эф., хлф. 3,613 1074		Плотность	плавления	кипения	при 20 °C	при 100 °C	телях	n/n
201		2,61815	225	* • •	Pear.	Pear.		172
3,613 1074 42,610 81,8 173 3,90 15912 173 4,9 Pa3л. Pear. Pear. 173 4,9 124,5 .			•					
3,90 15912 173 4,9 Pasn. Pear. Pear. 173 124,5 173 124,5 173 124,5 173 124,5			201	•••	•••	• • • •		172
257 327 P. P. P. P. 173 173 4,9 Pasn. Pear. Pear. Pear		3,613	1074 -		42,610	81,8	•••	173
4,9 Pa3л. Pear. Pear. 173 Ж. 6,157 25,6 47,6 P.; pear. P.; pear. 173 H. p. H. p. 173 H. p. H. p. 173 6,9—7,4 160 Pa3л. 400 H. p. H. p. 174 8,2 300 360; 363 P. P. P. cn. 173 29 223 Pear. Pear. 174 29 223 Pear. Pear. 174 4,032 39,7 62,7 174 4,8724,5 Pa3л. H. p. H. p. H. p. H. p. 174 4,8724,5 Pa3л. H. p. H. p. 174 Pa3л. H. p. H. p. H. p. 174 Pa3л.		•					•••	173
124,5 173 Ж. 6,157 25,6 47,6 P.; pear, P.; pear, P.; pear. 173 H. p. H. p. 173 6,9—7,4 160 Pa3л. 400 H. p. H. p. 173 8,2 300 360; 363 P. P. P. P. cn. 175 39,5 163 174 29 223 Pear. Pear. 174 4,5 131 Pear. Pear. 174 4,032 39,7 62,7 174 4,032 39,7 62,7 174 7,5 Pa3л. H. p. H. p. H. p. 174 4,87 ^{24,5} Pa3л. H. p. H. p. 174 Pa3л. H. p. H. p. 174			_				•••	173
			124,5		• • •			173
6,9—7,4 160 Разл. 400 Н. р. Н. р. 173 8,2 300 360; 363 Р. Р. Р. Сп. 173 39,5 163 174 29 223 Pear. Pear. 174 4,5 131 Pear. Pear. 174 4,032 39,7 62,7 174 156 174 4,87 ^{24,5} Разл. Н. р. Н. р. Н. р 174 29 223 Pear. Pear. Pear. 174 4,032 39,7 62,7 174 156 <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>P.: pear.</td> <td>• • •</td> <td></td>				•		P.: pear.	• • •	
6,9—7,4 160 Разл. 400 Н. р. Н. р. 173 8,2 300 360; 363 Р. Р. Р. сп. 173 39,5 163 174 29 223 Pear. Pear 174 4,5 131 Pear. Pear 174 4,032 39,7 62,7 174 156 174 7,5 Разл. Н. р. Н. р. Н. р. сп. 174 4,87 ^{24,5} Разл. Н. р. Н. р. Н. р 174 Разл Н. р. Н. р 174 Разл Н. р. Н. р 174 174 174				. • • •	H. p.	H. p.	•••	
8,2 300 360; 363 P. P. P. P. cn. 173 39,5 163 174 29 223 Pear. Pear. 174 4,5 131 Pear. Pear. 174 4,032 39,7 62,7 174 156 174 7,5 Pasn. H. p. H. p. H. p. cn. 174 <td></td> <td></td> <td></td> <td>D 400</td> <td></td> <td></td> <td>• • •</td> <td></td>				D 400			• • •	
39,5 163 174 29 223 Pear. Pear 174 4,032 39,7 62,7 174 156 174 7,5 Разл. Н. р. Н. р. Н. р. сп. 174 4,87 ^{24,5} Разл. Н. р. Н. р 174 Разл Н. р. Н. р 174 Разл Разл Н. р. Н. р 175				260, 363				
4,5 131 Pear. Pear 174 4,032 39,7 62,7 174 156 174 7,5 Разл. Н. р. Н. р. Н. р. сп. 174 4,87 ^{24,5} Разл. Н. р. Н. р 174 Разл Н. р. Н. р 174 5,38 Возг. > 600 Н. р. Н. р 174 Разл Р. Р. Н. р 174 Разл Н. р. Н. р 175		• • •			•••	•••	•••	174
4,032 39,7 62,7 174 156 174 7,5 Разл.		•••	29	223	Pear.	Pear.	. • • • • •	174
156 174 7,5 Разл. Н. р. Н. р. Н. р. сп. 174 4,87 ^{24,5} Разл. Н. р. Н. р. Н. р 174 Разл Н. р. Н. р 174 5,38 Возг. > 600 Н. р. Н. р 174 Разл Р. Р. Н. р 174 Разл Н. р. Н. р 175		• • •	4,5	131	Pear.	Pear.	•••	174
7,5 Разл. H. р. H. р. H. р. сп. 174 4,87 ^{24,5} Разл. H. р. H. р 174 Разл H. р. H. р 174 5,38 Возг. > 600 H. р. H. р 174 Разл P. P. H. р 174 Разл H. р. H. р 175 Разл H. р 175		4,032	39,7	62,7	•••	•••	••• \$	174
4,87 ^{24,5} Разл. H. р. H. р. 174 Разл. H. р. H. р. 174 5,38 Возг. > 600 H. р. H. р. 174 H. р. H. р. 174 H. р. H. р. 175 175 H. р. 175		•••	156	•••	•••	•••	•••	174
Разл H. p. H. p 174 5,38 Bosr. > 600 H. p. H. p 174 Разл P. P. H. p 175 Разл H. p. H. p 175 Pasл H. p 175		7,5	•••	Разл.	Н. р.	Н. р.	Н. р. сп.	174
5,38 — 500 — Bosr. > 600 — H. р. — H. р. ———————————————————————		4,87 ^{24,5}	•••	Разл.	Н. р.	Н. р.	•••	174
5,38 Возг. > 600 H. р. H. р. 174 P. P. H. р. сп. 174 H. р. H. р. 175 H. р. H. р. 175 H. р. 175 H. р. 175 175		•••		•••	Н. р.	Н. р.	• • •	174
Разл Н. р. Н. р 175 1100—1150 Н. р. Н. р 175 Разл. Н. р. Н. р 175 Разл. Н. р 175 Разл. Н. р 175		5,38	450—500	Возг. > 600	Н. р.	Н. р.	•••	-174
Разл H. p. H. p 178 1100—1150 H. p. H. p 178 Разл H. p 178 Разл H. p 178		•••	Разл.	· · · · · ·	P.	P.	Н. р. сп.	174
Разл H. p. H. p 178 Н. р. Н. р 178 Разл Н. р. н. р 178 Разл Н. р 178		•••	•••		Н. р.	Н. р.	•••	175
Разл Н. р. Н. р 175 Разл Н. р 175			Разл.	•••		Н. р.	• • •	175
Разл Н. р 178 Разл Н. р 179		•	11001150	• *				171
Разл Н. р 175		•••	_	•••		н. р.	• • •	
1 down	•	•••	Разл.	•••		•••	•••	
	•	•••	Разл.	***	-	•••	***	

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1756	Rh ₂ S ₃	Сульфид	302,09	Черн. крист.
1757	$Rh_2(SO_4)_3 \cdot 4H_2O$	родия (III),	566,15	Свжелт. крист.
1758	RuBr ₃	тетрагидрат Бромид	340,80	Темн. расплыв. пл.
1759	RuCl ₂	рутения (III) Хлорид рутения (III)	171,98	Черн. крист.
1760	RuCl ₃	Хлорид рутения (III)	207,43	Корчерн. крист.
1761	RuCl ₄ · 5H ₂ O	Хлорид рутения (IV), пентагидрат	332,96	Кркор. крист.
1762	RuF ₅	Фторид рутения (V)	196,06	Темно-з. прозр. крист.
1763	$Ru(NO_3)_3 \cdot 6H_2O$	Нитрат рутения (III), гексагидрат	395,18	Желт., трикл.
1764	Ru_2O_3	Оксид рутения (III)	250,14	Сине-черн.
1765	RuO ₂	Оксид рутения (IV)	133,07	Темно-син., тетраг.
1766	Ru_2O_5	Оксид рутения (V)	282,14	Черн. крист.
	RuO ₄	Оксид (VIII)	165,07	Золжелт. или кор., ромб.
1768	Ru(OH) ₃	Гидроксид рутения (III)	152,09	Черн. пор.
1769	Ru(OH)Cl ₃	Гидроксид-хло- рид рутения (IV)	224,44	Темно-кор. пор.
1770	RuS ₂	Сульфид рутения	165,20	Сер., кб.
1771	RuSi	Силицид рутения	129,16	Бел., кб.
1772	RuTe ₂	Теллурид рутения	356,27	Серо-син., кб.
1773	S_2Br_2	Бромид серы (I)	223,94	Кр. дым. ж., 1,730
1774	S ₂ Cl ₂	Хлорид серы (I)	136,03	Кржелт. ж., 1,666 ¹⁴
1775	SCl ₂	Хлорид серы (II)	102,97	Темно-кр. дым. ж., 1,557 ¹¹
1776		Хлорид серы (IV)	173,88	Желтовбур. ж.
1777	S_2F_2	Фторид серы (I)	102,12	Бц. г.
1778	SF ₄	Фторид серы (IV)	108,06	Бц. г.
1779	$S_{2}\bar{F}_{10}$	Фторид серы (V)	254,11	Бц. ж.
1780	SF ₆	Фторид серы (VI)	146,05	Бц. г.

1		Температура, °С Растворимость			гь		
1			×	вв	оде	в других	№
	Плотность	плавления	кипения	при 20 °С	при 100 °C	раствори- телях при 20°C	п/п
<u>.</u>	•••	Разл.	,,,	Н. р.	Н. р.		1756
	•••	Разл.	•••	P.	P.	•••	175 7
	•••	111	•••	Р.		Р. сп.	1758
	. •••	•••	•••	Н. р.	*** ,	• • •	1759
	8,11	Разл. > 500	•••	Н. р.	Pear.	Сл. р. сп.; н. р. СS ₂	1760
	•••	•••	•••	P.		Р. сп.	1761
	2, 963 ^{16,5}	101	272	Pear.	Pear.	• • •	1762
	2,375	•••	•••	Р.	***	***	1763
	•••	•••	•••	Н. р.	Н. р.	•••	1764
	6,97	Разл.	• • •	Н. р.	H. p.	• • •	1765
	. •••	Разл.	• • •	Н. р.	***	• • •	1766
	3,2921	25,5	∼ 100 разл.	2,033	2,24974	• • •	1767
٠	•••	•••	•••	Сл. р.	• • •	•••	1768
	•••	•••	•••	Р.	•••	: *** :	1769
	6,99 5,40 ⁴ 2,635	Разл. > 100 > 400 46	•••	H. p. H. p. Pear.	H. p. H. p. Pear.	P. CS ₂ ,	1770 1771 1772 1773
	1,678	—75	136,8	Pear.	Pear.	CCl ₄ , бзл. Р. CS ₂ ,	1774
	1,62015	—78	59	Pear.	Pear.	бзл., эф. Р. бзл., ССІ ₄ ; реаг. сп.,	1778
	 2,08 6,50 ²⁰ г/дм ³	-30 -120,5 -122 -92 -50	Разл. —15 —30 —40 29 разл. Возг.	Реаг. Реаг. Сл. реаг. 1,47° см	Pear. Pear. Pear.	эф. Р. нитро-	1776 1777 1778 1779

_				
№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1781	S_4N_2	Нитрид серы	156,27	Сер. тв. или кр. ж.
1782	S_4N_4	Нитрид серы	184,28	Оркр., мн.
1783	S ₂ O ₃	Оксид серы (III)	112,13	Сине-з. крист.
1784	SO ₂	Оксид ееры (IV)	64,06	Бц. г. или ж.,
1785	SO ₃	Оксид серы (VI)	80,06	1,410 Бц. крист. или ж.,
1786	(SO ₃) ₂	Оксид серы (VI)	160,12	1,4097 Бц. шелковистые
1787	(SO ₃) ₃	Оксид серы (VI)	240,18	иг. Бц. шелковистые
1788 1789 1790 1791		Пероксид серы Оксид-хлорид серы Оксид-хлорид серы Бромид тионила	96,06 221,94 215,03 207,87	
1792 1793	SONH SOF ₂	Имид тионила Фторид тионила	63,07 86,06	Бц. ж. Бц. г.
1794	SOF4	Оксид-фторид серы (VI)	124,06	Бц. г.
1795	SOFCI	Фторид-хлорид тионила	102,51	Бц. ж. или г.
1796	SOCI ₂	Хлорид тионила	118,97	Бц. ж., 1,527 ¹⁰
1797	SO_2F_2	Фторид	102,06	Бц. г.
1798	SO ₂ FBr	сульфурила Ф торид-бромид	162,97	Бц. ж.
1799	SO ₂ FCI	сульфурила Фторид-хлорид	118,52	Бц. ж. или г.
1800	SO ₂ Cl ₂	сульфурила Хлорид	134,97	Бц. ж., 1,444
1801 1802	SO ₂ (NH ₂) ₂ SbBr ₃	сульфурила Амид сульфурила Бромид сурьмы (III)	96,11 361,48	Бел., ромб. Бц., ромб., 1,74

1	Темпера	тура, °С	I	Раство р им о с	ть	
Плотность			В	воде	в других	N₂
Тилотность	плавления	кипения	пр ы 20 °C	при 100 °С	раствори-	п/п
Ж. 1,901 ¹⁸	11	Разл.	Н. р.	•••	Р. эф.; сл. р.	1781
.2,2215	179	Взр. > 179	Pear.	Pear.	сп., ČS ₂ P. CS ₂ , хлф.,	1782
•••	Разл. 70—95	•••	Pear.	Pear.	бзл., NH ₃ Р. дым.	1783
2, 927 г/дм ³	·	-10,1	22,8°; 11,5	2,190	H ₂ SO ₄ Р. сп.	1784
Ж. 1,923	16,83	44,9	Реаг.	Pear.	•••	1785
•••	32	Возг.	Pear.	Pear.	•••	1786
•••	62,2	Возг.	Pear.	Pear.	•••	1787
1,656° 1,837 2,68 ¹⁸	Разл. > 3 —37,5 —86	60—61 153 138	Pear. Pear. Pear. Pear.	Pear. Pear. Pear. Pear.	Реаг. сп. Р. бзл.,	1790
3,84 г/дм ³	—85 —129,5	 —44	 Pear.	 Pear.	хлф., CS ₂ , CCl ₄ Р. эф., бзл., хлф., ац.;	1792 1793
Тв. 2,55 ⁻¹⁸⁰	—107	—48,5	Pear.	Pear.	реаг. сп.	1794
• • • •	-139	12,3		•••		1795
1,655 ^{10,4}	101	74,8	Pear.	Pear.	Р. бзл., хлф.;	1796
3,72 ²⁰ г/дм ³	129	—55	Сл. р.	•••	реаг. сп. Реаг. сп.	1797
	86	40	Pear.	Pear.	•••	1798
Ж. 1,6230	-124,7	7,1	Pear.	Pear.	•••	1799
_ 1,6674	-54,1	69,1	Pear.	Pear.	Р. бзл.	1800
 4,148 ²³	91,5 97	Разл. 250 288	P. Pear.	Pear.	Р. сп. Р. сп., ац., CS ₂ , NH ₃	18 01 1802

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1803	SbCl ₃	Хлорид сурьмы (III)	228,11	Би., ромб.
1804	SbCl ₈	Хлорид сурьмы (V)	229,02	Свжелт. ж.
1805	SbF ₃	Фторид сурьмы (III)	178,75	Бц., ромб.
1806	SbF ₅	Фторид	216,74	Бц. ж.
1807	SbH ₃	сурьмы (V) Гидрид сурьмы	124,77	Бц. г.
1808	SbI _s	(стибин) Иодид	502,46	Кр., триг. или мн.
1809	SbI ₅	сурьмы (III) Иодид	756,32	Темно-бур. крист.
1810	Sb ₂ O ₃	сурьмы (V) Оксид	291,50	Сер., ромб., 2,18;
	Sb ₂ O ₃	сурьмы (III) Оксид	291,50	2,35; 2,35 Сер., кб., 2,087
1812	Sb_2O_4 Sb_2O_5	сурьмы (III) Оксид сурьмы Оксид	307,50 323,50	Бел., кб. Желт., кб.
1814	(SbO) ₂ SO ₄	сурьмы (V) Оксид-сульфат	371,56	Бел. пор.
1815	SbOCl	сурьмы (III) Оксид-хлорид сурьмы (III)	173,20	Бел., мн.
1816	Sb ₂ S ₃	Сульфид сурьмы (III),	339,69	Сер. иг.
1817	Sb ₂ S ₃	антимонит Сульфид сурьмы (III),	339,69	Кр., ромб., 4,046
1818	Sb_2S_5	стибнит Сульфид	403,82	3. пор.
1819	Sb ₂ (SO ₄) ₃	сурьмы (V) Сульфат	531,68	Бел. пор.
1820	Sb ₂ Te ₃	сурьмы (III) Теллурид	626,30	Сер., триг.
1821		сурьмы (III) Борид скандия Бромид скандия	66,6 284,69	Бц. крист. Бц. крист.

-		, 			прообляс	ние тиол	ицы .
		Температура, °C					
	Плотность	плавления	кипения		воде при 100 °C	в других раствори- телях при 20°C	17/11
-	3,1420	73,4	218,6	98825		Р. сп.,	1803
	2,336	4,0	140 разл.	Pear.	Pear.	СS ₂ , СН ₃ СООН, бзл. Р. хлф., сп., мет. сп., амил	1804
	4,38525	292	319	444,7	563,630	сп. Р. мет. сп., ац., бзл.,	1805
	2,9923	8,3	149,5	P.	•••	диокс.	1806
	Ж. 2,204-17	88,5	-17,	•••	••••	•••	1807
	Мн. 4,768 ²²	167	разл. 200 397	Pear.	Pear.	Р. сп.,	1808
	•••	79	400,6	Pear.	Pear.	ац., CS ₂	1809
	5,778	655	1425	Сл. р.	Сл. р.	•••	1810
-	5,1925	656	1425	Сл. р.	Сл. р.	• • • •	1811
	4,07 3,78	Разл. 930 —0,380	•••	H. p. 0,3	H. р.	н. р. сп.	1812 1813
	4,89	•••	•••	Pear.	Pear.	• • •	1814
	•••	170 разл.	•••	Н. р.	Pear.	Р. ац., CS ₂ ; н. р. NH ₃ , сп.,	1815
	4,6	550	·;·	Н. р.	Н. р.	х лф.	1816
	4,64	550	` •••	0,0001718	Pear.	Н. р. сн₃соон	1817
	4,120	135 разл.	•••	Н. р.	Н. р.	Н, р, сп. 1	1818
	3,6254	Разл.		Pear.	Pear.	•••	1819
	•••	629	•••	•••	•••	•••]	820
-	3,65 3,914 B	2250 Зозг. > 1000	•••	•••	***		821 822
_							

№ n/n	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1823	ScCl ₃	Хлорид скандия	151,32	Бц., триг.
1824 1825 1826 1827 1828	Sc(NO ₃) ₃ Sc ₂ O ₃ Sc(OH) ₃ Sc ₂ (SO ₄) ₃ Sc ₂ (SO ₄) ₃ · 6H ₂ O	Нитрат скандия Оксид скандия Гидроксид скандия Сульфат скандия Сульфат скандия, гексагидрат	95,97 378,10 486,19	Бц. пор. Бел., кб. Бел., кб. Бц. крист. Бц. крист.
1829	Se_2Br_2	Бромид селена (I)	317,74	Крбур. ж.
1830	SeBr₄	Бромид селена (IV)	398,60	Ор. крист.
1831	Se ₂ Cl ₂	Хлорид селена (I)	228,83	Кр. ж., 1,596
			``	• .
1832	SeCl ₄	Хлорид	220,77	Бц. или желт., к б. ,
1833	SeF ₄	селена (IV) Фторид	154,95	1,807 Бц. дым. ж.
1834	SeF ₆	селена (IV) Фторид селена (VI)	192,95	Бц. г.
1835 1836 1837	Se_2I_2 SeI_4 Se_3N_4	Иодид селена (I) Иодид селена (IV) Нитрид селена	411,73 586,58 371,87	Сер. крист. Темно-сер. крист. Оржелт., ам.
1838	SeO ₂	Оксид селена (IV)	110,96	Бц., тетраг., >1,76
1839	SeO ₃	Оксид селена (VI)	126,96	Ам., гигр.
1840	SeOBr ₂	Оксид-бромид селена (IV)	254,78	Желтовкр. крист.
1841	SeOCl ₂	Оксид-хлорид селена (IV)	165,87	Желт. или бц. ж.
1842	SeOF ₂	Оксид-фторид	132,95	Бц. ж.
1843	SeS	селена (IV) Сульфид	111,02	Оржелт. тб. или пор.
1844	SeS ₂	селена (II) Сульфид селена (IV)	143,09	

		Температура, °С		Растворимость			
	Плотность			в воде		<u> </u>	-
		плавления кипе	кипения	при 20 °С	при 100 °C	в других раствори- телях при 20°C	ת/ח
,	•••	960	•••	Р.	Р.	Н. р.	1823
	3,86	150	•••	Р: Н. р.	. P.	абс. сп.	1824
				Н. р.	Н. р.	•••	1825 1826
	2,579	Разл. —4H ₂ O, 100	—6H ₂ O, 250	10.3^{25} P.	P. P.	•••	1827 1828
	3,60415	. • • •	225 разл.	Pear.	Pear.	P. CS ₂ ;	1829
	•••	Разл. 75	•••	Pear.	Pear.	pear. cn. P. CS ₂ ,	1830
	2, 906 ^{17,5}	-85	Разл. 130	Pear.	Pear.	$ \begin{array}{c} xлф., \\ C_2H_5Br \\ P. CS_2, \\ xлф., \\ CCl_4; \end{array} $	1831
	Ж. 3,78— 3,85 ³⁶⁰	305	•••	Pear.	Pear.	pear. cn., эф. P. POCl ₃ ;	1832
	2,7525	9.5	101	Pear.	Pear.	сл. р. CS ₂ Р. сп.,	1833
	Ж. 2,26 ^{—34,7}	-39,0	4	***	•••	эф.	1834
	•••	70 80 Взр. 160—200	Разл. 100 —41, 100 Разл.	Pear. Pear. H. p.	Pear. Pear. H. p.	 Сл. р. CS ₂ ,	1835 1836 1837
	3,95115	•••	Возг. 337	26422	47265	Сн. СООН Р. сп. (6,67 ¹⁴), ац.,	1838
	3,6	Разл. 120	•••	P.	•••	Сн. СООН Р. сп.; н. р. эф.,	1839
	Ж. 3,3850	41,6	217 разл.	Pear.	Pear.	CCl ₄ P. CS ₂ , CCl ₄ ,	1840
	2,4422	10,8	168	Pear.	Pear.	бензине Р. CS ₂ , CCl ₄ ,	1841
	2,67	4,6	124	Pear.	Pear.	бензине Р. сп.,	1842
	3,056	Разл. 118—119	***	Н. р.	Н. р.	CCl ₄ P. CS ₂ ;	1843
	•••	100	Разл.	Н. р.	•••	н. р. эф.	1844

				
№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1845	SeSO ₃	Сульфит	159,02	З. или желт. пор.
1847	SiB ₃ SiBr ₄ SiC	селена (II) Борид кремния Бромид кремния Карбид кремния	60,52 347,72 40,10	Черн., ромб. Бц. ж., 1,579 ¹⁸ Сине-черн., гекс.
1849	SiCl ₄	Хлорид кремния	169,90	или кб. Бц. ж., 1,412
1850	SiF ₄	Фторид кремния	104,08	Бц. г.
	SiH ₄ Si ₂ H ₆	Силан Дисилан	32,12 62,22	Бц. г. Бц. г.
1853 1854	Si ₃ H ₈ SiI ₂	Трисилан Иодид	92,32 281,89	Бц. г. Оркр. пор.
1855	SiI ₄	кремния (II) Иодид	535,70	Бц., кб.
1856	SiO ₂	кремния (IV) Оксид кремния (кварц)	60,08	Бц., гекс., 1.54 42; 1,5530
1857	SiO_2	(кварц) Оксид кремния (кристобалит)	60,08	Бц., кб. или
1858	SiO_2	Оксид кремния (лешательерит)	60,08	тетраг., 1,484 Бц. пор., 1,460
1859	$SiO_2 \cdot xH_2O$	Оксид кремния (опал)	•••	Бц., ам., 1,41; 1,46
1860	SiO ₂	Оксид кремния (тридимит)	60,08	Бц., гекс. или ромб., 1,469; 1,470; 1,471
1861	SiS	Сульфид кремния (II)	60,15	Желт. иг.
1862	SiS ₂	Сульфид кремния (IV)	92,21	Бел. или сер., ромб.
1863	$SmBr_3 \cdot 6H_2O$	Бромид самария (III),	498,17	Желт, крист.
1864	$Sm(BrO_3)_3 \cdot 9H_2$	гексагидрат О Бромат самария (III), нонагидрат	696,21	Желт., гекс.
1865		Карбид самария	174,37 221,26	
1866 1867		Хлорид самария (II) Хлорид	262,71	
	SmCl ₃ · 6H ₂ O	самария (III) Хлорид самария (III),	364,80	_
		гексагидрат		

	Температура, °С		Растворимость				
Плотность				в воде		в других	Ne
	Плотность	плавления	кипения	при 20°C	при 100°C	раствори-	п/п
	***	—SO ₂ , 40	•••	Pear.	Pear.	•••	1845
:	2,52 2,814 3,217	5 > 2700	153 	H. p. Pear. H. p.	H. p. Pear. H. p.	•••	1846 1847 1848
	1,483	—70 (под давлением)	57,6	Pear.	Pear.	•••	1849
, e	4,684 г/дм	3 —77 (0,2 МПа)	•••	Pear.	Pear.	•••	1850
	1,44 г/дм ³ 2,85 г/дм ³	—185 [*]	—112 —14,5	Pear. Pear.	Pear. Pear.	P. CS ₂ ,	1851 1852
	0,7430	—117,4 	— 52,9	Pear. Pear.	Pear. Pear.	сп., бзл.	1853 1854
	•••	120,5	290	Pear.	Pear.	•••	1855
	2,650	~1500	2600	Н. р.	Н. р.	•••	1856
	2,320	1710	•••	Н. р.	Н. р.	• • •	1857
	2,20	•••	•••	Н. р.	Н. р.	• • •	1858
	2,10-2,30	> 1600	•••	Н. р.	Н. р.	• • •	1859
	2,28—2,33	1670	•••	Н. р.	Н. р,	•••	1860
	1,85315		Возг.	Pear.	Pear.		1861
	•••	• •••	•••	Pear.	Pear.	•••	1862
	2,97122	667 бв.	•••	P.	•••		1863
	•••	75	—9H ₂ O, 150	11425	18340	Сл. р. сп.	1864
	5,86 4,56 ²⁵	740	***	Pear. Pear.	Pear. Pear. 1	 Н. <u>р.</u> сп.,	1865 1866
	4,46	678	Разл.	92,410	99,950	CS ₂ P. acc.	1867
	2,383	-5H ₂ O, 110	•••	Ρ,	Р.	сп., пир.	1868

Продолжение	таблицы
-------------	---------

	Температ		Продолжение г ура,°С Растворимость				Ĺ
1		T. 1			оде	1	
	Плотнооть	плавления	кипения		при 100°C	в других раствори- телях при 20°C	Na n/ma
	•••	1400	2330	Н. р.	•••		1869
	• • •	816—824	Разл.	•••	•••	•••	1870
	2,375	разл. 78	•••	P.	• • • •	* • • •	187
	5,83 ¹⁷ ,5	•••	• • •	Н. р.	***	•••	1872
	7,4315	•••	• •,•	Н. р.	•••	* • •	1873
	•••	•••	•••	Сл. р.	•••	• • • • •	1874
	•••	Разл. 1100	• • •	Н. р.	•••	• • •	1875
	5,729	1900	• • •	• • •	Pear.	•••	1870
	2,93	-8H ₂ O, 450	• • •	3,3420	2,540	•••	1877
	•••	•••	•••	43,2925	16,380	•••	187
	•••	***	•••	0,025	0,032		1879
	•••	Разл.	•••	Н. р.	Н. р.	•••	1880
	5,17717	232	636	85,20	222,5	Р. пир.	188
	3,34085	30—33	202	(pear.) P.; pear.	(pear.) Pear.	Р. ац., PCl ₃ ,	1882
	Тв. 3,95	247	623	83,9º (pear.)	269,8 ¹⁵ (pear.)		1883
	2,710 ^{15,5}	37,7	Разл.	118,70 (pear.)	P.; pear.	эф., ац., ледяной	
٠.	2,232	33	113,7	P.; pear.	Pear.	CH,СООН Pear. эф,	1888
	•••	80	•••	Р.	• • •	•••	1886
	.*	215	•••	Р.		, . ,	1887
	4,78019	***	705	Ρ.	Pear.	•••	1888

№ п/п	Формула	Название	Молеку- лярная масса Цвет, кристалличе- ская форма, показатель преломления
1869	SmF ₃	Фторид	207,34 Бел., гекс.
1870	SmI ₃	самария (III) Иодид	531,06 Opжелт. крист.
	$Sm(NO_3)_3 \cdot 6H_2O$	самария (III) Нитрат самария (III),	444,46 Желт., трикл.
1872	SmPO ₄	гексагидрат Ортофосфат	245,32 Студ.
1873	Sm ₂ O ₃	самария (III) Оксид	348,70 Свжелт., кб.
874	Sm(OH) ₃	самария (III) Гидроксид	201,37 Свжелт. пор.
875	(SmO) ₂ SO ₄	самария (III) Оксид-сульфат самария (III)	428,76 Желт. пор.
876	Sm ₂ S ₃	Сульфид самария (III)	396,83 Желтовроз., кб.
1877	$Sm_2(SO_4)_3 \cdot 8H_2O$	Сульфат самария (III),	733,01 Свжелт., мн., 1,543; 1,552; 1,563
1878	$Sm_2(SeO_4)_3 \cdot 8H_2O$	октагидрат Селенат самария (III),	873,69 Пор.
1879	Sm ₂ (WO ₄) ₃	октагидрат Вольфрамат самария (III)	1044,24 Тв.
1880	Sn ₂ As ₂ O ₇	Диарсенат	499,22 Ам. пор.
1881	SnBr ₂	олова (II) Бромид	278,51 Желт., ромб.
1882	2 SnBr₄	олова (II) Бромид олова (IV)	438,33 Бц. расплыв. крист., ромб.
1883	3 SnCl ₂	Хлорид олова (II)	189,60 Бел., ромб.
1884	4 SnCl ₂ · 2H ₂ O	Хлорид олова (II), дигидрат	225,63 Бел., мн.
188	5 SnCl ₄	Хлорид	260,50 Бц. дым. ж.
	6 SnCl ₄ · 3H ₂ O	олова (IV) Хлорид	314,55 Бд., мн.
188	7 SnF ₂	олова (IV), тригидрат Фторид	156,69 Бц. мн. пр.
188	8 SnF ₄	олова (II) Фторид олова (IV)	194,68 Бел. крист.

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, пок азатель преломления		
	SnH ₄ SnI ₂	Гидрид олова Иодид олова (II)	122,72 372,50	Бц. г. Кр., ромб. или мн.		
1891	SnI ₄	Иодид олова (IV)	626,31	Желт., кб.		
1892	Sn(NO ₃) ₂ · 20H ₂ O	Нитрат олова (II),	603,01	Бц. лист.		
1893	$Sn(NO_3)_4$	эйкосагидрат Нитрат олова (IV)	366,71	Бц. иг.		
1894	SnO	Оксид	134,69	Черн., тетраг.		
1895	SnO ₂	олова (II) Оксид	150,69	Черн., тетраг.		
1896 1897	Sn₄P₃ SnP	олова (IV) Фосфид олова Фосфид олова	567,68 149,66	Бел. крист. Серебрбел. крист.		
	$Sn(PO_3)_2$	Метафосфат	276,63	Ам. пор.		
1899	$\operatorname{Sn}_3(\operatorname{PO}_4)_2$	олова (II) Ортофосфат олова (II)	546,01	Бел. ам. пор.		
1900	$Sn_2P_2O_7$	Дифосфат олова (II)	411,32	Ам. пор.		
1901	SnS	Сульфид	150,75	Буро-черн.,		
1902	SnS ₂	олова (II) Сульфид	182,82	Желт., триг.		
1903	SnSO ₄	олова (IV) Сульфат	214,75	Бел. крист.		
1904	$Sn(SO_4)_2 \cdot 2H_2O$	олова (II) Сульфат олова (IV),	346,84	Бц. расплыв. крист., гекс.		
1905	SnSe	дигидрат Селенид	197,65	Сер. крист.		
1906	SnSe ₂	олова (II) Селенид	276,61	Бел. или бур. крист.		
1907	SnTe	олова (IV) Теллурид	246,29	Сер., кб.		
1908	SnTe	олова (II) Теллурид	373,89	Черн. ам. пор.		
1909	$Sr_3(AsO_3)_2 \cdot 4H_2$	олова (IV) Ортоарсенит стронция, тетрагидрат	580,76	Бел. крист.		
	SrB_6	Борид стронция	152,49			
1911	Sr(BO ₂) ₂	Метаборат стронция	173,24	Бц. иг.		

		Темпера	тура, °С	Растворимость			
	П			В	воде	в других	N₂
· .	Плотность	плавления	кипения	при 20 °С	при 100 °С	раствори- телях при 20°C	n/n
	5,28 ²⁵	—150 320	-52,6 712	0,98	4,03	 Р. CS ₂ , гор. хлф.,	1889 1890
	3,69611	145	361 разл.	Pear.	Pear.	бзл. P. CS ₂ , сп., эф.,	1891
	•••	20	•••	Pear.	Pear.	хлф., бзл.	1892
	•••	Разл. 50	•••	Pear.	Pear.	•••	1893
	6,4460	Разл. 700—950	1700	Н. р.	H.~p.	••••	1894
	6,95	1127 разл.	•••	Н. р	Н. р.	•	1895
	5,181 6,56 3,380 ^{22,8}	Разл. < 480 	•••	Н. р. Н. р.	Н. р.	•••	1896 1897
	3,82317	•••				· • • •	1898
	4,009 ^{16,4}	***	•••	Н. р.	Н. р.	• • •	1899
		•••	•••	•••	•••	•••	1900
	5,0800	882	~ 1230 ·	0,00000218	4.4.4		1901
	4,5	Разл.	•••	0,0000218	•••	•••	1902
•	•••	Разл. < 360	•••	19	18,1	•••	1903
i	•••	•••	***	Р.	Pear.	Р. эф.	1904
	6,1790	860	•••	Н. р.	Н. р.		1905
	5,13	650	•••	Н. р.	Н. р.	•••	1906
	6,48	780		Н. р.	Н. р.		1907
	•••	•••	•••	Н. р.	Н, р.		1908
	•••	•••	•••	Сл. р.	=	Сл. р. сп.	1909
	3,3 3,34	2235 •••	•••	H. p. P.	H. p. p.	Н. р. ац.	1910 1911

-				
№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1912	SrB ₄ O ₇ · 4H ₂ O	Тетраборат , стронция,	314,92	Бц. иг.
1913	SrBr ₂	тетрагидрат Бромид стронция	247,44	Бц., ромб.
1914	$SrBr_2 \cdot 6H_2O$	Бромид стронция, гексагидрат	355,53	Бц., триг.
1915	$Sr(BrO_3)_2 \cdot H_2O$	Бромат стронция,	361,45	Бц. или свжелт., мн.
	SrC ₂ SrCO ₃	Карбид стронция Карбонат стронция	111,64 147,63	Черн., тетраг. Бц., ромб., 1,516; 1,664; 1,666
1918	$Sr(CN)_2 \cdot 4H_2O$	Цианид стронция, тетрагидрат	211,72	Бел., ромб.
1919	SrCl ₂	Хлорид стронция	158,53	Бц., кб., 1,6499
1920	SrCl ₂ · 6H ₂ O	Хлорид стронция, гексагидрат	266,62	Бц., триг., 1,487; 1,536
1921	Sr(ClO ₃) ₃	Хромат стронция	254,52	Би., ромб., 1,516; 1,605; 1,626
1922	$Sr(ClO_4)_2$	Перхлорат стронция	286,52	Бц. крист.
1923 1924	SrCr ₂ O ₇ · 3H ₂ O	Хромат стронция Дихромат стронция, тригидрат	203,61 357,65	Желт., мн. Кр., мн., 1,7174
	SrF ₂ SrH ₂	Фторид стронция Гидрид стронция	125,62 89,64	Бц,, кб., 1,438 Бел., ромб.
1927	SrHAsO ₄ • H ₂ O	Гидроарсенат стронция, гидрат	245,56	Бел. ромб. иг.
	SrHPO ₄	Гидроортофосфат стронция	183,60	Бц., ромб., 1,62
1929	SrI ₂	Иодид стронция	341,43	Бц. крист.
1930	SrI ₂ · 6H ₂ O	Иодид стронция, гексагидрат	449,52	Бц. или свжелт., триг.
1931 1932		Иодат стронция Перманганат стронция,	437,43 379,54	Бц., трикл. Пурп., кб.
1933	SrMoO ₄	тригидрат Молибдат стронция	247,58	Сер., тетраг.

	'	Темпера	тура, °С	Растворимость			
	Плотность			В	воде	в других	N₂
		плавления	кипения	при 20°C	при 100 °C	раствори-	п/п
	•••	930	•••	Р.	77	•••	1912
	4,21624	643	Разл.	87,90	222,5100	$(63,6^{10}),$	19 13
	2,35818	-4H ₂ O, 88,6	—6H ₂ O, 180	204,20	. P.	мет. сп. Р. сп.; н. р. эф	
	3,773	—H ₂ O, 120	Разл. 240	- 3316	•••		1915
	3,2 3,70	 1497 (6 МПа)	CO ₂ , 1340	Pear. 0,0011 ¹⁸	Pear. 0,065	•••	191 6 191 7
	• • •	Разл.	•••	P.	•••	•••	1918
	3,052	873	1250	52,7	102	Сл. р.	191 9
,	1,93317	-4H ₂ O, 60	•••	139	Р.	гидразине Р. сп. (3,86)	1920
	3,152	120 разл.	•••	17418	P.	Сл. р. сп.	1921
	•••	•••	•••	31025	Р.	Р. мет. сп. (212),	1922
	3,89515	Разл. 110	•••	0,0915	0,04	сп.	1923 1924
	4 ,24 3,27	1400 > 650	2450	0,011° Pear.	0,012 ²⁷ Pear.	•••	1925 1926
;	3,60615 бв.	$-H_2O$, 125	•••	0,284 ^{15,5}	Реаг.		1927
	3,54415	•••	•••	Н. р.	Н. р.	•••	1928
ż	4,54925	507	Разл.	178	380	P. NH ₃ ,	1929
٠,	4,415	•••	•••	53520	P.	абс. сп. Р. сп.;	1930
	5,045 ¹⁵ 2,75	Разл. 175	•••	0,0315 29118	0,8	н. р. эф.	1931 1932
	4,73	•••	•••	0,010417	•••	•••	1933

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1934	Sr ₃ N ₂	Нитрид стронция	290,87	Черн. или желт. пор.
1935 1936	$\frac{Sr(NO_2)_2}{Sr(NO_2)_2} \cdot H_2O$	Нитрит стронция Нитрит стронция, гидрат		Бц. прист. Бц., генс.
1937	$SrN_2O_2 \cdot 5H_2O$	Гипонитрит стронция,	237,71	Крист.
1938	Sr(NO ₃) ₂	пентагидрат Нитрат стронция	211,63	Бц., кб., 1,567
1939	$Sr(NO_3)_2 \cdot 4H_2O$	Нитрат стронция,	283,69	Бел., мн.
1940	$Sr(NbO_3)_2 \cdot 4H_2O$	тетрагидрат Метаниобат стронция,	441,49	Кб.
1941	SrO	тетрагидрат Оксид стронция	103,62	Свсер. или бц., кб., 1.870
1942	SrO ₂	Пероксид стронция	119,62	Бел. пор.
1943	$SrO_2 \cdot 8H_2O$	Пероксид стронция,	263,74	Бц., тетраг.
1944 1945	Sr(OH) ₂ Sr(OH) ₂ · 8H ₂ O	октагидрат Гидроксид стронция Гидроксид стронция,	121,64 265,77	Бел. пор. Би., тетраг., 1,476; 1,499
1946	S SrS	октагидрат Сульфид	119,68	Свсер., кб.
1947	SrS ₄ · 6H ₂ O	стронция Тетрасульфид стронция,	323,97	Свсер. крист.
1948	3 SrSO ₃	гексагидрат Сульфит	167,68	Бц. крист.
1949	SrSO ₄	стронция Сульфат стронция	183,68	Бц., ромб., 1,622; _1,624; 1,631
195	$0 \operatorname{SrS_2O_3} \cdot \operatorname{H_2O}$	Тиосульфат стронция,	217,76	Бц. мн. пр.
195	$1 \text{ SrS}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$	гидрат Тиосульфат стронция,	289,82	Бц. мн. иг.
195	$2 \operatorname{SrS_2O_6} \cdot 4H_2O$	пентагидрат Дитионат стронция	я, 319,81	Гекс.
195	$3 \operatorname{SrS_4O_6} \cdot 6H_2O$	тетрагидрат Тетратионат стронция, гексагидрат	419,96	Бц. пр.

		Темпера	тура, °С	T	растворимос	ть	
	W		′	ВЕ	оде	в других	N ₂
	Плотность	плавления		при 20 °C	при 100 °C	раствори-	п/п
	•••	Разл. > 1000	•••	Pear.		•••	1934
	2,867 ²⁷ 2,408 ⁰	Разл. 240 —H ₂ O, > 100	•••	67,7 ¹⁹ 58,9 ⁰	139 182	Сл. р. 90 %-ном	1935 1936
. *	2,173	-5H ₂ O, 100	•••	Сл. р.	•••	сп. (0,42)	1937
	2,986	570	•••	6115	96,8080	Р. NH ₃ ; сл. р. сп.	1938
•	2,25	-4H ₂ O, 31,3	•••	10315	206,5	N ₂ H ₄ Сл. р. N ₂ H ₄ , сп.	193 9
	•••	—4H ₂ O, 390	1225 бв.	0,00103225	•••		194 0
	4,7	2430	•••	Pear.	Pear.	Сл. р. сп.	1941
	4,56	Разл.	•.••	Pear.	Pear.	Р. сп.;	1942
	1,951	-8H ₂ O, 100	Разл.	Сл. р.; pear.	Pear.	н. р. ац. Р. сп.	1943
	3,625 1,9	375 —8H ₂ O, 100	Разл. 710 	P. 1,8	P. 91,5	Р. мет. сп.; н. р.	19 44 19 45
	3,7015	2000	• • •	Сл. р.	Pear.	ац. Р. сп.;	
٠	•••	25	-4H ₂ O, 100	Ρ,	•••	н. р. ац. Р. сп.	
	•••	Разл.	•••	0,003317	•••	Р. сп.	1948
	3,96	1605	Разл.	0,0132	0,11395	Н. р. сп.,	1949
	2,91625	-H ₂ O, 189	•••	9,60 бв.	36,640 бв.	ац.	1950
	2,1717	-4H ₂ O, 100	• • •	Р.	P-	Н. р. сп.	1951
	2, 373	-4H ₂ O, 78	· · · · ·	13,5 бв.	P.	Н. р. сп.	1952
	2,14825	-4H ₂ O, 40-50	•••	250 бв.	64 ³⁰ бв.	•••	1953

				· · · · · · · · · · · · · · · · · · ·			Температ	ypa, °C	I	Растворимос	ть	
,	·		Молеку-	Цвет, кристалличе-		17			В	воде	в других	N₂
№ п/п	Формула	Название			Плотность	плавления	кипения	при 20 °C	при 100 °C	раствори- теляж при 20 °C	n/n	
	SrSe SrSeO₄	Селенид стронция Селенат стронция	166,58 230,58	Бел., кб. Ромб. иг.	•	4,38 4,23 3,65 ²⁵	 1580	•••	Pear. H. p. H. p.	Н. р. Н. р.	•••	1954 1955 1956
1956		Метасиликат стронция	163,70	Бц., гекс., 1,618	1		•		~	, ,		
1957	Sr ₂ SiO ₄	Ортосиликат	267,32	Ромб., 1,7275; 1,732; 1,756		3,84	1750		• • •	•••	$F = \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{4} \cdot $	1957
1958	SrWO ₄	стронция Вольфрамат	336,47	Бел., тетраг.		6,187	Разл.	•••	0,1415	***	Н. р. сп.	1958
1959	TaB ₂ TaBr ₅	стронция Борид тантала Бромид	202,57 580,49	Тв. Желт. крист.		12,38 4,67	~ 3000 267	320	Pear.	Pear.	 Р. абс. сп., эф.	1959 1960
1961 1962	TaC	тантала (V) Карбид тантала Хлорид		Черн., кб. Свжелт. крист.		14,65 3, 68 ² 7	3880 220	5500 242	H. p. Pear.	H. p. Pear.	Р. абс. сп.	1961 1962
1963	TaF ₅	тантала (V) Фторид	275,94	Бц., тетраг.		4,74	96,8	229,5	Ρ.	•••	•••	1963
1964	TaN	тантала (V) Нитрид тантала	194,95	Кор. или черн.,	W.	16,30	3090	•••	Н. р.	Н. р.	***	1964
1965	Ta ₂ O ₄	Оксид	425,89	Темно-сер. пор.	i de la companya de l	** * *	•	•••	Н. р.	***	•••	1965
	Ta ₂ O ₅	тантала (IV) Оксид	441,89	Бц., ромб.		8,735 ^{61,2}	1470 разл.	•••	Н. р.	H. p.	•••	1966
1967	Ta ₂ S ₄	тантала (V) Сульфид	490,15	Черн. крист.		•••	Разл. > 1300	•••	Н. р.	Н. р.	•••	1967
1968	a .	тантала (V) Хлорид	265,28ª	Бц. мн. иг.		4,350	591	1550	P.	•••	Р. сп.	1968
1969	•	тербия (III) Хлорид тербия (III),	373,38	Бц. крист.		* * *	•••	•••	Ρ,	. •••	•••	1969
1970	TbF ₃	гексагидрат Фторид	215,93	Орторомб.		•••	1370	2880	• • •	•••	•••	1970
1971	TbF4	тербия (III) Фторид	234,92	Мн.		•••	- •••	# #*#	H. p.	•••	•••	1971
	$Tb(NO_3)_3 \cdot 6H_2O$	тербия (IV) Нитрат тербия (III),	453,03	Бц. мн. иг.		•••	89,3	•••	Ρ,	•••	•••	1972
1973	${ m Tb_2O_3}$	гексагидрат Оксид	365,85	Роз. или бц., кб.		•••	•••	•••	Н. р.	•••	•••	19 73
	TbO ₂	тербия (III) Оксид	190,92	Черн., кб.	•	***	•••	•••	•••	•••	•••	1974
	$Tb_2(SO_4)_3 \cdot 8H_2O$	тербия (III),	750,16	Бц. крист.			8H ₂ O, 860	•••	4,5	3,1740	•••	1975
1976	TcO ₂	октагидрат Оксид	129	Черн., мн.	•	6,9	***	•••	•••	•••	• • •	197 6
	Tc ₂ O ₇	технеция (IV) Оксид технеция (VII)	306	Свжелт. крист.		•••	119,5	811	Р.	Р.	Р. диокс.	197 7
	÷				_	,						

№ 11/11	Формула	Название	Молеку- лярная масса	Цвет, кристаллическая форма, показатель преломления
1978	Tc ₂ S ₇	Сульфид технеция (VII)	418	Черно-кор. пор.
1979	TeBr ₂	Бромид	287,42	Кор. пор.
980	TeBr ₄	теллура (II) Бромид	447,24	Ор. крист.
981	TeCl ₂	теллура (IV) Хлорид	198,51	Черн., крист. или
1982	TeCl ₄	теллура (II) Хлорид теллура (IV)	269,41	ам. Желтовбел. крист.
1983	TeF4	Фторид	203,59	Бц. иг.
1984	TeF ₅	теллура (IV) Фторид	445,18	Бц. ж.
1985	TeF ₆	теллура (V) Фторид теллура (VI)	241,59	Бц. г., 1,0009
1986	Tel ₄	Иодид теллура (IV)	635,22	Серо-черн. крист.
1987	7 TeO	Оксид	143,60	Чер., ам.
1988	B TeO ₂	теллура (II) Оксид теллура (IV)	159,60	Бел., тетраг., 2,00; 2,18; 2,35
1989	TeO ₂	Оксид теллура (IV)	159,60	Бел., ромб.
1990	O TeO _a	Оксид	175,60	а желт. ам.; β сер. крист.
199	l TeSO ₃	теллура (VI) Сульфит теллура (II)	207,66	Темно-кр., ам.
199	2 ThB₄	Тетраборид	275,28	Тетраг. пр.
100	2 ThD	тория	296,90	Кб.
199 199		Гексаборид тория	551,67	Би., тетраг.
199		Бромид тория	224,05	Желт., кб.
199		Карбид тория	256,06	Желт., тетраг.
199		Карбид тория Хлорид тория	373,85	Бел., тетраг.
199	$8 \text{Th}(\text{CrO}_4)_2 \cdot 3H$		518,07	Желт. крист. иг
1 9 9	99 Th(Cr ₂ O ₇) ₂ • 41	тригидрат Дихромат тория, тетрагидрат	736,07	•
200	00 ThF4	Фторид тория	308,03	Бел., мн.
200		Гидрид тория	234,05	Тетраг.
206	02 Thia	Иодид тория	739,66	Бел. крист.
200		Молибдат тория	551,91	

		Темпера	тура,⁰С		Растворимос:		1
	_			В	воде		-
	Плотность	плавления	кипения	при 20 °C	при 100 °C	в других раствори- телях при 20 °C	1
	•••	Разл.	•••	Pear.	Pear.	•••	1978
	•••	280	339	Pear.	Pear.	•••	1979
	4,3115	380	421	Сл. реаг	. Реаг.	Р. эф.	1980
	7,05	175	322	Pear.	Pear.	•••	1981
	Тв. 3,26	224	390	Pear.	Pear.	Р. бзл., абс. сп.,	1002
<u>.</u>		129,6	•••	Pear.	Реаг.	клф., тол	1983
	2,8825	-33	54	• • • •		***	1984
	Ж. 3,025 ^{—35,5}	-37,6	-35,5	Pear.	Pear.		1985
	8,40315	259	Разл.	Сл. р.	Pear.	***	1986
	•••	Разл.	. •••	H. p.	Н. р.	•••	1987
	5,6715	Возг. 450	•••	0,00067	•••	,***	1988
	5,910	73 3	~ 1260	•••	• • •	•••	1989
	α 5,075; β 6,21	Разл. 400	•••	Н. р.	Н. р.	***	1990
	•••	Разл.	Разл.	Pear.	Pear.	***	1991
•	8,45	2500	•••	Н. р.	Н. р.	•••	1992
	6,4 ¹⁵ 5,69	2 195 679 2625	857	Pear. Pear.	Pear. Pear.	•••	1993 1994 1995
	8,96 4,59	2655 770	5000 920	Pear. P.	Pear. Pear.	Р. сп.,	1996 1997
	2,81	5 30 разл.	•••	0,12	•••	эф. •••	1993
•	4,59	Разл.	•••	0,15	•••	***	1999
. -	5,71 9,2	1110 Разл. вак. 900 566	1680 837	0,2 ²⁵ Pear.	Сл. pear. Pear.	ě1.	2000 2001 2002
	4,32	Разл. 750	.**	0,12	real,		2003

№ п/п	Формула	Название	Молеку- лярная масса	Цеет, кристалличе- ская форма, показатель преломления
	ThN Th(NO ₈) ₄	Нитрид тория Натрат тория	246,04 480,08	Желт., кб. Бц. крист.
2006	$Th_8(PO_4)_4 \cdot 4H_2O$	тория,	1148,06	Бел., ам.
2007	$\mathrm{ThP_2O_7} \cdot 2\mathrm{H_2O}$	тетрагидрат Дифосфат тория, дигидрат		Бел., ам.
2008	ThO ₂	Оксид тория	264,04	Бел., кб.
2009	Th(OH)4	Гидроксид тория	300,07	Бел. пор.
2010		Оксид-сульфид тория	280,10	Желт., тетраг.
2011	ThS	Сульфид тория	264,10	Серебр., кб.
	ThS ₂	Сульфид тория	296,17	Желтовкор. или пурп., ромб.
2013	$Th(SC_8)_2 \cdot 12H_2O$	Сульфит тория, додекагидрат	608,35	Бел., ам.
2014 2015		Сульфат тория Диванадат тория, тетрагидрат	424,16 518,00	Бц. крист. Желтовкр.
2016 2017		Борид титана Бромид	69,52 207,72	Гекс. Черн., кб.
2018	TiBr ₃ · 6H ₂ O	титана (II) Бромид титана (III),	395,72	Крфиол. крист.
2019	TiBr ₄	гексагидрат Бромид титана (IV)	367,54	Желт. расплыв. крист., кб.
) TiC	Карбид титана Хлорид	59,91 118,81	
2021	TiCl ₂	титана (11)		триг.
				S
202	2 TiCl ₈	Хлорид титана (III)	154,26	Темно-фиол. расплыв. крист. триг.
202	3 TiCl4	Хлорид	189,71	Бц. или свжелт ж., 1,61
202	4 TiF ₈	титана (IV) Фторид титана (III)	104,90) Пурпкр. или фиол., ромб.
000	e Tib		123.89	Э Бел. пор.
202	5 TiF₄	Фторид титана (IV)	123,00	

	Темпера	rypa, °C	1	астворимос		1
			B B	оде	в других	No
Атоонтость	плавления	кипения	при 20 °C	при 100 °C	раствори-	n/n
	2630		Pear. 190,7	Pear. P.	Р. сп., эф., ке-	2004 2005
1,58	768	•••	Н. р.	Н, р.	тонах	2006
2,56	788	* ***	Н. р.	•••	. *je.*:	2007
10,03 8,78	3050 —2H ₂ O, 470 Разл. 1900	4400	H. p. H. p. H. p.	H. р. H. р.	P. cn.,	2008 2009 2010
9,57 7,36	2200 1905	•••	Н. р.	***	эф., хлф.	
2,66	1012	•••	0,02	•••	•••	2013
4,225 ¹⁷ 2,4	1090	•••	0,75° H. p.	1,63 ⁶⁰ H. p.	***	2014 2015
4,5 4,31 ²⁵	2900 Разл. > 500	•••	Pear.	 Pear.	• • •	2016 2017
	115	Разл. 400	Р.	***	Р. сп., ац.	2018
2,6	3 8	220	Pear.	Реаг.	Р. абс. сп., абс.	
4,93 3,06	3140	4300	H. p. Pear.	Н. р. Реаг.	эф. Р. сп.; н. р. эф.,	
					хлф., CS₂, TiCl₄	•
2,65—2,68	Разл. 440	•••	P.	P.	Р. сп.; н. р. эф., бзл.,	
1,726	23,0	136,5	Р.	Pear.	TiCl ₄ P. cn.	2023
2,9825	Разл. 100	•••	Кр. р., фиол.	• • •	•••	2024
2,7 98 ^{20,5}	e _{ste} ge •• ••	284 возг.	н. р. Pear.	•••	Р. сп., пир.; н. р. эф.	

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
2026	TiI ₂	Иодид титана (II)	301,71	Черн. расплыв. крист., триг.
2027	TiI4	Иодид титана (IV)	556,5 2	Кр., кб.
2028 2029	TiN TiO	Нитрид титана Оксид титана (II)	61,91 63,90	Желт., кб. Желт. или черн., кб.
2030	Ti ₂ O ₃	Оксид титана (III)	143,80	Фиолчерн. или кр:, триг.
2031	TiO ₂	Оксид титана (IV) (анатаз)	70,90	Корчерн., тетраг., 2,493; 2,554
2032	TiO ₂	Оксид титана (IV)	79,90	Бел., ромб., 2,583; 2,586; 2,741
2033	TiO ₂	(брукит) Оксид титана (IV) (рутил)	79,90	Бц. или син., тетраг., 2,616; 2,903
2034 2035		Пероксид титана Сульфид титана (I)	95,90 127,86	Желт. Желт. чешуйки
2036	Ti ₂ S ₃	Сульфид титана (III)	191,99	Темно-сер. крист.
2037	TiS ₂	Сульфид титана (IV)	112,03	Желт. чешуйки или темно-з., триг.
2038	$Ti_2(SO_4)_3$	Сульфат титана (III)	383,98	3. крист.
2039	TiSi ₂	Силицид титана	104,07	Свсер., ромб.
2040	_	Бромид таллия (I)	284,28	Желт. или бел., кб., 2,61
2041	TlBr ₃	Бромид таллия (III)	444,10	Желт. крист.
2042	TlBrO ₃	Бромат таллия (I)	332,28	Бц., триг.
2043	TICN	Цианид таллия (I)	230,39	Kб.
2044	TICNS	Роданид та лл ия (I)	см. № 2	2071 TISCN
2045	Tl ₂ CO ₃	Карбонад таллия (I)	468,75	Бц., мн.
2046	TICI	Хлорид	239,82	Бц., кб., 2,38
2047	TICI ₃	т алли я (1) Хлорид таллия (III)	310,73	Гекс. пл.

		Темпера	Температура, °С		Растворимость			
	Плотность			В	воде	в других	№	
	Пиотность	плавления	кипения	при 20 °C	при 100 °С	раствори- телях при 20°C	n/n	
	4,3	•••	•••	Pear.	Pear.	1.4	2026	
	4,4025	150	377,1	Р.	Pear.	•••	2027	
	5,43 4,88	2950 2020	•••	Н. р.	Н. р.	•••	2028 2029	
V.S	4,4825	2130 разл.	•••	Н. р.	Н. р.	***	2 030	
	3,84	1855	3000	Н. р.	Н. р.	•••	2031	
	4,17	•••	•••	Н. р.	Н. р.	•••	2032	
	4,26	•••	•••	Н. р.	Н. р.		2033	
	4,68	•••	•••	•••	•••	•••	2034 2035	
	8,5225	•••	•••	Н. р.	Н. р.	•••	2036	
	3 ,31	•••	•••	Pear.	Pear.	•••	2037	
	• • •	• • •	•••	Н. р.	Н. р.	H. р. сп., эф.	2038	
ě	4,02 7,5 57 ^{17,3}	1470 460	815	H. p. 0,05 ²⁵	H. p. 0,25 ⁶⁸	.:. Р. сп.; н. р.	2039 2040	
		Разл.	•••	P.	P.	ац. Р. сп.	2041	
	•••	•••	•••	0,035		• • •	2042	
	•••	Разл.	•••	16,8 ^{28,5}	•••	• • •	2043	
							2044	
	7, 16	273	-CO ₂ , 360	5,2318	27,2	Н. р. абс. сп.,	2045	
	7,00	430	720	0,32	2,38	эф., ац.	204 6	
_	•••	25	Разл.	Р.	•••	Р. сп., эф.	2047	

Продолжение	таблице
-------------	---------

- 		<u> </u>	3	<u> </u>			Температ	rypa, °C	P	астворимос	ТЪ	T
			Молеку-	Цвет, кристалличе-					B B	оде	в других	- Ne
№ n/n	Формула	Название	лярная масса	ская форма, показатель преломления		Плотность	плавления	кипения	при 20 °C	при 100 °C	раствори-	· n/n
2048	TICl ₃ · 4H ₂ O	Хлорид таллия (III),	382,80	Бц., ромб.		3,03	37	•••	86,217	***	Р. сп., эф.	204
2049	TICIO ₃	тетрагидрат Хлорат	287,82	Бц. крист.		5,0479	•••	• • •	2,00	57,31		204
2050	TICIO4	таллия (I) Перхлорат	303,82	Бц., ромб. или кб.		4,89	501.	Разл.	2030	167	Сл. р. сп	. 2050
2051 2052	Tl ₂ CrO ₄ Tl ₂ Cr ₂ O ₇	таллия (I) Хромат таллия (I) Дихромат	524,73 624,73	Желт., ромб. Кр. крист.	***	6,9125	633	•••	0,03 ⁶⁰ H. p.	0,2	•••	205 2052
2053 2054	TIF TIF ₈	таллия (1) Фторид таллия (1) Фторид	223,37	Бц., ромб. Кор. или свкр.		8,4 8,36	327 550	655	78,6 ¹⁸ Pear.	P. Pear.	Сл. р. сп	2054 2054
205 5	TIH ₂ PO ₄	таллия (III) Дигидроорто-		крист.	***	4,723	190	•••	Сл. р.	Сл. р.	Н. р. сп	205
	$\text{Tl}_2\text{HPO}_4 \cdot 2\text{H}_2\text{O}$	фосфат таллия (I) Гидроортофосфат таллия (I),	540,75	•	M.	•••	•••	•••	Р.	P.	. 4 ** :	2056
2057	Til	дигидрат Иодид таллия (I)	331,27	α желт., ромб.;		7,29	440	824	0,0064	0,12	Сл. р. сп	. 2057
2058	TII3	Иодид	585,08	β кр., кб. Кор. иг.		7,557	460	819	• • • .	• • •	Р. сп., эф.	2058
	TIN ₃ TINO ₃	таллия (III) Азид таллия (I) Нитрат таллия (I)		Желт., тетраг. Бц., ромб., 1,817		5,556 ^{21,4}	334 206	 438	0,3 ¹⁶ 4,0°	 413	Р. ац.; н. р. сп.	2060
2061	Tl(NO ₃) ₃	Нитрат	390,38	Бц. крист.		• • •	•••,	•••	Р.	•••		2061
2062	Tl ₃ PO ₄	таллия (III) · Ортофосфат	708,08	Бц. иг.		6,89	•••	•••	0,515	0,67	Н. р. сп.	. 2062
	$Tl_4P_2O_7$	таллия (I) Дифосфат		Мн. пр.	* * * *	6,786	> 120	•••	40	• • •	···	2063
	Tl ₂ O	таллия (I) Оксид таллия (I)		Черн. или желт.,	1 -	9,5216	300	Разл. 1865	Ρ.	P.	Р. сп.	2064
	Tl ₂ O ₃	Оксид таллия (III)		расплыв. Черн., ам. или		Гекс. 10,19 ²²	717 разл.	•.••	Н. р.	Н. р.	• • •	2065
	TIOH	Гидроксид		гекс. Свжелт. иг.		•••	Разл. 139	•••	25,40	148	Р. сп.	2066
	Tl(OH) ₃	таллия (I) Гидроксид		Кор., гекс.		•••	•••	•••	Н. р.	Н. р.		2067
	TIOOH	таллия (III)					> 340	• • •	Н. р.	Н. р.	•••	2068
	Tl ₂ S	Оксид-гидроксид таллия (III)	440,80			8,4	448	Разл.	0,02	P.	Р. сп.;	2069
	- · ·	Сульфид таллия (I)				•••	260	Р́азл.	Н. р.	Н. р.	н. р. ац.	
	Tl ₂ S ₃ TISCN	Сульфид таллия (III) Тиоцианат таллия (I)		Черн., ам. Бц., тетраг.		•••	**************************************	•••	0,315	-	Н. р. сп.	•

1				
		1		IV
Į.		1	Молеку-	Цвет, кристалличе-
N₂	_	Название	лярная	ская форма,
n/n	Формула	(123Banne	масса	показатель
7		. 1	Macca	преломления
- 1				
	m: 00	0 1	488,80	Крист.
072	Tl ₂ SO ₃	Сульфит	400,00	Typici.
		таллия (I)	504.00	E
073	Tl ₂ SO ₄	Сульфат	504,80	Бц., ромб., 1,860;
		таллия (I)		1,867; 1,885
074	$Tl_2(SO_4)_3 \cdot 7H_2O$	Сульфат	823,03	Бц. пл.
0/4	112(304)3 11120			·
		таллия (III),		•
		гептагидрат	700.00	14
:075	$Tl_2S_2O_6$	Дитионат	568,8 6	Мн.
	2-2-0	таллия (I)		
070	T1 Co 1		487.70	Сер. пл.
UIO	Tl ₂ Se	Селенид	10,,.0	
	,	таллия (I)	EE 1 70	Doug up 1 0/0.
2077	Tl ₂ SeO ₄	Селенат	551,70	Ромб. иг., 1,949;
	4 -	таллия (I)		1,959; 1,964
0.79	TIVO	Метаванадат	303,31	Сер. крист.
010	1 1 4 O8		,	• •
	m	таллия (1)	1031,36	TB.
2079	$Tl_4V_2O_7$	Диванадат	1001,00	ID.
	-	таллия (I)	0== 00	•
2080	TmCl ₃	Хлорид тулия	275,29	Мн.
2021	TmCl ₃ • 7H ₂ O	Хлорид тулия,	401,40	3. крист.
1004	THOIS - 1118A		• -	•
	w D	гептагидрат	225,93	Гекс. или орторомб.
2002	TmF ₃	Фторид тулия		
20 83	Tm ₂ Õ ₃	Оксид тулия	385,86	
2084	UB,	Борид урана	281,27	
	UB ₄	Борид урана	281,27	Блест., тетраг.
			477,76	Темно-кор. гекс.
ZUOU	UBr ₃	Бромид	,	иг.
		урана (III)	557,67	
20 87	UBr ₄	Бромид	997,07	Темно-кор. крист.
	-	урана (IV)	* r	
2088	B UC	Карбид урана	250,04	Kб.
2000	ÜC ₂	Карбид урана	262,04	Тетраг.
		Variational Plant		
2090	UCI ₃	Хлорид урана (III)	044,03	темно-кр., гекс.
				1cmno-kp., 1cko
2001	UCI ₄	Хлорид урана (IV)	379,84	Темно-з., тетраг.
203	. 00,4	zeropnik žbana (**	,,	или кб.

		•• •• ••	415 20	Тамио-а неи
209	2 UCI ₅	Хлорид урана (V)	415,30	
	-			_ кркор., мн.
209	3 UCI.	Хлорид урана (VI) 450,75	
		Фторид урана (III		
	4 UF ₃	Фиорид урана (ПТ		
209		Фторид урана (IV		
209		Фторид урана (V		
209		Фторид урана (VI) 352,02	Вц., ромб. или мн
209	, Or 6	тторид урана (чт	,,	F

					1 poodstoice.	ше таоли	400
		Температура, °С		ļ F			
]	······································	ВВ	оде		
	Плотность	плавления	кипения		при 100 °C	в других раствори- телях при 20°C	N₁ п/п
	6,427	•••		3,3415	Р.	Н. р. сп.	2072
	6,77	632	Разл.	4,87	18,45	•••	2073
	•••	—6H ₂ O, 220	Разл.	Pear.	Pear.	• • • •	2074
	5,57	Разл.	. •••	41,819	•••	• • •	2075
,	•••	39 8	•••	Н. р.	•••	•••	2076
	6,875	> 400	•••	2,1310	8,580	Н. р. сп.,	2077
	6,0917	4 24	•••	0,08711	0,21	эф.	2078
	8,2119	454	•••	0,214	0,26	•••	2079
	4	824	1490	P.	•••	Р. сп.	2080 2081
		1340	2230	•••	•••		2082
	12.70	2365		•••	•••	• • •	2083 2084
	9,32	> 2500			• • •	•••	2085
	5,98	752	• • • •	Pear.	Pear.	Р. сп.;	2086
	5,3526	5 19	761	Ρ.	P.	н. р. бзл. Р. ац.;	2087
	10.00					н. р. сп., эф.	
:	13,63	2250—2500	• • •	Pear.	Pear.	• • •	2088
	11,28 5,35	2400	1700	Pear	Pear.		2089
	0,00	842	~ 1780	Pear.	Pear.	Р. ледя- ной СН ₃ СООН;	209 0
						реаг.	
	4,87	590	761	Pear.	Pear.	Р. ац., пир.,	2091
			`			этилаце-	
	3,18	Разл. 320	•••	Pear.	Pear.	P. CCI ₄ ,	209 2
-	3,56	177 разл.	•••	Pear.	Pear.	CS ₂ P. CCl ₄	2093
	8,95	1427	2300	Н. р.	Н. р.		2094
	6,43—6,95	960	1418	0,0125	Pear.		2095
	6,45	400 разл.	•••	Pear.	Pear.	• • •	2096
٠,	5,09	•••	56,6	Pear.	Pear.	P. C ₂ H ₂ Cl ₄	2097

ī	- ,	
		ı
<u> </u>		

- 1	The second second			
№	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
1		I to sugar		проподиления
2098	UH ₃	Гидрид урана	241,06	Серо-кор. или черн., кб.
2099	UI _a	Иодид урана (III)	618,74	Черн., ромб.
	UI.	Иодид урана (IV)	745,65	Черн., ромб.
2101	UN	Нитрид урана	252,04	Свсер., кб.
2102	U_2N_3	Нитрид урана	518,08	Темно-сер., ко.
	UO	Оксид урана (II)	254,03	Сер. блест., ко.
2104	UO ₂	Оксид урана (IV)	270,03	Темно-кор. или черн., кб.
2105	UO ₃	Оксид урана (VI)	286,03	Ор., триг.; кр. или желт., ам.
2106	U_3O_8	Оксид	842,09	Черно-з., ромб.
2107	$UO_4 \cdot 2H_2O$	урана (IV, VI) Пероксид урана, дигидрат	338,06	Свжелт., ам. или ромб.
2108	UO_2Br_2	Оксид-бромид	429,85	Желтовз. иг.
		урана (VI); бромид уранила		
2109	UO ₂ CO ₃	Оксид-карбонат	330,04	Свжелт., тетраг.
2110	UO ₂ Cl ₂	урана (VI); карбонат уранила Оксид-хлорид урана (VI);	340,93	Желт., ромб.
		хлорид уранила		* 1
2111	$UO_2(ClO_4)_2 \cdot 6H_2O_4$	О Оксид-перхлорат урана (VI), гек	•	Желт. крист.
		сагидрат; перхло	•	entropy of the second s
2 112	UO ₂ F ₂	рат уранила, гексагидрат Оксид-фторид урана (VI);	308,03	Свжелт., триг.
		фторид уранила	E02 04	V- nearry vouch
2113	UO_2I_2	Оксид-иодид	020,04	Кр. расплыв. крист.
	110 (10.)	урана (VI); иодид уранила	£10.93	Warm now6
2114	$UO_2(IO_3)_2$	Оксид-иодат урана (VI);	619,83	Желт., ромб.
2115	$UO_2(IO_3)_2 \cdot H_2O$	иодат уранила Оксид-иодат урана (VI), гидрат; иодат	637,86	Крист.: α пр., β пирамиды
2 116	i ÚO₂HPO₄ • 4H₂O	уранила, гидра	438,07 t-	Свжелт., тетраг.

Продолжение	mah mub
просолжение	тиолии∽

}		Температ	Продолжение тапа Температура, °С Гастворимость				
		1			в воде		
	Плотность	плавления	кипения		при 100 °C	в других растьори- телях при 20°C	№ п/п
	10,95	Разл. 432	•••	•••		•••	209
	6,38	757	1755	Реаг.	Pear.		209
ž.	5,615	518	762	Реаг.	Pear.		210
	14.32	2650		· cui.	Pear.	•••	210
¥ .	11,24	•••		•••	Реаг.		210
-	14,2				r car.	• • • • • • • • • • • • • • • • • • • •	210
÷.	10,82	2800	•••	Н. р.	Н. р.	•••	210
	Триг. 8,34	Разл. 450	•••	Н. р.	•••	• • •	2105
	8,30	Разл. 1450	• • •	Н. р.	Н. р.	•••	2100
	4,66	Разл. 115	•••	0,0006	0,0890	•••	2107
. 14.	***	•••	•••	P.	•••	Р. сп., эф.	2108
	5,24	***	•••	Сл. р.	Сл. р.	Р. сп., эф.	2109
1	5,28	578 разл.	•••	Ρ.	Р.	Р. ац., пир.;	2110
	•					н. р.	
	•••	90	Разл. 100	P.	P.	CCl₄, бзл.	2111
		•					
	5,8	•••	•••	64,40	74,1	Р. сп.; н. р. эф.,	2112
	•••	Разл. на возд.	•••	•••	•••	амил сп.	211 3
	5,2	Разл. 250	• • •	•••	•••	-	2114
		*,					
. · . ·	α 5,22 ¹⁸ ; β 5,052 ¹⁸	•••	•••	α 1049 ¹⁸ ; β 1214 ¹⁸	•••	•••	2115
	•••	•••	•••	Н. р.	Н. р.	***	2116

П родолжение	таблицы
--------------	---------

		1 . 1	1		1		Томпор	тура, °С				1
	•			Цвет, кристалличе-			темпера	naypa, -C		астворимос	ть	.
Ne ⊓/n	Формула	Название	Молеку- лярная масса	ская форма, показатель преломления		Плотность	плавления	кипения	· · · · ·	оде при 100°C	в других раствори- телях при 20°C	№ п/п
2117	UO ₂ (NO ₃) ₂ · 6H ₂ C	Оксид-нитрат урана (VI), гек- сагидрат; нитрат уранила, гекса-	502,13	Желт., ромб., 1,484; 1,497; 1,572		2,80713	59,5	Пер. вак. в UO ₃ , > 170	170,30	585 ⁸⁰	Р. сп., эф., ац., мет. сп.	2117
2118	UO ₂ S	гидрат Оксид-сульфид урана (VI); суль-	302,09	Черно-кор., тетраг.		•	Разл. 40—50	•••	Сл. р.	***	Р. сп.; н. р.	2118
2119	UO ₂ SO ₄ • 3H ₂ O	фид уранила Оксид-сульфат урана (VI), три-	420,14	Желтовз. крист.		3,28 ^{16,5}	Разл. 100	• • •	22430	Pear.	абс. сп. Р. сп.	2119
		гидрат; сульфат уранила, тригид- рат		•		٠						
2120	UO ₂ SO ₄ • 7H ₂ O	Оксид-сульфат урана (VI), геп-		Желт. крист.		• • •	-7H ₂ O, 300	•••	Р.	P•	•••	2120
		тагидрат; суль- фат уранила, гептагидрат		0 4				•		•		
2121	US	Сульфид урана (II)	270,10	Сер., кб.		10,87	> 2000	•••	***	***	•••	2121
	U_2S_3	урана (11) Сульфид урана (III)	572,25	Черн., ромб.		8,81	1850	•••	Pear.	Pear.	***	2122
2 123	US ₂	Сульфид	302,18	Серо-черн., тетраг. или ромб.		7,54	1850	•••	Реаг.	Pear.	• • •	21 2 3
2124	$U(SO_4)_2 \cdot 9H_2O$	урана (II) Сульфат урана (IV),	592,29	3., мн.		•••	-7H ₂ O, 230	•••	Pear.	Pear.	•••	2124
2125	UOS	нонагидрат Оксид-сульфид	286,09	Черн., тетраг.		9,60	***	•••	Н. р.		• • •	2125
2126 2127	USi USi ₂	урана (IV) Силицид урана Силицид урана	266,12 294,20	Ромб. Сер., тетраг. или гекс.		10,40 8,98	Разл. 1575 > 1700	•••	•••	•••	***	2126 2127
	USi ₃	Силицид урана	322,29	К б.			1315	Разл. 1515	• •••		•••	2128
	VB ₂ VBr ₂	Борид ванадия Бромид		Гекс. Свкор., триг.		5,10 4,58	•••	•••	Pear.	Pear.	•••	2129 2130
2131	VBr ₃	ванадия (II) Бромид ванадия (III)	290,67	Темно-сер. крист.		•••	Разл.	•••	Р.	• • •	Р. сп., эф.	2131
2132 2133	VC VCl ₂	Карбид ванадия Хлорид	62,95 121,85	Кб.3. расплыв. крист., гекс.		5,77 3,23 ¹⁸	2830 1325—1375	3900	H. p. Pear.	 Реаг.	Р. сп., эф.	2132 2133
2134	VCl ₃	ванадия (II) Хлорид	157,30	Роз. расплыв.	· ·	3,0018	Разл.	•••	Pear.	Pear.	Р. абс.	2134
2135	5 VCl ₄	ванадия (III) Хлорид ванадия (IV)	192,75	крист., триг. Темно-кр. ж.		1,87	-25,7	148,5	Pear.	•••	сп., эф. Р. сп., эф., хлф.,	
2136	3 VF ₃	Фторид ванадия (III)	107,94	3., триг.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3,363	> 800		•••	•••	СН ₃ СООН Н. р. сп., хлф., CS ₂	2136

1	1.	1				Температ	ypa, °C	P	гь	1	
			Молеку-	Цвет, кристалличе- ская форма,				\$ B	оде	в других	M
fe /11	Формула	Название	лярная масса	показатель преломлення	Плотность	плавления	кипения	при 20 °C	при 100 °С	раствори- теляя при 20 °C	11/1
37	VF ₄	Фторид ванадия (IV)	126,94	Желтовбур. рыхлый пор.	2,97528	Разл. >325	•••	P.	•••	Р. ац., сп., хлф. СН.сООН	,
3 8	VF ₈	Фторид ванадия (V)	145,93	Бц. или желт. крист.	2,17719	Boar. 111,2		P.	•••	Р. сп., клф., ац. лигр.	21
39	VIs	Иодид ванадия (II)	804,75	Темно-фиол., триг,	5,44	Разл.	•••	P.	•••	Н. р. абс. сп., бзл.,	•
10	VI ₈	Иодид ванадия (III)	431,66	Корчерн. пор.	4,2	•••	•••	Р.	•••	CCl ₄ , CS P. aбс. сп.; н. р бзл., CS	21).
	VN VO	Нитрид ванадия Оксид		Бур., кб. Свсер., кб.	6,13 5 ,6— 5 ,75	2050 ~ 2000	•••	H. p. H. p.	Н. р.		2 2
3	V ₂ O ₈	ванадия (II) Оксид	149,88	Черн., триг.	4,84—4,87	1970	•••	• • •		•••	2
4	VO ₂	ванадия (III) Оксид	82,94	Син., тетраг.	4,26-4,34	▶ 1500	•••	Н. р.	H. p.	•••	
	V ₂ O ₅	ванадия (IV) Оксид ванадия (V)	181,88	Кржелт., ромб.	3,35718	690	Разл. > 700	0,0725	0,07	Н. р. абс. сп.,	•
3	VOBr	Оксид-бромид	146,85	Фиол. крист.	4,0018	Разл. 480	••••	Сл. р.	* ***	Сн _в соон Р. эф.,	
7	VOBr _a	ванадия (III) Оксид-бромид	226.76	Желтов,-бур, пор.	Winds of the second	Разл. 180	•••	P.	•••	CH ₂ COOH	-1
	VOBr	ванадия (IV) Оксид-бромид		Кр. ж.	2, 933 ^{14,5}	•••	•••	P.	•••		
	VOCI	ванадия (V)		Бур. пор.	2,824	•••	127	Н. р.	•••	•••	
		Оксид-хлорид ванадия (III)			2,88	\	•••	Реаг.	•••		
	VOCl ₂	Оксид-хлорид ванадия (IV) Оксид-хлорид		3. крист. Желт. ж.	1,829	—77	126,7	Pear.	• • •	Р. сп., эф	
	VOF,	ванадия (V)		Желт. крист.	8, 396	Разл.	• • •		•••	CH COO	H
	VOF ₃	Оксид-фторид ванадия (IV)		Желтовбел.	2, 459	300	480	• •••	• • •	- • • •	
	_	Оксид-фторид ванадия (V)		крист.		•••	•••	P.	• • • •	Н. р.	
	VOSO ₄	Оксид-сульфат ванадия (IV)	•	3. мелкокрист. пор.				Р.	•••	сп., эф Сл. р. с	þ.
5	VOSO ₄ ·3H ₂ O	Оксид-сульфат ванадия (IV).	217,05	Гол. крист.		•••	•••	F.	•••	Сл. р. с	
6	V_2S_5	тригидрат Сульфид	262,20	Черн. пор.	1 8,0	Разл.	•••	Н, р.	•••	* • •	
57	VS ₄	ванадия (V) Сульфид ванадия	179,20	Черн. пор.	2,8	Разл. > 500	o		• • •	•••	

					15		Темпера	тура, °С	P	астворимост	ъ	
№			Молеку-	Цвет, кристалличе-					ВВ	оде	в других	№
n/ n	Формула	Название	лярная масса	ская форма, показатель преломления		Плотность	плавления	кипения	при 20 °C	при 100°C	раствори- телях при 20°C	π/α
2158	VSO ₄ · 7H ₂ O	Сульфат ванадия (II), гептагидрат	273,11	Фиол., мн.		•••	Разл. на возд.	•••	Р.	•••	•••	2158
2160	V ₂ Si VSi ₂ WAs ₂	Силицид ванадия Силицид ванадия Арсенид вольфрама	129 ,9 7 10 7, 11 333,69	Серебрбел. пр. Бел. пр. Черн. крист.		5,48 ¹⁷ 4,42 - 6,9 ¹⁸	•••	•••	H. p. H. p. H. p.	H. p. H. p. H. p.	•••	2159 2160 2161
2162 2163 2164	WB WB ₂ WBr ₂	Борид вольфрама Борид вольфрама Бромид	194,66 205,47 343,67	Тетраг. Черн., гекс. Сине-черн. иг.		15,73 12, 75	2920 ~2900 Разл. 400	•••	H. p. Pear.	Н. р.	• • •	2162 2163 2164
2165	WBr ₈	вольфрама (II) Бромид вольфрама (V)	583,40	Буро-фиол. иг.		•••	276	333	Pear.	: •••	Р. абс. сп., хлф. эф.	
2166	WBr₅	Бромид вольфрама (VI)	663,30	Сине-черн. иг.	. ···	6,9	•••	•••	Н. р.	Pear.	•••	216 6
2167	WC	Карбид вольфрама	195,86	Черн. или сер.,	€ ₹	15,63	2870	~6000	Н. р.	•••	•••	2167
21 6 8 21 6 9	W₂C W(CO) ₆	Карбид вольфрама Гексакарбонил вольфрама	379,61 351,91	гекс. Черн., гекс. Бц., ромб.		17,15 2,65	~2800 Возг. 5 0	~6000 175 разл.	Н. р.	•••	• • •	2168 2169
	WCl ₂	Хлорид вольфрама (II)	254,76	Сер., ам.	ş ·	5,436	•••	• • •	Pear.	Реаг.	• • •	2170
	W _C l ₄	Хлорид вольфрама (IV)	325 ,66	Темно-кор. пор.		4,624	Разл.	• • •	Н. р.	•••	•••	2171
	WCl ₅	Хлорид вольфрама (V)	361,11	Темно- з. расплыв. крист.	<i>f</i>	3,875	253	286	Pear.	Pear.	Сл. р. CS ₂	
2173	WCl₅	хлорид вольфрама (VI)	396,57	Темно-син., кб.		3,52	285	337	Pear.	Pear.	Р. CŠ ₂ , сп., э ф. бзл.	
2174	WF ₆	Фторид	297,84	Бц. г. или		12,9 г/дм ³ , ж. 3,44	2,5	17,7	Pear.	Реаг.	•••	2174
2175	WI2	вольфрама (VI) Иодид	437,66	свжелт. ж. Бур. ам. пор.	i ja	6,9	•••	• • •	Н. р.	Pear.	H. p. CS ₂	, 2175
2176	WI ₄	вольфрама (II) Иодид вольфрама (IV)	691,47	Черн. крист.	<u>.</u>	5,218	Разл.	•••	Н. р.	Pear.	Р. абс. сп.; н. г эф., хлф	D.
2177	WO_2	Оксид	215,85	Бур., тетраг.	• • • • • • • • • • • • • • • • • • •	12,11	~1270	~1700	Н. р.	Н. р.	•••	2177
2178	WO ₃	вольфрама (IV) Оксид	231,85	Желт. или		7,16	1470	• • •	Н. р.	Н. р.	•••	2178
2179	WOBr ₄	вольфрама (VI) Оксид-бромид	519,48	оржелт., трикл. Буро-черн.	•	•••	277	327	Pear.	Pear.		2179
2180	WO_2Br_2	вольфрама (VI) Оксид-бромид	375,67	расплыв. иг Желтовкр. пр.		•••	Разл.	Разл.	•••	•••	•••	2180
2181	WOCI ₄	вольфрама (VI) Оксид-хлорид вольфрама (VI)	341,66	Кр. иг.		11,92	204	232	Pear.	Pear.	P. CS ₂ , S ₂ Cl ₂ , бзл.	, 2 181

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
2182	WO ₂ Cl ₂	Оксид-хлорид вольфрама (VI)	286,75	Свжелт. тб.
2183	WOF ₄	оксид-фторид вольфрама (VI)	275,84	Бц. расплыв. тб.
2184 2185	WP WS ₂	Фосфид вольфрама Сульфид	214,82 247,98	Сер. пр. Темно-сер., гекс.
2186	WS ₈	вольфрама (IV) Сульфид вольфрама (VI)	280,04	Черн. пор.
2187	W ₂ Si ₃	Силицид вольфрама	451,96	Сер. крист.
	YBr ₈	Бромид иттрия	328,63	Бц. расплыв. крист.
	YBr ₃ ·9H ₂ O	Бромид иттрия, нонагидрат	490,77	Бц. расплыв. тб.
2190	$Y(BrO_3)_3 \cdot 9H_2O$	Бромат иттрия, нонагидрат	634,86	Гекс. пр.
2191 2192	YC_2 $Y_2(CO_3)_3 \cdot 3H_2O$	Карбид иттрия Карбонат иттрия, тригидрат	112,93 411,88	Желт. крист. пор. Роз. пор.
2193	YCl ₈	Хлорид иттрия	195,26	Бел. пл.
2194	YCl ₃ · 6H ₂ O	Хлорид иттрия,	303,36	Бц. расплыв.
•	$YF_3 \cdot 0.5H_2O$	гексагидрат Фторид иттрия,	154,91	крист., ромб. Бел., студ.
2196	YI ₃	гемигидрат Иодид иттрия	469,62	Крист.
2197	$Y_{2}(MoO_{4})_{3} \cdot 4H_{2}O$		729,68	Сер. или желт.
2198	$Y(NO_3)_3 \cdot 6H_2O$	тетрагидрат Нитрат иттрия, гексагидрат	383,01	тетраг. пл., 2,03 Роз. расплыв. крист.
2199	Y_2O_3	Оксид иттрия	225,81	Бц. или желт. крист.
	Y(OH) ₃	Гидроксид иттрия	139,93	Свжелт., гекс. или студ.
2201	YOF	Оксид-фторид иттрия	123,90	α свжелт., тетраг.; β бел., кб.
	Y ₂ S ₃	Сульфид иттрия	274,00	Желтовсер., мн.
2203	$Y_2(SO_4)_3$	Сульфат иттрия	465,99	Бел. пор.
2204	$Y_3(SO_4)_3 \cdot 8H_2O$	Сульфат иттрия, октагидрат	610,12	Свроз., мн., 1,543; 1,549; 1,576

	Температ	ypa, °C	P	а створим о ст	ь			
			ВВ	оде	в других	N₂		
Плотность	плавления	кипения	при 20 °С	при 100 °C	раствори- телях при 20°C	n/n		
•••	266	•••	Р.	Pear.	•••	2182		
•••	110	187,5	Pear.	Pear.	Сл. р. CS ₂ ; н. р. CCl ₄			
8,5 7,5 ¹⁰	•••	•••	H. p. H. p.	•••	• • •	2184 2185		
		•••	Сл. р.	P.	a,* • •	2186		
10,9	•••;.	•••	Н. р.	•••	***	2187		
	907	1470	64°	129,695	Р. сп.; н. р. эф.	2188		
•••		• • •	P. .	Ρ,	Сл. р. сп.			
•••	74	-6H ₂ O, 100	16825		н. р. эф Сл. р. сп.; н. р	2190		
4,13 ¹⁸	_H ₂ O, 100	_3H ₂ O, 130	Pear. H. p.	Pear.	эф. Н. р. сп	2191 ., 2192		
2,848	703	1510	73,60	78,480	эф. Р. сп. (60, l ¹⁵).			
2, 18 ¹⁸	-5H ₂ O, 100	•••	1930	21580	пир. (60,6 ¹⁵) Р. сп. н. р. эф	2194		
•••	•••	•••	H. p.	•••		2195		
•••	1000	1310	Р.	•••	Р. сп.			
4,7916	1347	•••			ел. р. эс	2197		
2,68	-3H ₂ O, 100	—6H ₂ O,	134,7 ²² ,	5	Р. сп.	2198		
₹ ,046	2410	> 150 4300	0,000182	9	эф.	2199		
	Разл.	•••	Н. р.	Н. р.	•••	.2200		
5, 182	2230	•••	•••	•••		2201		
2,52 2, 558		0	Разл. 9,67 ²⁵ 10	1,6 6,60 6 0	 Н. р. с эф.	2202 2203 1., 2204		
	1							

		1				,	Температ	ypa, °C	Pa	створимост	`b	
No.	_		Молеку-	Цвет, кристалличе-					в во	де	в других	N≘
п/п	Формула	Название	лярная масса	ская форма, показатель преломления		Плотность	плавления	кипения	при 20°C	три 100 °С	раствори- телях при 20°C	π/π
2206	YSi ₂ YVÕ ₄	Силицид иттрия Ортованадат иттрия	145,08 203,84	Крист. Тетраг.		4,35 4,59	•••	•••		• • •	•••	2205 2206
2207	$Yb_2(CO_3)_3 \cdot 4H_2O$	Карбонат иттербия (III),	598,17	Студ.		3,67	•••	•••	Н. р.	· • • •	•••	2207
2208	YbCl ₃	тетрагидрат Хлорид	279,40	Мн.			857	Разл.	Р.	Р.	•••	2208
2209	YbCl ₃ · 6H ₂ O	иттербия (III) Хлорид иттербия (III),	387,49	3. расплыв. крист., ромб.		2,575	150—155	—6H ₂ O, 180) P.	Р.	Р. абс. сп	. 2209
2210	$Yb(NO_3)_3 \cdot 4H_2O$	иттербия (III),	431,12	Бц. расплыв. крист.		2,682	• • •	t	•••	•••		2210
2211	Yb ₂ O ₃	тетрагидрат Оксид	394,08	Бц., кб.		9,175	•••	•••	Н. р.	H.: p.		2211
2212	YbSO ₄	иттербия (III) Сульфат	269,10	Желтовз., ромб.	* %	•••	•••	•••	Сл. р.	• • • •	•••	2212
2213	$Yb_2(SO_4)_3$	иттербия (II) Сульфат	634,26	Бц. крист.		3,793	Разл. 900	•••	3515	4,7	• • • .	2213
2214	$Yb_2(SO_4)_3 \cdot 8H_2O$	иттербия (III),	778,39	Би. пр.		3,286	•••	•••	60,30	5,8	. •••	2214
2215	$Yb_2(SeO_3)_3$	октагидрат Селенит	726,95	Бц. крист.	1 . 	•••	•••	•••	Н. р.	• • • •	•••	2215
2216	$Yb_2(SeO_4)_3 \cdot 8H_2O_4$	иттербия (III),	919,08	Бц. гекс. пл.	*	3,30	•••	•••	Р.	Р.	•••	2216
2217	$Zn(AlO_2)_2$	октагидрат Метаалюминат	183,33	Бц., кб.		4,58	• •••		Н. р.	Н. р.	• • •	2217
2218 2219	Zn_3As_2 $Zn_3(AsO_4)_2 \cdot 8H_2O_4$	цинка Арсенид цинка Ортоарсенат цинка, октагид- рат	345,95 618,07	Кб. или тетраг. Мн., 1,662; 1,683; 1,717		3,30915	1015 Разл. 100	•••	H. p. H. p.	н. р.		2218 2219
2220 2221	$\begin{array}{l} \operatorname{ZnBr_2} \\ \operatorname{Zn(BrO_3)_2} \cdot \operatorname{6H_2O} \end{array}$	Бромид цинка Бромат цинка,	22 5 ,19 429,28	Бц., ромб. Бц., кб.		4,2194 2, 566	392 100	702 -6H ₂ O, 20	447 00 P.	672 P.	Р. сп., э	ф. 2220 22 21
2222	ZnCO ₃	гексагидрат Карбонат цинка	125,38	Бц., триг., 1,618;		4,44	-CO ₂ , 300	•••	0,00115	•••	H. p. NH ₃ , a	
2223	$Zn(CN)_2$	Цианид цинка	117,42	1,818 Бц., кб.		•••	Разл. 800	•••	0,0005	•••	Р. NH н. р. ст	; 2223
2224 222 5	ZnCl ₂ Zn(ClO ₃) ₂ · 4H ₂ O	Хлорид цинка Хлорат цинка,	136,28 304,33	Бц., триг., 1,687 Бц. или желт., кб.		2,91 ²⁵ 2,15	315 Разл. 60	733 Разл.	375 198 ¹⁸ бв.	615 P.	Р. эф., с Р. сп. глиц., э	п. 2224 , 2225 ф.
2226	ZnCrO ₄	тетрагидрат Хромат цинка	181,36	Лимонно-желт.,		5,3	•••		Сл. р.	• • •	H, p. at NH ₃	ı., 2 22 6
2227	$ZnCr_2O_7 \cdot 3H_2O$	Дихромат цинка, тригидрат	335,40	трикл. Оржелт. пор.	- 1 - 1 - 1 - 1 - 1	• • • •		•••,	, P.	Pear.		

Æ n/n	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
2 2 28	ZnF ₂	Фторид цинка	103,37	Бц., тетраг.
2229	$ZnF_2 \cdot 4H_2O$	Фторид цинка, тетрагидрат	175,43	Би., ромб.
2231	Zn(FeO ₂) ₂ ZnI ₂	Феррит цинка Иодид цинка	241,06 319,18	Черн., кб. Бел., тетраг. или триг.
2232	$Zn(IO_3)_2$	Иодат цинка	415,17	Бц. крист.
2233	$Zn(IO_3)_2 \cdot 2H_2O$	Иодат цинка, дигидрат		Бц. крист.
2234	$Zn(MnO_4)_2 \cdot 6H_2O$	Перманганат цинка, гексагид- рат	411,33	Кор. или черн. крист.
2235	Zn_3N_2	Нитрид цинка	224,12	Сер., кб.
2236	$Zn(NO_3)_2 \cdot 3H_2O$	Нитрат цинка, тригидрат	243,42	Бц. крист. иг.
2237	$Zn(NO_8)_2 \cdot \ellH_2O$	Нитрат цинка, гексагидрат	297,47	Бц., тетраг.
2238	Zn_3P_2	Фосфид цинка	258,06	Темно-сер., кб. или тетраг.
2239	$Zn_3(PO_4)_2$	Ортофосфат цинка	386.05	Бц., ромб.
2240	$Zn_2P_2O_7$	Дифосфат цинка	304,68	Бел. пор.
2241	ZnO	Оксид цинка	81,37	Бел., гекс., 2,008; 2,029
2242	ZnO ₂	Пероксид цинка	97,37	Желт. пор.
2243	Zn(OH) ₂	Гидроксид цинка	99,38	Бц., ромб. или триг.
2244	ZnS	Сульфид цинка (вюрцит)	97,43	Би., гекс., 2,356; 2,378
2245		Сульфид цинка (сфалерит)	97,43	Бц., кб., 2,368
	ZnS·H ₂ O	Сульфид цинка, гидрат	115,45	Желтовбел. пор.
	ZnSO ₃ · 2H ₂ O	Сульфит цинка, дигидрат	181,46	Бел. крист.
2248	ZnSO ₄	Сульфат цинка	161,43	Бц., ромб., 1,658;
2249	ZnSO ₄ · 7H ₂ O	Сульфат цинка, гептагидрат	287,54	1,669; 1,670 Бц., ромб., 1,457; 1,480; 1,485

	Температу	pa, °C	P	астворимост	ь	<u></u>
			в в	оде	в других	N ₂
Плотность	плавления	кипення	при 20 °С	при 100 °C	раствори- телях при 20°C	n/n
4,8415	872	1500	Сл. р.	Р.	Н. р. сп., NH ₃	2228
2,53512	-4H ₂ O, 100	•••	1,618	P.	•••	2229
5.33	1590	•••	• • •	•••	• • •	2230
4,666 ^{14,2}	446	730	4300	510	Р. сп., эф., NH ₃	2231
4,98	Разл.	• • •	Сл. р.	•••	•••	2232
•••	. 4 * *	•••	0,877	1,32	•••	2233
2,4	-5H ₂ O, 100	•••	P.	Р.	P. cn.	2234
	• • •		Pear.	Pear.		2235
•••	45,5	•••		1250 ⁷³ бв		2236
2,06514	36,4	-6 H ₂ O, 105-131	Р.	P.	Р. сп.	2237
4,5513	420	1100	Н. р.	•••	Н. р. сп	. 2238
3,99815	900		Н. р.	Н. р.	H. p. cr	ı. 2239
3,7623	• • •	•••	Н. р.	Н. р.	•••	2240
5,606	Возг. 1800	•••	0,000162	9	Н. р. NH ₃ , сп.	2241
1,571	Взр. 212	•••	Сл. р.		• • •	2242
3,053	Разл. 125	• • •	Сл. р.	Сл. р.	• • •	2243
4,087	1850 (15 МПа)	Возг. 1185	Н. р.	•••	•••	2244
4,10225	Пер. в вюр- цит, 1020	•••	Н. р.	•••	•••	2245
3,98	1049	•••	Н. р.	•••	•••	2246
•••	-2H ₂ O, 100	Разл. 200	0,16	Pear.	H. p. cr	1. 2247
3,74 ¹⁵	Разл. 740	•••	53,8	60,6	Сл. р. ст	1. 2248
1,97	-7H ₂ O, 280	•••	165	202	Сл. р. сп н. р. аг	

№ п/п	Формула	Название	Молеку- лярная масса	Цвет, кристалличе ская форма, показатель преломления	Плотнос
2250	ZnS ₂ O ₆ ·6H ₂ O	Дитионат цинка, гексагидрат	333,59	Бц., трикл.	1,915
2251	ZnSe	Селенид цинка	144,33	Желт., кб. или гекс., 2,89	5,421
2252	ZnSeO ₄ · 5H ₂ O	Селенат цинка, пентагидрат	298,40	Бел., трикл.	2,591
2253	ZnSiO ₃	Метасиликат цинка	141,45	Бц., гекс.	3,52
2254	Zn ₂ SiO ₄	Ортосиликат цинка	222,82	Би., триг., 1,694; 1,723	3,9
2255	ZnTe	Теллурид цинка	192,97	Кр., кб., 3,56	6,341
2256	Zn ₃ TeO ₆	Ортотеллурат цинка	419,71	Бел. пор.	
2257	ZrB ₂	Борид циркония	112,84	Сер., гекс., 6,085; 6,10	5,60
2258	ZrBr ₂	Бромид циркония (II)	251,04	Черн. блест. пор.	•••
2259	ZrBr ₃	Бромид циркония (III)	330,95	Темно-син. пор.	
2260	ZrBr ₄	Бромид циркония (IV)	410,86	Бел. крист. пор.	•••
2261	ZrC	Карбид циркония	103,23	Сер., кб.	6,73
2262	ZrCl ₂	Хлорид циркония (II)	162,13	Черн., ам.	
2263	ZrCl ₃	Хлорид циркония (III)	197,58	Сине-черн.	3,0
2264	ZrCl ₄	Хлорид циркония (IV)	233,03	Бел., кб.	2,803
2265	ZrF ₄	Фторид циркония (IV)	167,21	Бел., мн.	4,43
226 6	ZrH ₂	Дигидрид циркония	93,24	Темно-сер., кб. или тетраг.	5,74
2267	ZrH ₄	Тетрагидрид циркония	95,25	Темно-сер. пор.	•••
226 8	ZrI ₄	Иодид циркония (IV)	598,84	Кр. или кор. крист.	•••
22 69	ZrN	Нитрид циркония	105,23	Кор. , кб.	7.0

T	· · · · · · · · · · · · · · · · · · ·	Температ	ypa, °C	P	астворимост	ъ		
				ВВ	оде	в других раствори-	№	
	Плотность	плавления	кипения	при 20 °С	лри 100 °C	раствори- телях при 20 °C	n/n	
•	1,915	•••	• • •	P.		• • •	2250	
	5,4215	1100	•••	Н. р.	•••	•••	2251	
	2,591	Разл. 50	•••	167 ²⁹	Р.	•••	2252	
	3,52	1437		Н. р.	•••		2253	
	3.9	1509	•••	Н. р.	Н. р.	. •••	2254	
	6,3415	1238,5	•••	Н. р.	Н. р.	•••,	2255	
	•••		•••	Н. р.	Н. р.		2256	
	5,60	3000	•••		•••	• • • •	2257	
		Разл. > 350		Pear.	Pear.	, · · ·	2258	
	•••	Разл. 350	•••	Pear.	Pear.	•••	2259	
	•••	4 50	•••	Pear.	Pear.	Р. сп., эф	2260	
	6,73	3540	5100	Н. р.	Н. р.	• • •	2261	
	• • •	•••	•••	Н. р.	•••	, 4 14.4	2262	
	3,0	•••	•••	Pear.	Pear.	•••	2263	
	2,803	Возг. 300—3 50		Pear.	Pear.	Р. сп., эф	. 2264	
	4,43	Возг.	Разл.	Сл. р.	Pear.	• • •	2265	
	5,74	•••	•••	•••	•••	•••	2266	
. •	•••	Разл. вак. 750—850	•••	•••	•••	•••	2267	
	•••	Разл. 160	•••	Pear.	•••	Р. эф.; сл. р. бзл.; реаг. сп	2268	
	7.09	2950	••••	Н. р.	Н. р.	•••	2269	

. 1		1	4 1 -	1
Mr. n/n	Формула	Название	Молеку- лярная масса	Цвет, кристалличе- ская форма, показатель преломления
2270	Zr ₃ N ₂	Нитрид циркония	301,67	Кр. пор.
2271	$Zr(NO_3)_4 \cdot 5H_2O$	Нитрат циркония (IV),	429,31	Расплыв. пор.
2272	ZrO ₂	пентагидрат Оксид циркония (IV)	123,22	Бел., гекс., кб. или тетраг.
2273	Zr(OH) ₄	Гидроксид циркония (IV)	159,25	Бел. ам. пор. или студ.
2274	ZrOBr ₂ · 8H ₂ O	Оксид-бромид циркония (IV), октагидрат	411,16	Тетраг.
2275	ZrOCl ₂ · 8H ₂ O	Оксид-хлорид циркония (IV), октагидрат	322,25	Бц. тетраг. иг.
227 6	$ZrOI_2 \cdot 8H_2O$	Оксид-иодид циркония (IV), октагидрат	505,15	Бц. крист. иг.
2277	$ZrO(NO_3)_2 \cdot 6H_2O$		339,32	Бц. крист.
227 8	ZrOS	Оксид-сульфид циркония (IV)	139,28	Желт., кб.
2279	ZrP	Фосфид циркония	122,19	Тв.
2 280	ZrP_2	Фосфид циркония	153,17	Cep.
2 281	ZrP ₂ O ₇	Дифосфат циркония (IV)	265,16	Бел., кб.
22 82	ZrS ₂	Сульфид циркония (IV)	155,35	Сер., триг.
22 83	$Z_{\Gamma}(SO_4)_2$	Сульфат циркония (IV)	283,34	Бел. крист.
2284	$Zr(SO_4)_2 \cdot 4H_2O$	Сульфат циркония (IV),	355,40	Бц., ром б.
	$Zr(SeO_4)_2 \cdot 4H_2O$	тетрагидрат Селенат циркония (IV), тетрагидрат	449,20	Гекс.
2 286	ZrSi ₂	Силицид циркония	147,39	Сер., ромб.
2 287	ZrSiO ₄	Ортосиликат циркония (IV)	183,30	Бц. или кр., тетраг., 1,92—2,02
22 88	ZrTe ₂	Теллурид циркония	346,42	Черн.

-	Температу	/pa, °C		астворимост	ь	
			в вс	де	в других	M₂
Плонток П	плавления п	кипения	при 20° С	при 10. ∘С	раствори-	ព/វា
6,75	2930	•••	•••			2270
•••	Разл. 75	•••	Ρ.	Pear.	• • • •	2271
5,73	2680	•••	Н. р.	Н. р.	•••	2272
3,25	-H ₂ O, 100	•••	Сл. р.	Сл. р.	Н. р. сп	. 2273
•••	_H ₂ O, 120	•••	Р.	• • •	•••	2274
1,552	-6H ₂ O, 150	—8H₂O, 2ị0	Р.	Pear.	Р. сп., эф	. 2275
•••	~ Разл.	· · · · · ·	Р.	Р.	Р. эф., сп	. 2276
2,08	. •••	• / - /	Ρ.	Р.	P. en.	2277
4,975	•••	***:	Н. р.	• • •	•••	2278
	Разл. 1100				• • •	2279
4,7725	Разл. 750	• • •	Н. р.		•••	2280
•••	Разл. 1550		Н. р.	•••		2281
3,87		•••	•••	• • •		2282
	•••		Р.	Р.	• • •	228
•••.	-3H ₂ O, 120	•••	110,618	146,52	Н. р. с	n. 228
• • •	—3H ₂ O, 100	—4H ₂ O, 13	30 P.	•••	Сл. р. с	сп. 228
4,8822	•••	•••	•••	•••	•••	228
4,56	2550	•••	Н. р.	•••	•••	228
•••		•••	Н. р.	Н. р.		228

2.3. СВОЙСТВА ДВОЙНЫХ СОЛЕЙ . И КОМПЛЕКСНЫХ СОЕДИНЕНИЙ

Принятые сокращения

Абс. — абсолютный Ам. — аморфный Амил. сп. — амиловый спирт Анил. — анилин Ац. — ацетон Бв. — безводный Бел. — бензол Блест. — блестящий Бур. — бурый Бц. — бесцветный Вак. — в вакууме Взр. — вэрывчатый, вэрывается Водн. — возгоняется

Возд. — воздух Воспл. — воспламеняется Выч. - вычислено Г.— газ, газообразный Гекс. — гексагональный Гигр. — гигроскопичный Глиц. — глицерин Гол. — голубой Гор. — горячий Диокс. — диоксан Дым. — дымяший Ж. — жидкий, жидкость Желт. — желтый Желтов. - желтоватый З. — зеленый Зеленов. — зеленоватый Зол. — золотистый

№ n/n	Формула	Название	Молекуля ная массі	диет, кристил- лическая фор- ма, показатель преломления
Al.	Двойные с	оли и комплексные	е соедин	ения алю
1	Li[AiH4]	Тетрагидридоалюмин лития	иат 37,95	Бел. крист. пор.
2	NH ₄ [AlCl ₄]	Тетрахлороалюминиа аммония	т 186,83	Бел. крист. пор.

Тетрахлороалюминиат

натрия

191,78 Бц. расплыв.

пор.

Иг. — иглы, игольчатый Кб. - кубический Конц. - концентрированный Кор. - коричневый Кр. — красный Крист. - кристаллы, кристаллический Ксил. -- ксилол Лигр. - лигроин Лист. - листочки Мет. -- металл, металлический Мет. cn. — метиловый спирт Мин. -- минеральный Мн. - моноклинный Нас. - насыщенный Нестаб. — нестабильный Н. р. — не растворяется Окт. — октаэдры Ор. - оранжевый Орторомб. - орторомбический Пер. - переходит Петр. эф. — петролейный эфир Пир. пиридин Пл. - пластинки Пор. - порошок Пр. - призмы Прозр. - прозрачный Пурп. — пурпурный Р. — растворяется Разб. — разбавленный Разл. - разлагается, жением

Расплав. - расплавленный Расплыв. - расплывающийся Реаг. - реагирует Роз. - розовый Ромб. - ромбический Р-р. - раствор С. р — сильно растворим Св. - светло-Сер. — серый Серебр. — серебристый Син. — синий Сл. р. — слабо растворяется Сп. — этиловый спирт Стабл. — стабильный Стеклов. — стекловидный Стул. -- студенистый Тб. — таблички Тв. — твердый, в твердом состоянии Тетраг. — тетрагональный Тол. — толуол Триг. — тригональный Трикл. — триклинный Уст. — устойчивый Фен. -- фенол Фиол. — фиолетовый Хлф. — хлороформ Хол. — холодный Черн. — черный Эф. — диэтиловый (этиловый) ∞ - растворяется (смешивается в любых соотношениях)

1.				Растворим	ость		
Плотность для гв. и ж.—отно-	Темпера	Температура		оде		№	
сительная; для г.—г/дм ³	пдавления, ℃	оС кипения,	при 20 ℃	при 100 ℃	І створителях і	n/n	
.'. 		-					
миния						`	
0,917	150 разл.	•••	Pear.	Pear.	Р. эф. (30), диокс.	- 1	
•••	304	•••	Р.	•••	•••	2	
	185		P.	P.	•••	3	

3 Na[AlCl₄]

			T .	1			·	-:		Растворим	OCTA	丁
Ne			d REC	Цвет, кристал	Пл	итность для	Темпер	атура		юде		1
п/п	Формула	Название	Молекуляр- ная масса	лическая фор- ма, показатель преломления	TB.	н ж.—отно- тельная; г.—г/дм ^а	п лев ления, °С	кипения, °С		при 100 °C	в других ра- створителях при 20°C	Ne ⊓/⊓
	(NH ₄) ₈ [AIF ₆]	Гексафтороалюминиат аммония	195,09	Бел. мелко- крист.		1,78		• • •	1,04	•••	•••	4
5	Na _s [AiF ₆]	Гексафтороалюминиат натрия	209,94	Бц., мн., 1,3389		2,90	1000	. •••	0,06	•••	•••	5
	$Li_8Na_8[AlF_6]_2$	Гексафтороалюминиат натрия-лития	- 3 71 , 73	Бц., кб., 1,3395	2,7	74—2,778	710	• •••	0,07418	•••	•••	6
	$CsAl(SO_4)_3 \cdot 12H_2O$	Сульфат алюминия- цезия, додекагидрат	568,19	Бц., кб., 1,4587		1,97	117	•••	0,340	42,54	Н. р. сп.	7
8	KA1(SO ₄) ₂	Сульфат алюминия-калия	258,21	Бел. расплыв. крист., триг.	÷.	2,75	•••	•••	30	6785	Н. р. сп.	8
9	$KA1(SO_4)_2 \cdot 12H_2O$	Сульфат алюминия- калия, додекагидрат	474,36	Бц., кб. или мн.		1,75	-9H ₂ O, 64,5	•••	11,420	28085	Н. р. сп.	9
10	$NH_4Al(SO_4)_2$	Сульфат алюминия-аммония	237,14	Би., гекс.		2,039	• • •	•••	2,10	26,760	Р. глиц.; н. р. сп.	10
11	$NH_4Al(SO_4)_2 \cdot 12H_2O$	Сульфат алюминия- аммония, додекагидрат		Бц., кб., 1,459		1,64	93,5	-10H ₂ O,	1520	Р.	Н. р. сп.	11
12	$NaAl(SO_4)_2 \cdot 12H_2O$	Сульфат алюминия- натрия, додекагидрат		Бц., кб., 1,4388		1,675	61	120	1060	12145	Н. р. сп.	12
13	$RbAl(SO_4)_2 \cdot 12H_2O$	Сульфат алюминия- рубидия, додекагидрат	520,76	Бц., кб., 1,4566		1,89	99	•	1,20	43,580	•••	13
14	$TIAI(SO_4)_2 \cdot 12H_2O$	Сульфат алюминия-тал-лия (1), додекагидрат	639,66	Бц., кб., 1,4976	-	2,32	91	• • •	10	65,360	•••	14
				2						* * *	3.6	
Ag.	Двойные соли	и комплексные	соеди	нения се	pe	бра						es, e
	$[Ag(NH_3)_2]ReO_4$	Диамминаргента- перренат	392,13	Бц., мн.		3,901	•••	•••	• • •	. •••	•••	15
	K[Ag(CN) ₂]	Дицианоаргентаат калия	1.			2,36	•••	•••	25	100	P. cn.	16
Au.	Двойные соли и	комплексные соед	инен	ия золота							215	
	NH ₄ [Au(CN) ₂]	Дицианоаураат аммония		**		171		1.1.1.1.1.1	Р.	Р.	5 ·	. 17
	K[Au(CN) ₂]	Дицианоаураат калия		Бц., ром б.		9.45	Разл. 150-200	•••	P.	г. Р.		18
	Ag ₂ [OAuĆl ₃]		535,06		÷.	3,45	50	Разл.	Н. р.	Н. р.	•••	19
2 0	K[AuBr ₄]	Тетрабромоауриат калия	5 55 , 70	Кркор.	1.5	•••	Разл.	•••	Ρ.	•••		20
21 -	K[AuBr ₄] · 2H ₂ O	Тетрабромоауриат калия, дигидрат	591,73	Темно-кор. крист.		***	• • • •	•••	Ρ.	Р.	Р. эф.	21
2 2	H[AuBr ₄] · 5H ₂ O		607, 69	Крбур.		•••	27	•••	P.	•	Р. сп.	22
2 3	H[Au(NO ₃) ₄]	Тетранитратоаури- кислота	446,00	Желт. крист.		•••	•••	• • •	Реаг.	Pear.	•••	23

9 6-403

№ п/п	Формула	Название	Молекуляр- ная масса	Цвет, кристал- лическая фор- ма, показатель преломления
24	H[Au(NO ₃) ₄] • 3H ₂ O	Тетранитратоаури-	500,00	Желт., трикл
25	NH ₄ [AuCl ₄]	кислота, тригидрат Тетрахлороауриат аммония	356,82	Желт., ромб. или мн.
26	$\{NH_4[AuCl_4]\}_4 \cdot 5H_2O$	Тетрахлороауриат	1517,34	Желт., мн.
27 28	K[AuCl ₄] Na[AuCl ₄] · 2H ₂ O	аммония, пентагидрат Тетрахлороауриат калия Тетрахлороауриат натрия, дигидрат	377,88 397,80	Желт., мн. Оржелт., ромб.
29 30	Cs[AuCl ₄] H[AuCl ₄] · 4H ₂ O	Тетрахлороауриат цезия Тетрахлороаурикисло- та, тетрагидрат	471,68 411,85	Крист. Желт. расплыв.
31	$NH_4[Au(CN)_4] \cdot H_2O$	Тетрацианоауриат аммония, гидрат	337,09	крист., мн. Желт. мн. пл.
32	$K[Au(CN)_4] \cdot 1,5H_2O$	Тетрацианоауриат калия, сесквигидрат	367,06	Бц. крист.
B.	Двойные соли в	и комплексные со	едине	ения бора
33	H[BF ₄]	Тетрафторобори-	87,81	Бц. ж.
34	NH ₄ [BF ₄]	кислота Тетрафторобориат аммония	104,84	Бц., кб. или ромб.
35	K[BF ₄]	Тетрафторобориат калия	125,91	Бц., кб. или ромб.
36	Na[BF ₄]	Тетрафторобориат натрия	109,79	
37 38	$ B_{2}H_{6} $ $ B_{4}H_{10} $	Диборан (бороэтан) Тетраборан (боробутан)	27,67 53,32	Бц. г. Бц. нестаб. г.
39	B_5H_9	Пентаборан (9)	63,13	Бц. ж.
40	$B_{5}H_{11}$	Пентаборан (11)	65,14	Бц. нестаб. ж.
41	B ₆ H ₁₀	Гексаборан (10)	74,94	Бц. ж.
42	B ₆ H ₁₂	Гексаборан (12)	76,96	Бц. нестаб. ж.
43	B ₁₀ H ₁₄	Декаборан (14)	122,22	Бц., мн. или ромб.
44	B_2H_5Br	Бромдиборан (моно- бромбороэтан)	106,57	Бц. г.
45	B_2H_5C1	Хлордиборан (монохлорбороэтан)	62,11	Бц. нестаб. г.
46	Al[BH ₄] ₃	Тетрагидридобориат алюминия	72,53	Нестаб. ж.
47	$Be[BH_4]_2$	Тетрагидридобориат бериллия	38,70	Бел. крист.

					Растворим	ость	Ī	
	Плотность для 18. 1 ж.—отно	Темпер	атура	ВВ	оде		Ne	
· .	сительная; для г.—г/дм		кипения, °С	при 20 °C	при 100°C	в других ра- створителях при 20°C	Ų\U	
	2,84	72 разл.	• • •	Pear.	Pear.	•••	24	
	·	•••	•••	P	•••	Сл. р. сп.	25	
	•••	-5H ₂ O, 100	•••	P.	•••	Р. сп.	26	
	•••	Разл. 357 Разл.	•••	61,8 180 ¹⁰	405 ⁶⁰ 940 ⁶⁰	Р. сп. (25) Р. абс. сп., эф.	27 28	
	* • • * • • •	 Разл.	•••	0,8 P.	37,9 P.	Р. сп. Р. сп.	29 30	
	•••	Разл. 200	•••	P.	· p.	Р. сп.	31	
	****	—1,5H ₂ O,200	• • •	P.	Ρ.	P. cn.	32	
٠.	1 1	_			•			
. ,/	•••	•••	130 разл.	P.	P.	Р. сп.	33	
-	1,85117	Возг.	* * * *	2516	97	***	34	
	2,50	529,5	Разл.	0,44	6,27	Сл. р. гор. сп.	35	
•	2,47	384 разл.	Разл.	10826,5	210	Сл. р. сп.	36	
	Тв. 0,577-188; ж. 0,447-112 ж. 0,56-35; 0,610	-166 -120	92,5 15,4	Pear. Pear.	Pear. Pear.	 Pear. сп.; р. бзл.	37. 38	
	•••	—47	58; 60	Медленно реаг.	Pear.	Р. бзл.	3 9	
	•••	 123,3	66,7	Pear.	Pear.	Pear.	40	
	0,690	65,1	110	Медленно реаг.	Pear.	•••	41	
		 90	•••	pear.	•••	• •.•	42	
	Тв. 0,94 ²⁵ ; ж. 0,78 ¹⁰⁰	99,6	211 разл.	Медленно. реаг.	Pear.	P. CS ₂ , cn.,	43	
	•••	104	10	Pear.	Pear.	эф. `, бзл .	44	
	/•••	•••	-78 ¹⁸	Pear.	Pear.	•••	45	
	•••	64,5	44,5	Pear.	Реаг.	Р. бзл.	46	
	•••	Возг. 91,3	Разл. 123	Pear.	Pear.	Р. бзл.	47	

Ī			à			79		T		•	Растворим	ость	T
N.	en e		екуля масса	Цвет, кристал- лическая фор-	1 8	Timor	гность для гж.—отно	Темпер	атура	ВЕ	оде		N ₉
n/n	Формула	Название	Молек) ная ма	ма, показатель преломления	30 de 10 de	57 A C C C C	гельная; г.—г/дм³	плавления, °С	кипения, °С	при 20°C	при 100°C	в других растворителя при 20°C	х п/
4 oʻ	Li[BH ₄]	Тетрагидридобориат литня	21,78	Бел., орто- ромб.			0,66	>275 разл.	. •••	•••	• • •	Р. эф. (3,2 ²⁰	') 48
4 9	$K_2[B_2H_6]$	Гексагидридодибориат калия	105,87	Бел., кб., 1,493			1,18	•••	300 разл.	Pear.	Pear.	***	49
5 0	$K_2[B_5H_9]$	Нонагидридопента- бориат калия	141,33	Бел. пор.	1		***	Разл. <180	***	Pear.	Pear.	• • •	50
51	Na[BH ₄]	Тетрагидридобориа т	37,83	Бел., кб.		V	1,074	Разл. >300		Р.	•••	Р. NH ₃ , пир (3,1 ²⁵)	. 51
52	Th[BH ₄] ₄	натрия Тетрагидридобориат	291,41	Бел. крист.		•	•••	204 разл.		•••	•••	•••	52
53	U[BH ₄] ₄	тория Тетрагидридобориат урана (IV)	297,40	3., блест.	1		•••	126 разл.	. • • •	Pear.	Pear.	Р. эф.; реаг. сп.	5 3
54	Zr[BH ₄] ₄	урана (17) Тетрагидридобориат циркония	150,59	•••			, , ,	29,0	118	•••	•••	,	54
Be.	Двойные соли	и комплексные со	един	ения бери		A A A	ня						
55	Ba[BeF ₄]	Тетрафтороберилоат бария	222,35	Бел. пор.			4,170	•••		Н. р.	Н. р	• • •	58
5 6	$K_2[BeF_4]$	Тетрафтороберилоат	163,21	Би., ромб.		1 .1-1.5 2	. • • •	• • •	•••	2	5,26	Н. р. сп.	56
5 7	Na ₂ [BeF ₄]	калия Тетрафтороберилоат натрия	130,98	Бц., ромб. или гекс.			•••	Разл.	/ ••• ·	1,4718	2,94	•••	5
Ca.	Двойные соли	и комплексные со	един	ения каль		дия	7	• • •					•
5 8	$CaNH_4AsO_4 \cdot 6H_2O$	Ортоарсенат кальция-	305,13	Бц., мн.	* 1	1	,90516	Разл. 140	•••	0,02	· P.	•••	58
59	CaNH ₄ PO ₄ · 7H ₂ O	аммония, гексагид рат Ортофосфат кальция-	279,20) Бц., мн.		1	,561 ¹⁶	Разл.	***	Н. р.	Pear.	•••	59
6 0	CaClF · 3Ca ₃ (PO ₄) ₂	аммония, гептагидрат Сторид-хлорид-	1025,07	Бц., крист.	1.		3,14	1270	•••	Сл. р.	•••	•••	60
61	$CaSO_4 \cdot K_2SO_4 \cdot H_2O$	ортофосфат кальция Сульфат кальция калия, гидрат	328.42	? Мн., 1, 500; 1,517			2,60	1004	•••	0,25	Pear.	Н. р. сп.	61
Cd.	Двойные соли	и комплексные с	оедин	нения кад	`	MH	a .		•	. *			
62	CdCl ₂ · KCl · H ₂ O	Хлорид кадмия-	275,88	Блест иг.			•••	•••	•••	3819,3	107105	••••	62
63	(NH ₄) ₄ [CdCl ₆]	калия, гидрат Гексахлорокадмоат	397 27	Ромб., 1,6038		Several.	2,01	•••	•••	Ρ.		•••	63
64	$[Cd(NH_3)_4](ReO_4)_2$	аммония Тетрамминкадмо-	680,92	Тв.		3	,71425	• • •	• • •	• • •	•••	Р. конц.	64
65	$[\operatorname{Cd}(\operatorname{C}_5\operatorname{H}_5\operatorname{N})_4]\cdot[\operatorname{SiF}_6]$	перренат Тетрапиридинкадмо-	570,88	Би., трикл.			2,282	•••	•••		•••	NH ₄ OH(0,037)	65
66	$K_2[Cd(CN)_4]$	гексафторосиликат Тетрацианокадмоат калия	294,67	7 Окт.			1,846	450		P.	Р.	Р. 88 % сп	. 6 6

Ne n/n	Формула	Название	Молекуляр- ная масса	Цвет, кристаллическая форма, показатель преломления
Co.	Двойные соли	и комплексные	соеди	інения ко
57	Co(CO) ₄	Тегракарбонилкобальт	170,97	Ор. или
68	$[Co(NH_3)_5H_2O]Cl_3$	Акванентаммин- кобальтихлорид	268,46	темно-кор. Кр. крист.
5 9	$[Co(H2O)6] \cdot [GaF5H2O]$	Гексааквакобальти- аквапентафторогаллиат		, Роз., мн.
70	$[Co(NH_3)_6]Cl_3$	Гексамминкобальти- хлорид (лутео)	267,47	Ор., мн.
71	$[Co(NH_3)_4Cl_2]Cl \cdot H_2O$	Дихлоротетрамминко- бальтихлорид, гидрат	251,43	3., ромб.
72	[Co(NH ₃) ₅ Cl]Cl ₂	Монохлоропентаммин- кобальтихлорид	250,44	Ромб.
73	$2K_3[Co(NO_2)_6] \cdot 3H_2O$	Гексанитрокобальтиат калия, тригидрат	958,58	Желт., тетраг.
74	$K_2Na[Co(NO_2)_6] \cdot H_2O$	Гексанитрокобальтиат	454,17	Желт. крист.
75	$Na_3[Co(NO_2)_6]$	калия-натрия, гидрат Гексанитрокобальтиат	403,93	Желт. крист.
76	$K_3[Co(CN)_6]$	натрия Гексацианокобальтиат	332,34	Желт., мн.
77	$K_4[Co(CN)_6]$	калия Гексацианокобальтоат	371,44	Фиол. крист.
78 _,	$K_2[Co(SO_4)_2] \cdot 6H_2O$	калия Дисульфатокобальтоат калия, гексагидрат	437,35	Мн., 1,4865
Cr.	Двойные соли	и комплексные с	оедин	нения хро
79	$NH_4Cr(SO_4)_2 \cdot 12H_2O$	Сульфат хрома (III)-		3. или фиол. крист.
80	$KCr(SO_4)_2 \cdot 12H_2O$	аммония, додекагидрат Сульфат хрома (III)-	49 9,42	3. или фиол., кб.
31	Cr(CO) ₆	калия, додекагидрат Гексакарбонилхром	220,06	Бц., ромб.
32	$[Cr(H_2O)_6]Cl_3$	Гексааквахромихлорид	266,45	Фиол., мн.
83	$[Cr(NH_3)_6]Cl_3 \cdot H_2O$	Гексамминхромихло-	278,55	Желт. крист.
84	$[Cr(H_2O)_4Cl_2]Cl\cdot 2H_2O$	рид, гидрат Дихлоротетрааквахро-	266,45	3., ромб.
35	$ [Cr(H_2O)_5Cl]Cl_2 \cdot H_2O $	михлорид, дигидрат Монохлоропентааква-	266,45	3, крист.
36	[Cr(NH ₃) ₅ Cl]Cl ₂	хромихлорид, гидрат Монохлоропентаммин-	243,51	Кр., окт.
87	$K_3[Cr(SCN)_6] \cdot 4H_2O$	хромихлорид Гексатиоцианатохромиат	589,85	
88	$K_3[Cr(CN)_6]$	калия, тетрагидрат Гексацианохромиат калия	325,41	крист. Свжелт., мн.

		Темпер	arvna	Растворимос		сть	-
	Плотность для та, и ж.—отно-	Темпор		в воде		n wowen	N₂
	сительная; для г.—г/дм ⁸	плавления, °С	кипения, °С	при 20 °C	при 100 °C	в других растворителях при 20°C	п/п
	бальта						
, . î	1,7318	51	Разл. 52	Н. р.	Н. р.	Р. сп.,	67
	.*. .•••		•••	16,90	•••	CS₂, эф. ∙∙∙	68
*.	2,35	-5H ₂ O, 110	•••	Сл. р.		• • •	69
	1,7016	•••	•••	4,26	•••	•••	70
	1,847	•••	•••	• • •	• • •		71
۸ .		•••		0,230	• • •	•••	72
-	• • •	Разл. 200		0,099	Сл. р.	Н. р. сп., эф.	73
•	1,63325	135	•••	0,0725	• • •	Н. р. сп.	74
	•••	•••	•••	P. ·	•••	•••	75
	1,906	Разл.	•	Р.	Р.	Н. р. сп.	7 6
	•••	. •••	•••	P.		Н. р. сп., эф.	7 7
	2,218	•••	•••	25,50	108,449	•••	78
	ма						
	1,72	100 разл.	•••	3,90	32,840	Р. сп.	79
	1,84221	89	•••	24,39 ²⁵	Р.	Н. р. сп.	80
	1,77	Возг.	Разл. 130	•••		Сл. р. хлф.,	81
	2,76	95	•••	58,725	P.	сп., СС1 ₄ Р. сп.; н. р.	82
	1,585		•••	P.		эф. · · ·	83
	2,76	83	•••	58,5 ²⁵	Р.	Р. сп.; н. р.	84
	1,76025		•••	•••	•••	. эф.	85
	1,696	•••	•••	0,6516	•••	•••	86
	1,71116	-4H ₂ O, 110		P.	•••	Р. сп. (106)	87
ŧ	1,71	Разл. >150	. • • •	30,96	• • •	Н. р. сп.	88

			1 . 1			Темпер	атура		Растворим	юсть	_
		-	ا غ	Цвет, кристал-	жение и ж. — отно-			ВВ	оде		N₂
№ n/n	Формула	Название		лическая фор- ма, показатель преломления	м м.—отно- фительная; ами г.—г/дм ³	плавлення. °С	кипения, °С	при 20 °C	при 100 °C	в других растворителя: при 20°C	x n/r
89	$NH_4[Cr(SCN)_4 \cdot (NH_3)_2] \cdot H_2O$	Тетратноцианатодиам- минхромиат аммония, гидрат	354,44	Кр. Слест. лист.		-H ₂ O, 100	•••	P.	Pear.	Р. сп., ац.; н. р. бзл.	; 8
Cu.	Двойные соли и	и комплексные сое	едине	ния меди		D. 155	•			**	•
	[Cu(NH ₈) ₂](CH ₃ COO) ₂			Сине-фиол.		Рáзл. 1 75		Pear.	Pear.	Н. р. сп.	9
	[Cu(NH ₃) ₄]SO ₄ ·H ₂ O	Тетрамминкупросуль- фат, гидрат		крист. Син., ромб.	1,81	Разл. 1 20—260	•••	18,521,5	Pear.	Н. р. сп.	9
Fe	Лвойные соли и	комплексные соед	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					• ;			
	Fe(CO) ₄	· ·			1,99618	Разл.	•••	Н. р.	•••	P.	9
		Тетракарбонилферрум	167,89	Темно-з. блест., мн.	1,457	140—150 —21	104,9	Н. р.		Р. сп., эф.	. 9
93	Fe(CO) ₅	Пентакарбонилферрум	195,90	Желт.				F *		бэл.	
94	Fe ₂ (CO) ₉	Нонакарбонилдиферрум	363,79	вязкая ж. Ор., гекс.	2,08518	Разл. 100 Разл.	• • • •	н. р.	• • •	Н. р. сп.	9
95	$\operatorname{Fe}_{3}[\operatorname{Fe}(\operatorname{CN})_{6}]_{2}$	Гексацианоферриат	591,45	Темно-син.				_		• ,	
96	K ₃ [Fe(CN) ₆]	железа (II) Гексацианоферриат	329,26	крист. Кр., ромб.;	1,89417	Разл.	`•••	46	91,6	Р. ац.; н. р. сп.	9
		калия	-	1.569		•••	• • •	P.	P.		9
97	$Ca_3[Fe(CN)_6]_2 \cdot 12H_2O$	Гексацианоферриат кальция, додекагидрат	760,33	Кр. распл ыв. иг.	- 12 C	• • •	• • •	Н. р.	•••		9
98	$Co_3[Fe(CN)_6]_2$	Гексацианоферриат	600,71	Кр., кб.	***			•		•	
99	Cu ₃ [Fe(CN) ₆]	кобальта (II) Гексацианоферриат	402,57	Кркор.	•••	•••	•••	Н. р.	•••	• • •	9
		меди (I)	_	•	•••	• • •	•••	18,90	67	Н. р. сп.	10
100	$Na_3[Fe(CN)_6] \cdot H_2O$	Гексацианоферриат натрия, гидрат	298,94	Кр. расплыв. крист.		Разл.	-	Н. р.	•••	• • •	10
101	$Sn_3[Fe(CN)_6]_2$	Гексацианоферриат	779,98	Бел. крист.		National Control		•		• • • • • • • • • • • • • • • • • • • •	
102	$Pb_3[Fe(CN)_6]_2 \cdot 6H_2O$	олова (II) Гексацианоферриат свинца (II),	1153,57	Кр. мн. пр.		—H ₂ O, 110—120	• • • • •	Сл. р.	Pear.	•••	10
	B (B) (O) D (O) D	гексагидрат			•••	•••		0,1715	0,9		103
103	$Ba_2[Fe(CN)_6] \cdot 6H_2O$	Гексацианоферроат бария, гексагидрат	594,72	Желт., мн.			•••	Н. р.		•••	10
104	$Fe_2[Fe(CN)_6]$	Гексацианоферроат	323,65	Свгол.,	4				_		
105	Fe4[Fe(CN)6]3	железа (II)	859,25	ам. или кб. Темно-син.	dis dis	Разл.	•••	Н. р.	Pear.	Н. р. сп., эф.	. 10
		Гексацианоферроат железа (III)	003,20	крист.	1,8517	$-3H_{2}O, 70$	Разл.	24,810	8580	Р. ац.; н. р.	. 100
106	$K_4[Fe(CN)_6] \cdot 3H_2O$	Гексацианоферроат	422,41	Желт., мн.,	1,68	Разл.	• • •	57,325	79,890	сп., NH ₃	107
107	$Ca_2[Fe(CN)_6] \cdot 12H_2O$	калия, тригидрат Гексацианоферроат	508,30	1,5772 Трикл.,	1,00	r asıı.			13,000	•••	10/
	$Co_2[Fe(CN)_6] \cdot 7H_2O$	кальция, додекагидрат Гексацианоферроат кобальта (II),	455,93	1,570; 1,5818 Серо-з. крист.	**************************************	•••	•••	Н. р.	•••		198
-		гептагидрат		•							

			à			Т		1	Растворим	юсть	Τ
№ 11/11	Формула	Название	екуля масса	Цвет, кристал- лическая фор- ма, показатель	Плотность для тв. и ж. —отно-	Темпер	атура 	ВВ	оде		N₂
	· ·		Моле: ная м	преломления	сительная; для г.—г/дм ³	плавления, °С	кипения, °С	при 20 °C	при 100 °C	в других растворителях при 20°C	₹ п/п
109	$Mg_2[Fe(CN)_6] \cdot 12H_2O$	Гексацианоферроат магния, додекагидрат	476,76	Свжелт. крист.	•••	Разл. ~ 200	•••	Р.	•••	•••	109
110	$Mn_2[Fe(CN)_6] \cdot 7H_2O$	Гексацианоферроат марганца (II), гептагидрат	447,94		•••	•••	•••	Н. р.	•••	•••	110
111	$Na_4[Fe(CN)_6] \cdot 10H_2O$	Гексацианоферроат натрия, декагидрат	484,06	Мн., 1,519; 1,530	1,458	•••	• • •	31,85	156,5 ⁹⁸	Н. р. сп.	111
112	$Ni_2[Fe(CN)_6] \cdot 11H_2O$	Гексацианоферроат никеля, ундекагидрат	527,54	Свз. крист.	~1,89	•••	• • •	Н. р.		•••	112
113	$Sn_2[Fe(CN)_6]$	Гексацианоферроат олова (II)	449,33	Бел. пор.		••••	•••	Н. р.	Н. р.	•••	113
	$Pb_2[Fe(CN)_6] \cdot 3H_2O$	Гексацианоферроат свинца (II), тригидрат	680,38	Свжелт. пор.	•••	-H ₂ O, 100	•••	Н. р.	• • • (•••	114
115	$Sr_2[Fe(CN)_6] \cdot 15H_2O$	Гексацианоферроат стронция, пентадека-	657,42	Желт., мн.	•••	· • • • · · · ·	•	Р.	P.		115
116	$Tl_4[Fe(CN)_6] \cdot 2H_2O$	гидрат Гексацианоферроат	1065,46	Желт.,	4,641	•••	•••	0,3718	3,93101		116
117	$Zn_{2}[Fe(CN)_{6}] \cdot 3H_{2}O$	таллия (I), дигидрат Гексацианоферроат	396,74	трикл. Бел. пор.	•••	Разл.	•••	Н. р.	Н. р.	Сл. р. NH ₈	; 117
118	$H[FeCl_4] \cdot 2H_2O$	цинка, тригидрат Тетрахлороферрикис-	234,70	Янтарно- желт.	•••	45,7	• • •	P.	•••	н. р. сп.	118
119	$K_2[Fe(NO)(CN)_5] \cdot 2H_0O$	лота, дигидрат Нитрозопентацианофер-	330,18	Кр. гигр. крист., мн.	•••	• • •	•••	10016		Р. сп.	119
120	Cu[Fe(NO)(CN) ₅] · · 2H ₂ O	риат калия, дигидрат Нитрозопентациано- ферриат меди (II),	315,52	Св. пор.		•••	. •••	Н. р.	•••	Н. р. сп.	120
121	Na ₂ [Fe(NO)(CN) ₅] · · 2H ₂ O	дигидрат Нитрозопентациано- ферриат натрия,	297,95	Кр., ромб.	1,72	*: ***	•••	P.	•••	Р. сп.	121
122	$FeSO_4 \cdot K_2SO_4 \cdot 6H_2O$	дигидрат Сульфат железа	434,27	3. мн. пр.	2,169	/ •••	•••	27,90	10970	•••	122
123	$KFe(SO_4)_2 \cdot 2H_2O$	(II)-калия, гексагидрат Сульфат железа (III)-	305,09	Желтовз.,	2,840	• • •	•••	• • •		•••	123
124	$KFe(SO_4)_2 \cdot 12H_2O$	калия, дигидрат Сульфат железа (III)-	503,261		1,83	33	•••	2012,5	P.	Н. р. сп.	124
125	$K[FeCl_4] \cdot H_2O$	калия, додекагидрат Тетрахлороферриат	329,33	фиол. Кр., ромб.	2,320	•••	•••	•••		• • •	125
126	$FeSO_4 \cdot (NH_4)_2SO_4 \cdot 6H_4O$	калия, гидрат Сульфат железа (II)-	392,14	Мн., 1,487; 1.492	1,864	Разл.	•,•,•	18,10	89,570	•••	126
127	$NH_4Fe(SO_4)_2 \cdot 12H_2O$	аммония, гексагидрат Сульфат железа (III)- аммония, додекагидрат	482,19	Свфиол., кб.	1,71	12H ₂ O, 230	•••	12425	400	Н. р. сп.	127
Ga.	Двойные соли и	комплексные соед	инен	ия галлия	61.50						
129	[GaI ₃ (NH ₃)] [Ga(NH ₃) ₆]I ₃ [Ga(NH ₂)Br ₂]	Тринодоаммингаллий Гексааммингаллииодид Трибромоаммингаллий	467,46 552,61 326,48	Бел. пор. Бел. пор. Бел. пор.	3,63525	140	•••	Pear. Pear.	Pear. Pear.		128 129
130	[Ga(NH ₃)Br ₃]	Трибромоаммингаллий	326,48	Бел. пор.	3,11226	124		Pear.	Pear.	Сл. ј	o. NH ₃

	Про	должение	таблицы
--	-----	----------	---------

		Темпер	атура		Растворим	ость	
	Плотность для тв. и ж.—отно-			B B	оде	в других	N
	сительная; для г.—г/дм ⁸	плавления, °С	кипения, °С	при 20 °C	при 100°C	пастворителях	n,
		•••	•••	Pear.	Pear.	Сл. р. NH ₃	13
	•••	-NH ₃ , 100	• • • •	Pear.	Pear.	•••	13
	2,189 ²⁵	124	438	Pear. Pear.	Pear. Pear.	P. NH ₃ P. NH ₃	13 13
	•••	Разл.	•••	•••	•••	• • •,	13
	•••	304	•••	P.	P.	Р. сп.; н. р.	13
	4,06	$-0.5H_2O$,	•••	Н. р.	••••	петр. эф.	13
	ния		· ·			•	
	3,50316	•••	•••	P.	Ρ.	•••	13
	н и я			• •			:
) 10 -	3,32	730	835	0,57518	2,93	•••	13
	•••	• • •	• • •	Сл. р.	P.	•••	14
	4,107	••••	•••	•••	•••	•••	14
	the office of a first	s					
	2,80	Разл. >240		15,5	Р.	•••	14
	en e						
	•••	>128	Взр.	Н. р.	•••	•••	14
	• • • •	Разл. >120	•	Сл. р.	•••	•••	14
		180	• •••	Pear.	Реаг.	•••	14
	्र श ाः विशेष	•••		Pear.	Pear.	•••	14
	•••	300	* * *	Н. р.	Pear.	•••	14
		Разл. >125	•••	P.	•••	•••	14
wil =	6,094	•••	•••	•••	•••	•••	14

	· · · · · · · · · · · · · · · · · · ·	
№ п/п Формула	Название	М В В В В В В В В В В В В В В В В В В В
131 [Ga(NH ₃) ₆]Br ₃	Гексааммингалди-	411,63 Бел. пор.
$[Ga(NH_3)_3F_3]$	бромид Трифторотриаммин- галлий	177,80 Бел. пор.
133 [Ga(NH ₃)Cl ₃] 134 [Ga(NH ₃) ₆]Cl ₃	Трихлороаммингаллий Гексааммингалли-	193,11 Бел. пор. 278,26 Бел. пор.
135 (NH ₄) ₃ [GaF ₆]	хлорид Гексафторогаллиат	237,82 Бц., кб.
136 NH ₄ [GaCl ₄]	аммония Тетрахлорогаллиат	229,57 Бц. крист.
137 Ba ₃ [GaF ₆] ₂ · H ₂ O	аммония Гексафторогаллиат бария, гидрат	797,46 Бц. крист.
Gd. Двойные сол	ли и комплексные сое	динения гадол
138 Gd ₂ (SO ₄) ₃ · K ₂ SO · 2H ₂ O	 Сульфат гадолиния- калия, дигидрат 	812,98 Бц. крист.
Ge. Двойные со:	ли и комплексные со	единения герм
139 K ₂ [GeF ₆]	Гексафторогерманеат калия	264,78 Бц., гекс.
140 Rb ₂ [GeF ₆]	Гексафторогерманеат рубидия	357,52 Би., гекс.
141 Cs ₂ [GeF ₆]	Гексафторогерманеат цезия	452,39 Би., кб.
Hi. Двойные сол	и и комплексные сое,	динения гафни
142 (NH ₄) ₃ [HiF ₇]	Гептафторогафнеат аммония	365,59 Бц., кб.
Нg. Двойные со	оли и комплексные со	единения ртут
43 [(OHg ₂)NH ₂]I	Оксоамидодимеркуро- иодид	560,11 Желтов кор. пор.
44 [(OHg ₂)NH ₂]Cl	Оксоамидодимеркуро-	468,66 Свжелт.
45 [Hg(NH ₃) ₂]Br ₃	хлорид Диамминмеркуро-	или бел. 394,47 Бел. пор.
46 [Hg(NH ₃) ₂]I ₂	бромид Диамминмеркуроиодид	488,46 Бд. или
47 [Hg(NH ₃) ₂]Cl ₂	Диамминмеркуро-	свжелт. 305,56 Бел., кб.
48 K ₃ [Hg(NO ₂) ₅ H ₂ O]	- хлорид Пентанитритомоно-	565,94 Желт.,
49 Cu ₂ [HgI ₄]	аквамеркуроат калия Тетраиодомеркуроат	ромб. 835,29 Кр. крист.

				_	
№ 2 n /п	Формула	Название	Молекуляр- ная масса	Цвет, кристал- лическая фор- ма, показатель преломления	
150	Ag ₂ [HgI ₄]	Тетраиодомеркуроат	923,95	Золжелт.,	
151	K ₂ [Hg(SCN) ₄]	серебра Тетратиоцианатомер-	511,12	тетраг. Бел. иг.	
152	$Zn[Hg(SCN)_4]$	куроат калия Тетратиоцианатомер-	498,29	Свроз.,	
153	$K_{\mathfrak{p}}[Hg(CN)_{4}]$	куроат цинка Тетрацианомеркуроат калия	382,87	тетраг. Бц. крист.	
154	$K[Hgl_3] \cdot H_2O$	калия Трииодомеркуроат калия, гидрат	638,42	Свжелт. иг.	
J.	Двойные соли и	комплексные сое	дине	ния иода	
1 5 5 1 5 6	CsI ₃ CsI ₅	Трииодид цезия Пентаиодид цезия	513,62 763,43	Черн., ромб. Черн., трикл.	
157	KI ₃ ·H ₂ O	Трииодид калия, гидрат	437,83		
In.	Двойные соли и	комплексные сое,	ди нен	ия индия	
158	$(NH_4)_3[InF_6]$	Гексафтороиндиат аммония	282,93	Бц., кб.	
lr.	Двойные соли и	комплексные соед	инени	я иридия	
159	Ir(CO) ₂ Cl ₂	Дихлородикарбонили- ридий	319,1	Бц. иг.	
160	$Na_3[IrBr_6] \cdot 12H_2O$	Гексабромоиридиат нат-	956,8	Темно-з., ромб.	
161	$K_3[IrI_8]$	рия, додекагидрат Гексанодоиридиат калия	1070,9	3. крист.	
162	(NH ₄) ₂ [IrCl ₆]	Гексахлороиридеат аммония	441,0	Черно-кр., кб.	
163	K ₂ [IrCl ₆]	Гексахлороиридеат	483,1	Черн., кб.	

калия

165 (NH₄)₃[IrCl₆] · 1,5H₂О Гексахлороиридиат

Гексахлороиридеат натрия, гексагидрат

К. Двойные соли и комплексные соединения калия

Карбонат калия-

аммония, сесквигидрат

Гексахлороиридиат натрия, додекагидрат

Сульфат калия-натрия

натрия, гексагидрат

559,0

486,0

690,1

Темно-кр.

трикл.

Кор.-з.

Темно-з.

крист.

эдры

664,83 Бц. ромбо-

230,19 Бел., мн.

					приосла	сение таблиц	joi		
Температура				Растворимость					
Плотно тв. и ж	сть для —отно-	1 емпер	атура	в в	оде		№		
🖫 сител		плавления, °С	кипения, °С	при 20 °C	при 100°C	в других растворителях при 20°C	п/п		
5,9	97	Пер. в кб., 50	Разл. >158	•••	•••	•••	150		
		•••	Р.	•••	Р. сп,; н. р. абс. эф.	151			
•	••	•••	• • •	Сл. р.	0, i		152		
2,4	20	. •••	•••	22,7	•••	P. 88 % сп. (2,85 ²⁰)	153		
•	••	Разл.	•••,	•••	• • •	(2,00)	154		
					,				
7	 '3	207,5	•••	Сл. p.	•••	•••	15 15		
3,49	815	31	Разл. 225	Pear.	• • •	Р. сп.	15		
					•	. =			
	••	Разл.	•.••	P.	Р.	•••	15		
the state of									
•	••	140 разл.	•••	Pear.	Pear.	•••	15		
	••	100	—Н ₂ О, 150		•••	•••	16		
	••	Разл.	•••	P.	•••	Н. р. сп.	16		
2,8	§56	Разл.	• • •	0.69^{14}	4,3880	Н. р. сп.	16		
3,5	346	Разл.	•••	1,2519	P.	Н. р. сп.	16		
•		Разл. 600	•••	41,4 ²² бв.	30785 бв.	•••	16		
•	••	•••		10,5 бв.	• • •	•••	16		
	••	—H ₂ O, 50	•••	31,0615	Р.	•••	16		
· · · · · · · · · · · · · · · · · · ·	,7			· P.	Р.	•••	16		
		-6H ₂ O, 100		185,215			16		

Продолжение таблицы

164 Na₂[IrCl₆] · 6H₂O

166 Na₃[IrCl₆] · 12H₂O

167 3K₂SO₄ · Na₂SO₄

168 KNaCO₃ · 6H₂O

Продолжение таблицы	Продо.	лжение	таблицы
---------------------	--------	--------	---------

			ė_			Tourse			Растворим	ость	T
Ne D/m	Формула	Название	екуля масса	Цвет, кристал- лическая фор-	Плотность В. и ж.—о		ary pa	В 1	воде		_ Ne
			Молея ная м	ма, показатель преломления	онтельная для г.—г		кипения, °С	при 20 °C	при 100°C	в других растворителя при 20°C	x ^{17/0}
Mg.	Двойные соли и	комплексные соед	инен	ия магния		'	1	1	<u> </u>		'
169	$MgNH_4AsO_4 \cdot 6H_2O$	Ортоарсенат магния- аммония, гексагидрат		Бц., ромб., 1.608	1,93215	Разл.	•••	0,038 бв.	0,024 ⁸⁰ бв.	Н. р. сп.	169
170	$MgSO_4 \cdot (NH_4)_2SO_4 \cdot \\ \cdot 6H_0O$	Сульфат магния-	360,61	л, оод Мн., 1,472; 1,473	1,723	>120	•••	18 бв.	66 бв.	•••	170
171	$MgNH_4PO_4 \cdot 6H_2O$	аммония, гексагидрат Ортофосфат магния-	245,41	Ромб., 1,495	1,7 11—1,7	15 Разл.	•••,,	0,052	•••	H. p. cn.	171
172	MgCl ₂ · NH ₄ Cl · 6H ₂ O		256,83	Бц. расплыв.	1,456	Разл.	•••	16,7	•••	•••	172
173	$MgCrO_4$ · · $(NH_4)_2CrO_4$ · $6H_2O$	аммония, гексагидрат Хромат магния-	400,47	крист., ромб. Мн., 1,636;	1,84	Разл.		P.	Ρ.	•••	173
174	MgCl ₂ · NaCl · H ₂ O	аммония, гексагидрат Хлорид магния-	171,67	1,637 Бц. крист.		•••	•••	Р.	P.	•••	174
175	$2MgSO_4 \cdot K_2SO_4$	натрия, гидрат Сульфат магния-калия	415,01		2,829	927	•••	•••		•••	175
176	$MgSO_4 \cdot K_2SO_4 \cdot 4H_2O$	Сульфат магния-	366,70		2,201		•••	25 бв.	60 ⁷⁵ бв.	•••	176
177	$MgSO_4 \cdot K_2SO_4 \cdot 6H_2O$	калия, тетрагидрат Сульфат магния-	402,73		2,15	Разл. 72	•••	25 бв.	60 ⁷⁵ бв.	•••	177
178	MgCO ₃ · KHCO ₃ ·	калия, гексагидрат Карбонат магния-	256,50	1,462, 1,463 Бц., трикл.	2,98	•••	•••	P.		., .	178
179	· 4H ₂ O MgCl ₂ · KCl · 6H ₂ O	калия, тетрагидрат Хлорид магния- калия, гексагидрат	•	или ромб. Ромб., 1,466; 1,475	1,61	265	•••	64,5 ¹⁹	•••	•••	179
Mo.	Двойные соли в	и комплексные сое	лине		aten a	* · · · · · · · · · · · · · · · · · · ·				ż	
180	$K[MoF_4] \cdot H_2O$	Тетрафторомолибдиат	229,05	Фиол.	A • • • • •	•••		•••	•••	•	180
181	K[MoCl ₄]	калия, гидрат Тетрахлоромолибдиат	276,85	Кр. крист.	2,5018		•••	· Ç.			181
182	Mo(CO) ₆	калия Гексакарбонилмолибден	264,00	Бел., ромб. или мн.	1,96	Разл. 150		Н. р.	Н. р.	Р. эф.	182
Ni.	Двойные солн и	комплексные соед	инен	ия никеля			, s				
183	$NiSO_4 \cdot K_2SO_4 \cdot 6H_2O$	Сульфат никеля-	437,13	Мн., 1,484;	2,124	Разл. <100	***	70	60,875	•••	183
184	Ni(CO) ₄	калия, гексагидрат Тетрақарбонилникель	170,75	1,4916 Бц. ж.	1,32	— 25	43	0,0189.8	•••	Р. сп., эф.,	184
185	$[Ni(NH_3)_6]Br_3$	Гексамминникело-	320,73	⊄иол., кб.	1,837	•••	•••	P.	Pear.	хлф., бзл.	185
186	[Ni(NH ₃) ₆]I ₂	бромид Гексамминникелоиодид	414,74	Син., кб.	2,101	Разл.	•••	Pear.	•••	• • •	186
187	$[Ni(NH_3)_6](NO_3)_2$	Гексамминникелонитрат	284,92	Син., кб.	•••	•••	•••	4,46	•••		187
188	[Ni(NH ₃) ₆](ClO ₃) ₂	Гексамминникелохлорат	327,82	T _B .	1,52	180	***	•••	•••	•••	188
189	[Ni(NH ₃) ₆]Cl ₂	Гексамминникелохлорид	231,82	Сине-фиол., кб.	1,468*	•••	•••	P.	Pear.	Н. р. сп.	

№ n/n	Формула	Названне	Молекуляр- ная масса	Цвет, кристал- лическая фор- ма, показатель преломления
190	[Ni(H ₂ O) ₂ (NH ₃) ₄] ·	Диакватетрамминнике-	286,89	3. крист.
191	$(NO_3)_3$ $K_2[Ni(CN)_4] \cdot H_2O$	лонитрат Тетрацианоникелоат калия, гидрат	258, 99	Желтовкр., мн.
Os.	Двойные соли и	комплексные сое	дине:	ния осмия
192	Os(CO) ₅	Пентакарбонилосмий	330,3	Би. ж.
193	Os ₂ (CO) ₉	Нонакарбонилдиосмий	632,5	Желт. крист.
194	(NH ₄) ₂ [OsCl ₆]	Гексахлороосмеат	439,0	Темно-кр. пор.
195	K ₂ [OsCl ₆]	аммония Гексахлороосмеат	481,1	Кр., ромб.
196	$Na_2[OsCl_6] \cdot 2H_2O$	калия Гексахлороосмеат натрия, дигидрат	484,9	Оркр., ро мб .
197	$K_{3}[OsCl_{6}] \cdot 3H_{2}O$	Гексахлороосмиат калия, тригидрат	574, 3	Темно-кр. крист.
198	$K_4[Os(CN)_6] \cdot 3H_2O$	Гексациоаноосмоат	556,8	Желт., мн.
199	$\mathrm{K_{2}[OsO_{4}]}\cdot\mathrm{2H_{2}O}$	калия, тригидрат Тетраоксоосмонат калия, дигидрат	368,4	Фиолкр., кб.
200	$(NH_4)_2[OsCl_5] \cdot 1,5H_2O$	Пентахлороосмиат аммония, сесквигидрат	430,6	Крбур. крист.
P.	Двойные соли и в	комплексные соеды	нени	я фосфора
201	$(PNBr_2)_3$	Трис (нитридодибромо- фосфор)	614,39	Бц. ромб.
202	(PNCl ₂) ₃	фосфор) Трис (нитридоди- хлорофосфор)	347,66	Ромб.
203	(PNCl ₂) ₄	хлорофосфор Тетракис (нитридоди- хлорофосфор	463,55	- Тетраг.
204	(PNCl ₂) ₅	Пентакис(нитридо- дихлорофосфор)	579,4 3	Тв.
205	(PNCl ₂) ₆	Гексакис(нитри-	695,32	Тв.
206	P(CN) ₃	додихлорофосфор) Цианид фосфора	109,03	В Бел. иг.
207	$(NH_4)_3[P(W_3O_{10})_4]$	Фосфоровольфрамат аммония	2931,27	У Бел. пор.
Pb	. Двойные соли и	комплексные сое	динен	ия свинца
208	3 (NH ₄) ₂ [PbCl ₆]	Гексахлороплюмбеат аммония	45 5,98	З Лимонно- желт., кб.
209	K ₂ [PbCl ₆]	аммония Гексахлороплюмбеат калия	498,11	

		Томпара	Mira o	Растворимость					
	Плотность для тв. и ж.—отно-	ость для Температура к.—отно-			оде		№		
	сительная; д ля г.—г/дм ^з	плавления, °С	кипения, °С	при 20 °C	при 100°C	в других растворителях при 20°C	п/п		
	•••	•••	•••	Р.	•••	Н. р. сп.	190		
	1,87511	-H ₂ O, 100	•••	Pear.	Pear.	,	191		
	•		•						
	•••	15	. •••	• • •	•••	•••	192		
	• • •	224	•••	• • •	•••	•••	193		
•	2,93		• • •	• • •	• • •	• • •	194		
	, ₁ ,	Разл.	• • •	Сл. р.	Ρ.	Н. р. сп.	195		
7 T	•••	•••	•••	P.	• • •	Р. сп.	196		
	•••	-3H ₂ O, 150	•••	Ρ.	•••	Р. сп.;	197		
•		Разл.	•••	Сл. р.	P.	н. р. эф. Н. р. сп., эф.	198		
+ 4 ·	• • •	$-H_2O$, >100		Сл. р.	P.	Н. р. сп., эф.	199		
			•••	Р.	Pear.	Р. сп.; н. р. эф.	200		
	•••	190	•••	Н. р.	•••	Р. эф.; сл. р.	201		
	1,98	114	256,5	Н. р.	Pear.	CS ₂ , хлф. Р. сп., эф.,			
4.	2,1824	123,5	328,5	•••	• • •	хлф., бзл.	203		
	•••	41	224	***	•••	•••	204		
	•••	90	(1,7 κΠa) 262	• • •	•••	•••	20 5		
7	•••	Возг. 130	(1,7 кПа)	Pear.	Pear.		20 6		
		•••	•••	Сл. р.	Сл. р.	р. гор. бзл.	207		
¥ **	2,925	Разл. >130	•••	Pear.	Pear.	•••	20 8		
a Ani	•••	Разл. 190	•••	•••	•••	•••	20 9		

№ n/n	Формула	Название	Молекуляр- ная масса	Цвет, кристал- лическая фор- ма, показатель преломления
210	K[PbI ₃] · 2H ₂ O	Трииодоплюмбоат калия, дигидрат	663,04	Свжелт. иг.
Pd.	Двойные соли в	комплексные сое	дине:	ния палла
211	$(NH_4)_2[PdCl_6]$	Гексахлоропалладеат аммония	355,2	Кркор., кб.
212	K ₂ [PdCl ₆]	Гексахлоропалладеат калия	397,3	Кр. бур., кб.
213	$[Pd(NH_3)_2Pr_2]$	Дибромдиамминпалла- дий (цис)	300,3	Коржелт. крист.
214	$[Pd(NH_3)_2Br_2]$	Дибромдиамминпал- ладий (транс)	300,3	Желт. крист.
215	$[Pd(NH_3)_2(OH)_2]$	Дигидроксодиаммин- палладий	174,5	Желт, окт.
216	[Pd(NH ₃) ₂ Cl ₂]	Дихлордиамминпалла- дий (цис)	214,4	Коржелт. пр.
217	$[Pd(NH_3)_2Cl_2]$	Дихлордиамминпалла- дий (транс)	214,4	Желт. тб.
218	$(NH_4)_2[PdCl_4]$	Тетрахлоропалладоат аммония	284,3	Темно-з., тетраг.
219	K ₂ [PdCl ₄]	Тетрахлоропалладоат калия	326,4	Кркор., тетраг.
220	$Na_2[PdCl_4] \cdot 3H_2O$	Тетрахлоропалладоат натрия, тригидрат	348,3	Кр. кор. рас- плыв. крист.
Pr.	Двойные соли и	комплексные соед	инен	ия празео
221	$Pr_2(SO_4)_3 \cdot 3K_2SO_4 \cdot H_2O$	Сульфат празеодима- калия, гидрат	1110,81	Крист.
222	$Pr_{2}(SO_{4})_{3}$ $\cdot (NH_{4})_{2}SO_{4} \cdot 8H_{2}O$	Сульфат празеодима- аммония, октагидрат	846,26	Крист.
Pt.	Двойные соли и в	комплексные соеди	нени	я платин ы
223	$Pt_2(CO)_2Br_4$	Тетрабромодикарбо- нилдиплатина	765,84	Св. кр. иг.
224	Pt(CO) ₂ I ₄	Тетраиододикарбонил- платина	953,82	Кр. крист.
225	Pt(CO) ₂ CI ₄	Тетрахлородикарбонил- платина	588,01	Желт: иг.
226	Pt(CO) ₂ Cl ₂	Дихлородикарбонил- платина	322,02	Свжелт. иг.
227	Pt ₂ (CO) ₃ Cl ₄	Тетрахлоротрикарбо- нилдиплатина	616,02	Оржелт. иг.
228	$H_2[PtBr_6] \cdot 9H_2O$	Гексабромоплате-	838,70	•
229	$H_2[Pt(OH)_6]$	кислота, нонагидрат Гексагидроксоплате- кислота	299,15	кр. Желт. иг.

	Температура			Растворимость						
g.	Плотность для тв. и ж.—отно-	- Carne		ВВ	оде		№			
	сительная; для г.—г/дм ³	плавления, °С	кипения, °С	при 20 °C	при 100°C	в других растворителях при 20°C	π/π			
4	•••	— Н ₂ О, 30—97	349 разл.	Pear.	Pear.	Р. ац.	210			
	дия					•				
3	2,418	Разл.	•••	Сл. р.	•••		211			
	2,74	Разл.	•••	Сл. р.	Pear.	Н. р. сп.	212			
ŗ	•••	•••	•••	0,2	•••	Р. ац.	2 13			
				0,0325	• • •	Р. ап.	214			
	• • •	Уст. <105	•••	Ρ.	Pear.	•••	215			
왕 (기년 2년	•••	•••	•••	0,2825		Сл. р. ац.	216			
	2,5	Разл.	•••	0,30416	• • •	Сл. р. ац.	217			
	2,17	Разл.	• • •	Р.	•••	Н. р. сп.	218			
	2,67	Разл. 105	•••	Ρ.	P.	Н. р. сп.	219			
	•••	•••	•••	Р.	•••	Р. сп.	220			
•	дима				•					
	3,27516	•••	•••	Сл. р.	•••	•••	221			
- 1	2,53116,5	—8H₂O, 170	. ••• .	Сл. р.	•••	•••	222			
		•								
	5,11525	177,7 разл.	• • • •	P.; pear.	1	Р. абс. сп., 2	223			
	5,257 25	140—150 разл.	•••	Сл. р.	•••	CCI ₄ Pear. сп. 2	24			
	4,23525	195	Разл. >300	Pear.	Pear.	2	25 `			
	78 3,488 ²⁵	142	_CO, 210	•••	•••	P. CCI ₄ 2	26			
		130	Разл. 250	Реаг.	Pear. [Р. гор. ССІ ₄ ; 2	27			
	V	<100 разл.	•••	Ρ.	P. F	pear. сп. Р. сп., эф., 2	28			
	• • • • • • • • • • • • • • • • • • •	—2H ₂ O, 100	***	Н. р.	Сл. р.	хлф. ··· 2	29			

1	······································		1 .					Томпот	Температура		Растворимость		
			ляр	Цвет, кристал- лическая фор-			Ілотность для в. и ж.—отно-	Temner	,α, ι y μα	в воде			№
№ п/п	Формула	Название	Молекуляр- ная масса	ма, показатель преломления	**************************************	сительная; для г.—г/дм	сительная;	плавления, °С	кипения, °С	при 20 °C	при 100°C	в других растворителях при 20°C	x n/n
230	H ₂ [PtI ₆] · 9H ₂ O	Гексанодоплате- кислота, нонагидрат	1120,67	Крчерн. расплыв.			•••	• •••	•••	P.; pear.	•••	•••	230
231	$H_2[PtCl_6] \cdot 6H_2O$	Гексахлороплате-	517,92	крист. Кркор. р ас-		A	2,431	60	•••	P.	Ρ.	Р. сп., эф.	231
232	H ₂ Pt(CN) ₄	кислота, гексагидрат Тетрацианоплато-	301,18	плыв. крист. Тв.	1	,	•••	100 разл.	•••	Р.	. P.	Р. сп., эф., хлф.	232
233	(NH ₄) ₂ [PtBr ₆]	кислота Гексабромоплатеат	710,62	Кркор., кб.	\$ ₁ *		4,26524	Разл. 145	•••	0,59	0,36	•••	233
234	Ba[PtBr ₆] · 10H ₂ O	аммония Гексабромоплатеат	992,04	Мн.	x	4.	3,713	•••	• • •	* • •	•,••	• • • •	234
235	$K_2[PtBr_6]$	бария, декагидрат Гексабромоплатеат	752,75	Кркор., кб.		1 1	4,6624	Разл. 400		2,02	10	Н. р. сп.	235
236	Co[PtBr ₆] · 12H ₂ O	калия Гексабромоплатеат кобальта (II), додека-	949,66	Крист.			2,762	•••		•••	•••	•••	236
237	$Mg[PtBr_6] \cdot 12H_2O$	гидрат Гексабромоплатеат	915,04	Крист.			2,802	•••	• • •	•••	• • •	•••	237
	$Mn[PtBr_6] \cdot 12H_2O$	магния, додекагидрат Гексабромоплатеат марганца (II),	945,67	Крист.			2,759	•••	•••	•••	. •••	•••	238
239	$Na_2[PtBr_6] \cdot 6H_2O$	додекагидрат Гаксабромоплатеат	828,62		- 1400 -	H	3,323	Разл. 150	•••	P.	P.	Р. сп.	239
	$Ni[PtBr_6] \cdot 6H_2O$	натрия, гексагидрат Гексабромоплатеат	841,35	трикл. Кри ст.			3,715			•••	•••	•••	240
241	Ba[Pt(OH) ₆]	никеля, гексагидрат Гексагидроксоплатеат	434,47	Тв.	A 4		4,61	•••	•••	• • •	• • •	•••	241
242	K ₂ Pt(OH) ₆ }	бария Гексагидроксоплатеат	375,34	Желт., ромб.	* * * * * * * * * * * * * * * * * * *		5,18	Разл.	• • •	P.	• • •	Н. р. сп.	242
243	$Na_2[Pt(OH)_6]$	калия Гексагидроксоплатеат	343,11	Кркор. или	4			-3H ₂ O, 150-170	• • •	Ρ.	•••	Н. р. сп.	243
244	$(NH_4)_2[PtI_6]$	натрия Гексаиодоплатеат	992,59	желт. Кб.		**************************************	4,61	• • •	• • •	•••	•••	•••	244
245	K ₂ [PtI ₆]	аммония Гексаиодоплатеат калия	1034,72	черн., кб.	Ž.		5,18	• • •	•••	Ρ.	P.; pear.	Н. р. сп.	245
246	Co[PtI ₆] · 9H ₂ O	Гексаиодоплатеат кобальта (II),	1177,59	Крист.		} }	3,618	•••	•••	•••	•••	***	246
247	Mn[PtI ₆] · 9H ₂ O	нонагидрат Гексанодоплатеат мар-	1173,60	Крист.	1		3,60424	Разл.	• • •	• • •	•••		247
	$Na_2[PtI_6] \cdot 6H_2O$	ганца (II), нонагидра Гексаиодоплатеат	T 111 0, 61	Триг.	3		3,707		•••	Р.	•••	Р. сп.	24 8
	K ₂ [Pt(SeCN) ₆]	натрия, гексагидрат Гексаселеноцианатоп-	903,16	6 Ромб.	,		3,37812.5	Разл. 80	•••	• • •	•••	•••	249
•	$K_2[PtF_6]$	латеат калия Гексафтороплатеат	387,28		横			•••	•••	Сл. р.	Сл. р.	•••	250
251	$(NH_4)_2[PtCl_6]$	калия Гексахлороплатеат аммония	443,88	крист. 3 Желт., кб., 1,800	, A		3,065	Разл.	•••	0,710	1,25	Р. сп. (0,005) 251

Продолжение	таблиць

			rap.	Цвет, кристал- лическая. фор-		.,	Темпера	TVna	Растворимо (сть пиолица	
№ D/П	Формула	Название	Молекуляр- ная масса	жа, показатель преломления		Плотность для тв. и ж.—отно- сительная;	H , ' ' '		в воде		в других	_ N
			Мо			для г.—г/дм ³	плавления, °С	кипения, °С	при 20 °C	при 100 °С	DACTRODUTERO	
5 2	$Ba[Pt(Cl)_{6}] \cdot 6H_{2}O$	Гексахлороплатеат	653,24	Кр., мн.	-	0.00	<u> </u>			!	<u> </u>	
53	$Fe[PtCl_6] \cdot 6H_2O$	бария, гексагидрат Гексахлороплатеат		Желт., гекс.	\$	2,86		•••	P.	•••	•••	25
4	K ₂ [PtCl ₆]	железа (II), гексагидра Гексахлороплатеат	486,01	Желт., кб.,		2,714	Разл.	•••	Р.	P.	•••	25
5	$Co[PtCl_6] \cdot 6H_2O$	калия Гексахлороплатеат кобальта (II),	574,83	1,825 Крист.		3,499 ²⁴ 2,699	Разл. 250 Разл.	•••	0,478	5,03	Н. р. сп., эф	ф. 25 25
6	Li ₂ [PtCl ₆] · 6H ₂ O	гексагидрат Гексахлороплатеат	529,78	Ор. кр., гекс,			- C		-	•		٠,
	$Mg[PtCl_6] \cdot 6H_2O$	лития, гексагидрат Гексахлороплатеат	540,21	Крист.		• • •	$-6H_2O$, 180	• • •	Р.	P.	Р. сп.; н. р. эф.	25
	Mn[PtCl ₆] · 6H ₂ O	магния, гексагидрат Гексахлороплатеат	570,84	Крист.	<u> </u>	2,437	Разл.	•••	• • •	•••	л. р. эф.	25
	7.m.(1. to.)(1. or.)(0.	марганца (II), гексагидрат				2,692	Разл.	•••	***	•••	• • •	25
	Na ₂ [PtCl ₆]	Гексахлороплатеат натрия	453,79	Оржелт. пор.		•••		•••	• Р.	P.	Р. сп.	25
	$Na_2[PtCl_6] \cdot 6H_2O$	Гексахлороплатеат натрия, гексагидрат	561,88	Желтовкр., трикл.		2,50	-6H ₂ O, 100		6616		4	
	$Ni[PtCl_6] \cdot 6H_2O$	Гексахлороплатеат	574,61	Крист.		2,798	—011 ₂ 0, .100			Р.	Р. сп. (11,9	
	Rb ₂ [PtCl ₆]	никеля, гексагидрат Гексахлороплатеат	578,75	Желт., к б.		3,9417,5	0	• • •		•••	•••	26
	$Tl_2[PtCl_6]$	рубидия Гексахлороплатеат	816,55	Ор., кб.			Разл.	•••	0,01370	0,334	Н. р. сп.	262
	Cs ₂ [PtCl ₆]	таллия (I) Гексахлороплатеат	673,62	Желт., кб.	, I	5,7617	• • •	•••	0,006415	0,05		263
	$K_2[PtBr_4]$	цезия Тетрабромоплатоат	592,93	Кор., ромб.		•••	•••	•••	0,00470	0,0915	•••	264
	$K_2[Pt(NO_2)_4]$	калия Тетранитроплатоат	457,32	Бц., мн.		•••	••••	•••	P.	Р.	• • •	265
	$Na_2[Pt(NO_2)_4]$	калия Тетранитроплатоат	425,09	Св. желт.,		•••	Разл.	•••	3,815	P.	• • •,	266
	$(NH_4)_2[PtCl_4]$	натрия Тетрахлороплатоат	372,98	ромо. Кр., ромб.		· • • •	Разл. 100	• • •	P.	P.	•••	267
	$Ba[PtCl_4] \cdot 3H_2O$	аммония	528,29	Тв.		2,936	Разл.	•••	P.	P.	Н. р. сп.	268
		Тетрахлороплатоат бария, тригидрат				2,868	•••	• • •	Р.	• • •	Р. сп.	26 9
	K ₂ [PtCl ₄]	Тетрахлороплатоат калия	415,11	тетраг.		3,30	Разл.	• • •	16,6	Р.	Н. р. сп.	270
	$Na_2[PtCl_4] \cdot 4H_2O$	Тетрахлороплатоат натрия, тетрагидрат	454,94	Kp. np.		•••	100 разл.	, •••	P.	•••	• • •	271
	$(NH_4)_2[Pt(CN)_4] \cdot H_2O$	Тетрацианоплатоат аммония, гидрат		Желт. крист.		,		•••	Ρ.	• • •	•••	27 2
	$Ba[Pt(CN)_4] \cdot 4H_2O$	Тетрацианоплатоат бария, тетрагидрат	508,56	Желт. крист.		2,09	–2H ₂ O, 100 -	–4H₀O.	3,3	P.		273
	$K_2[Pt(CN)_4] \cdot 3H_2O$	Тетрацианоплатоат калия, тригидрат	431,41	Желтов. рас- плыв. крист.		2,45518	Разл. 400—600	150	4,06		Р. сп., эф.	

	•			
№ 13/п	Формула	Название	Молекуляр- ная масса	Цвет, кристал- лическая фор- ма, показатель преломления
2 75	$Ca[Pt(CN)_4] \cdot 5H_2O$	Тетрацианоплатоат	429,32	Желт., ром б., 1,6226
2 76	$Th[Pt(CN)_4]_2 \cdot 16H_2O$	кальция, пентагидрат Тетрацианоплатоат тория, гексадекагидрат	1118,61	Желтовз., ромб.
Rh.	Двойные соли и	комплексные сое	дине	ния родия
277	[Rh(NH ₃) ₅ Cl]Cl ₂	Монохлоропентаммин-	294,46	Желт. крист.
278	K ₂ [RhCl ₅]	родихлорид Пентахлорородиат	358,42	Кр., ромб.
279	$(\mathrm{NH_4})_3[\mathrm{RhCl_6}] \cdot 12\mathrm{H_2O}$	калия Гексахлорородиат аммония, додекагидрат	685,97	Рубиново-кр. пр.
280	$K_3[RhCl_6] \cdot 3H_2O$	Гексахлорородиат	487,02	Кр., трикл.
281	$Na_3[RhCl_6]$	калия, тригидрат Гексахлорородиат	384,64	Кр., трикл.
2 82	$Na_3[RhCl_6] \cdot 18H_2O$	натрия Гексах Лорородиат натрия, октадекагидрат	708,91	Кр. крист.
Ru.	Двойные соли и в	комплексные соеди	нени	ярутения
283	Ru(CO) ₂	Дикарбонил рутения	157,09	Кор., ам.
284	Ru(CO) ₄	Тетракарбонил рутения	213,11	Крз. крист.
285	Ru(CO) ₅	Пентакарбонил рутения	241,12	Бц. крист.
286	$Ru_2(CO)_9$	Нонакарбонил дирутений	454,23	Оржелт., мн.
287	Ru(CO)Br	Бромкарбонилрутений	208,99	
28 8	$Ru(CO)_2Br_3$	Дибромдикарбонил-	316,91	Свор.
289	$Ru(CO)_2I_2$	рутений Дииоддикарбонил-	410,90	Кржелт. крист.
290	Ru(CO) ₂ Cl ₂	рутений Дихлордикарбонил-	228,00	
291	$H_2[RuO_2Cl_4] \cdot 3H_2O$	рутений Диоксотетрахлороруте-	330,94	
292	Rb ₃ [RuO ₂ Cl ₄]	нокислота, тригидрат Диоксотетрахлороруте-	445,82	Темно-пурп., кб.
293	K[RuO ₄]	нинат рубидия Тетраоксорутенинат	204,17	черн., тетраг.
294	$Na[RuO_4] \cdot H_2O$	калия Тетраоксорутенинат	206,07	Черн. крист.
295	$K_2[RuO_4] \cdot H_2O$	натрия, гидрат Тетраоксорутенонат калия, гидрат	261,29	Черн., ромб.

	Towns	ратура	Растворимость						
Плотность для гв. и ж.—отно-	Tembe	ратура	ВВ	оде					
сительная; для г.—г/дм³	плавления, °С	кипения, °С	при 20 °С	при 100 °С	в других растворителя при 20°C	χ Π/I			
• • •	·	•••	Р.	• • •		27			
2,460		•••	Сл. р.	•••	***	27			
•••	• • •	.* • •,	0,83425	•••	•••	27			
•••	Разл.	•••	Сл. р.	Pear.	Н. р. сп.	278			
•••		•••	Ρ.	•••	,	279			
3,29	Разл.	•••	Pear.	Pear.	Сл. р. сп.	286			
• • • •	Разл. > 650	· · · ·	Ρ.	***	•••	28			
•••	904 разл.		P.	•••	Н. р. сп.	282			
•									
• • •	• • • •	•••	Р.	•••	Р. сп.;	283			
•••	•••	•••			н. р. бзл. Р. пир.	284			
•••	•••	•••	Н. р.	. •••	Р. сп., бзл.,	285			
•••	Разл. 150	• •••		4	хлф., ССІ ₄ Р. ац., хл ф. ,	. 286			
•••	Разл. 200	•••			бзл., пир. Р. бзл.	287			
•••	Возг. 220	•••	Н. р.	•••	Н. р.	288			
•••	•••	•••	Н. р.	•••	Н. р.	289			
•••	•••	• • •	Н. р.	•••	•••	290			
· ·	~120 бв.	Разл. 140	Ρ.	•••	Р. сп.	291			
ray:	•••		Pear.	Pear.		292			
•••	Разл. 440		Сл. р.		•••	293			
. es 5"	Разл. 440	• • •	Сл. р.	•••		294			
	· ·		т. Р.			237			

	and the second of		1 ,			1	T			Растворим	ость	<u> </u>
№ п/п	Формила	Назрация	екуляр. масса	Цвет, кристал- лическая фор- ма, показатель		Плотность для тв. и ж. — отно-	Темпер	атура	В	воде		91 X IX
n/n	Формула	Название Название Work вы мёски	Молек ная ма	ма, показатель преломления		сительная; для г.—г/дм ^а	плавления, °С	кипения, °С	при 20 °C	при 100 °C	в других растворителя при 20°C	
Sb.	Двойные соли и	комплексные соед	цинен	ия сурьмы		No.						
2 96	$(NH_4)_2[SbBr_6]$	Гексабромоантимонеат аммония	637,28	Черн., окт.		•••		•••	Реаг.	Pear.	• • •	29
297	SbOKC ₄ H ₄ O ₆ · 0,5H ₂ O	Тартрат антимонила- калия, гемигидрат	333,93	Бел., ромб., 1,636		2,60	-0,5H ₂ O,	•••	5,268.7	3,57	Р. глиц.; н. р. сп.	29
Se.	Двойные соли и	комплексные сое	динен	ия селена	1	· · · · · · · · · · · · · · · · · · ·	•				•	
298	$(NH_4)_2[SeBr_8]$	Гексабромоселенеат	594,49	Кр., кб.	4	3,326	•••	• • •	Pear.	Pear.	Сл. р. эф.	. 29
29 9	(NH ₄) ₂ [SeCl ₆]	аммония Гексахлороселенеат аммония	327,75	Желт., кб.		••• *** ••• **	•••	. •••	Р.	•••	•••	29
Si.	Двойные соли и в	комплексные соеди	нени	я кремния	%	<i>*</i>		•				
300	$H_2[SiF_6] \cdot 2H_2O$	Гексафторосилицие- кислота, дигидрат	180,09	Бц. крист.		•••	19	•••	•••	•••	•••	3(
Sn.	Двойные соли	и комплексные соє	дине	ния олова								
301	$(NH_4)_2[SnBr_6]$	Гексабромостаннеат	634,22	Бц., кб.	, f	3,50	Разл.	•••	P.	Ρ.		30
302	$Ba[SnF_6] \cdot 3H_2O$	аммония Гексафторостаннеат	424,07	Мн. пр.		*2. * * *		•••	5,618	P.	•••	30
303	$K_2[SnF_6] \cdot H_2O$	бария, тригидраг Гексафторостаннеат	328,90	Мн., ромб.	r i	- a 3,053		• • •	Ρ.	P .	•••	30
304	Na ₂ [SnF ₆]	калия, гидрат Гексафторостаннеат	278,66	Гекс. пл.	7	***	•••	• • •	5,5		·,	30
305	$Sr[SnF_6] \cdot 2H_2O$	натрия Гексафторостаннеат	356,33	Мн. пр.	4	•••			18,218	•••	•••	30
306	$Zn[SnF_6] \cdot 6H_2O$	стронция, дигидрат Гексафторостаннеат	406,14	Триг.	3 4	2,445	•••	3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • •	• • •		30
307	$H_2[SnCl_6] - 6H_2O$	цинка, гексагидрат Гексахлоростаннекис-	441,52	Бц. крист.	4	1,92527	19,2	Разл.		•,• • • •	•••	30
308	(NH ₄) ₂ [SnCl ₆]	лота, гексагидрат Гексахлоростаннеат	367,49	Бц., кб.		2,39	•••		P.	Pear.	•••	30
309	[SnCl ₄ (NH ₃) ₂]	аммония Тетрахлородиаммин- станнум	294,56	Крист.		•••	•••	•••	Р.	•••		30
Γh.	Двойные соли и	комплексные сое	динет	ия тория		a ngo t	2 -				**	
310	K ₂ [ThBr ₆]	Гексабромотореат	789,70	Св-роз.		7.33	698	••• ,	, P.	•••	• • •	31
311	K2[ThI6]	калия Гексаиодотореат калия	1071,6	крист. Свжелт,	*	3, 54	670	•••	Р.	•••	•••	31
312	K[ThF ₅]	Пентафторотореат калия	366,13	крист. Бел., триг.		5,10	•••	•••,	• • •	• • •	•••	312

Продолжени	е таблиць

	•				- 1	1			Растворимость			111401
№	Формула		уля	Цвет, кристал- лическая фор-		Плотность для	Темпер	кипения	В В	оде	1	-
n/n	Формула	Название	Двет, кристал- лическая фор- ма, показатель преломления	ма, показатель преломления		тв. и ж.—отно- сительная; для г.—г/дм ³	плавления, °С	кипения, °С	при 20 °C	Ī	в других растворителя при 20°C	x
313	$K_2[ThF_6]$	Гексафторотореат калия	424,23	Бел. крист.	1	α5,01; β4,91		•••	• • •	•••	• • •	313
314	$K_2[ThCl_6]$	Гексахлоротореат калия	522,96	Желт, крист.		3,20	734	•••	Ρ.	•••	•••	314
315	Na ₂ [ThF ₆]	Гексафторотореат	392,01	Бел., қб. или триг.	1	2,94	890	•••	Н. р.	•••	•••	315
316	$Na_4[ThF_8]$	натрия Октафторотореат	475,98	Бел., кб.		4,59	• • •	•••	•••		•••	316
317	Pb[ThF ₆]	натрия Гексафторотореат свинца (II)	553,22	Бел., гекс.		16,22	•••	•••	•••	•••	•••	317
Tl.	Двойные соли и	комплексные соед	инени	я таллия	i							٠.
318	$TINO_3 \cdot AgNO_3$	Нитрат таллия (I)- серебра	436,25	Бел. крист.	1	•••	75	•••	P.	•••	***	318
U.	Двойные соли и	комплексные сое	цинен	ия урана	· I	•		•				
319	$UO_2F_2 \cdot 3NH_4F$	Фторид уранила- аммония	419,14	Тетраг., 1,495		3,186	Возг.	•••	Ρ.	P.	•••	319
320	$\mathrm{UO_2CO_3} \cdot 2\mathrm{(NH_4)_2CO_3}$	Карбонат уранила-	522,26	Желт., мн., 1.62	J.	•••	Разл.	•••	5,5518	Pear.	Р. сп., эф.	320
321	$\mathrm{UO_2CO_3} \cdot 2\mathrm{K_2CO_3}$	Карбонат уранила- калия	606,46	Желт. крист.		•••	-CO₂, 300	•••	7,415	Pear.	Н. р. сп.	321
322	$UO_2CO_3 \cdot 2Na_2CO_3$	Қарбонат уранила-	542,02	Желт. крист.		•••	•••	•••	Сл. р.	•••	Н. р. сп.	322
323	$NaUO_2 (C_2H_3O_2)_3$	натрия Ацетат уранила-натрия	470,15	Желт., кб., 1,5014	1	2,5512	•••	•••	4,83	•••	Р. мет. сп., ац.	323
V.,	Двойные солии к	омплексные соеди	нения	и ванадия			4.				au.	
324	$NH_4V(SO_4)_2$	Сульфат ванадия (III)-аммония	261,10	3. крист.	1	• • •		•••	P.	Ρ.	•••	324
325	$NH_4V(SO_4)_2 \cdot 12H_2O$	Сульфат ванадия (III)- аммония, додекагидрат		Кр. крист.		1,687	4050	•••	P.	Ρ.	•••	325
	• •	комплексные соед		=		•						
326	Na[YF ₄]	Тетрафтороиттриат натрия	187,89	Желтовбел. крист.		α 4,23; β 3,87	1100	•••	•••	•••	•••	326
Zn.	Двойные соли и	комплексные сое	динен	ия цинка	*.	A Section 1981						
327	$ZnSO_4 \cdot (NH_4)_2SO_4 \cdot 6H_2O$	Сульфат цинка- аммония, гексагидрат	401,66	Бц., мн., 1,489		1,931	Разл.	• • •	P.	Р.	•••	327
328 329	$[Zn(NH_3)_2]Cl_2$	Диамминцинкохлорид Тетрамминцинко- перренат	170,34 633,89	Бц., ромб. Бел., кб.	Ý	3,60825	210,8	Разл. 271 	Pear.	Pear.	•••	328 329
330	$[Zn(C_5H_5N)_4][SiF_6]$	Тетрапиридинцинко- гексафторосилициеат	523,85	Бел., ромб.		2,197	•••	•••	•••	•••	•••	330
331	(NH ₄) ₂ [ZnCl ₄]	Тетрахлороцинкоат аммония	243,26	Бц., ромб.		1,88	150	•••	Реаг.	Pear	•••	331
					-		· · · · · · · · · · · · · · · · · · ·	1				

2.4. ТЕРМОДИНАМИЧЕСКИЕ ВЕЛИЧИНЫ ДЛЯ ПРОСТЫХ ВЕЩЕСТВ И НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Принятые сокращения и обозначения:

Бел. — белый

Г.— газообразный

Ж. -- жидкий

Желт. - желтый

Красн. - красный

Крист. - кристаллический

Монокл. -- моноклинный

Ромб. - ромбический

Черн. - черный

 $\Delta H_{298}^{m 0}$ — изменение энтальпии (тепловой эффект) при образовании соединения из простых веществ в етандартных условиях; S_{298}^0 — стандартное вначение энтропии; C_p^0 — теплоемкость при постоянном давлении

Для вычисления теплоемкости при температуре T К в указанном диапазоне температур в таблице приведены коэффициенты уравнения

$$C_p^0(T) = a + bT + cT^{-2}$$
.

Не вполне надежные значения взяты в скобки.

Формуля вещества Характериства Простые вещества Крист. Al Крист. As Крист. Au Крист. Ba Крист. Ba Крист.	тва кдж/моль 0 0 0 0	S298 · K)	Ср.298 · Дж/(мольх	Коэфф Ср.	Коэффиленты уравнения $c_{p}^{0} = a + bT + cT^{-s}$	звиения сТ-я	
вещества е в е ш е с т				- <u></u>	= a + bT +	cT-3	
вещества			_				Температурныя
е ве ще ств	000		XX X5	ø	6.10	c.10-•	интервал, К
	000			•			
	00	42,69	25,48	23,97	5,28	-0,25	273—1234
	0	28,31	24,34	20,67	12,39	. 1	298—933
		35,1	24,64	21,9	9,29	ı	298-1100
•	0	47,45	25,23	23,68	5,19	1	298—1336
	0	5,87	11,96	6,44	18,4	1	273—1200
	0	(64,9)	26,36	22,26	13,8		298—643
Крист. В	1			10,45	29,3		643—983
Ве Крист.	0	9,54	16,44	19,0	8,87	-3,43	298—1173
Ві Крист.	0	6'99	25,52	18,79	22,59	I	298—544
Br, ★.	0	152,3	75,71	ı	1	ı	
			36,0	37,20	0,71	-1,19	298—1500
С Алмаз	1,897		20'9	9,12	13,22	6,19	298—1200
Графит			8,53	17,15	4.27	6,79	298—2300
			25,28	22,2	13,9		273—713
Сф Крист. с		51,76	25,90	22,22	12,30	1	273—594
	121,3		21,84	23,14	79'0-	96'0-	298—2000
CI ₂ Γ.	0		33,84	36,69	1,05	2,52	273—1500

. . • • • • •

		G	00		Коэффи С	Коэффициенты уравиения $C_p^0 = a + bT + cT^{-s}$	виения 8	Температурный
Формула вещ ества	Характерис- тика вещества	Δ <i>H</i> 298° кДж/моль	3298∙ Дж/(моль·К)	Дж/(моль × ×К)	a ,	b.10³	c.10-°	интервал, К
	- 2000 24	 	30.04	24.6	21.38	14,31	88'0-	298—650
3	Npaci.	o c	92.26	93.35	94.43	0.87	3,68	298-1823
Ö	Крист.	>	04.05	21.4		<u>.</u> 1	<u>}</u>	298—303
ర	Крист.	>	04,40	¥,10		ć		900 1356
Cn	Крист.	0	33,30	24,51	55,64	6,28	i	298-1350
. Γ.	٠	0	202,9	31,32	34,69	1,84	3,35	273—2000
г. о	Крист. а	0	27,15	25,23	19,25	21,0	1	298—700
5 5	Крист.	0	41,09	26,10		ı	1	
3 e	Крист.	0	42,38	(28,8)	23,8	16,8	I	298—1213
3 =		217,9	114,6	20,79	Ì	l	1	Не зависит
:	ដ	221,68	123,24	20,79	ļ	1	1	*
, ±	្រ	0	130,6	28,83	27,28	3,26	0,502	298—3000
HD	ı.	0,155	143,7	29,20	25,93	4,50	2,80	200-2000
_ D	<u>.</u>	0	144,9	29,20	27,40	4,30	-0,40	500—2000
ğH	.¥	0	76,1	27,82	1	1	ı	l
).	ŗ.	60,83	174,9	20,79	1	•	-	Не зависит
	Крист.		116,73	54,44	40,12	49,76	1	298—387
S	់ដ	62,24	260,58	36,9	37,40	0,59	-0,71	298—3000

298-430	298—336	273—454	298—923	298—1000	298—1800	298—2500	298—371	298—630	1	298—3000	298—1000	273—317	298—800	273—2000	273—600	289 - 1800	273—312	368—392	273—368,6	273 - 2000	298—903	273—493	273—1174	273—505	
1	1	1	-0,45	-1,59	I	ì	1	- 1	1	-3,77	 9,04	1	İ	-3,68	I	1		Ì	I	-3,52	. 1	ı	4,23	- 1	
21,6	1	35,98	10,64	14,14	5,44	4,27	22,43	29,46	ł	3,39	8,03	1	16,32	1,15	8,70	5,61	ı	29,08	26,11	1,09	7,28	23,01	2,58	26,36	
20,26	22,96	12,76	22,3	23,85	22,93	27,87	20,92	16,99	ļ	31,46	47,03	23,22	19,83	35,86	23,93	24,02	30,42	14,90	14,98	36,11	23,1	18,95	24,02	18,49	
26,7	29,96	23,64	24,8	26,32	23,75	29,10	28,22	26,05	21,90	29,36	39,20	23,22	20,83	31,92	26,82	26,57	30,42	23,64	22,60	32,47	25,43	25,36	19,8	26,36	
(58,1)	64,35	28,03	32,55	31,76	28,58	191,5	51,42	29,86	160,95	205,03	238,8	44,35	(22,8)	218,1	64,9	41,8	(76.2)	32,55	31,88	227,7	(45,69)	42,44	18,72	51,4	
O	0	0	0	0	Ŏ	0	0.	0	247,4	0	142,3	0	-18,41	141,5	0		0	0,30	0.	(129,1)	0	0	0	0	
Крист.	Крист.	Крист.	Крист.	Крист. а	Крист.	ப்	Крист.	Крист. а	ப	<u>г</u> .	ŗ.	Бел.	Красн.	<u>۔</u>	Крист.	Крист.	Крист.	Монокл.	Pow6.	ı.	Крист.	Крист.	Крист.	Бел.	
Į,	¥	Ľ	Mg	Mn	Mo	$\sum_{\mathbf{z}}$	Na	ïZ '		°C	်ဳ ျ	o.		i	Pb	Pt		S)	(% ***	Sp	S	. K	Sn	

٠,				
יייים ווייים ווייים	Температурный	интервал, К	298—508 273—620 298—1500 298—1155 273—505 273—500 273—2000 273—693 298—1135	298—691 273—725 273—423 273—43 298—500 273—448 298—577 298—100 298—100 298—100 298—100 298—100 298—100
11 poods	18 H C B H R C T - 8'	c.10-•	2,93	111,30 111,662 111,662
	Коэффициенты уравнения $C_p^0=a+bT+cT^{-s}$	6.10*	5,73 6,28 19,0 11,04 11,48 33,56 3,18 10,04 4,69	64,43 4,18 100,8 189,1 110,5 117,15 45,86 12,89 62,6 1,00 203,3
	_	а	23,43 24,67 22,09 24,02 28,38 28,58 28,58	23, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28
	C, 298	К) Дж/(моль ×	25,1 27,3 27,3 27,5 27,5 27,5 27,8 27,8 27,8 27,8 27,8 27,8	52,38 50,78 54,43 (93,05) 65,56 75,31 131,4 102,5 89,1 75,10 75,10 75,7
		3298 • Дж/(моль-К)	54,4 49,71 53,39 30,66 64,22 50,33 32,76 41,59 38,9	107,1 96,07 114,2 140,9 121,7 (140,6) 199,9 167,0 66,48 50,94 239,3 327,2
		Δ <i>п</i> 298 • кДж/моль	00000000	-99,16 -126,8 (-64,2) -120,7 -30,56 (-33,2) -713,1 -526,2 -697,4 -1488 -1675 -3434 -299,2 (-656,8)
	Xanaurenuc.	тика вещества	Kpact. Kpact. Kpact. Kpact. Kpact. Kpact. Kpact. Kpact. Kpact. Kpact.	соединен Крист. Крист. а Крист. а Крист. а Крист. Крист. Крист. Крист. Крист. Крист. Крист. Крист. Крист. Крист. Крист.
		Формула вещества	SZN UTITITES	Heoprahnyeckne AgBr AgBr AgCl AgCl AgSO ₃ AgSO ₄ AgSO ₄ AgSO ₄ AlBr AlCl AlF AlCl AlF AlCl AlF AlCl AlF AlCl AsCl AsCl AsCl AsCl AsCl AsCl AsCl

88 g	75 770 770 75	000000000000000000000000000000000000000	0000 0000 0000 0000	373 000 100
			298 - 1200 298 - 1055 298 - 1055 298 - 1000 298 - 1000 298 - 1800 298 - 600	
			25.54 - 2,55 - 1,96 - 1,09 - 1,00 - 1,00	
			21,92 12,72 30,46 154 4,52 12,0	
			104,5 11,88 125,83 125,93 105,2 105,2 105,2 105,2 105,2	
	·		81,85 72,61 72,61 149,4 42,84 87,5 1	
7.08 7.08 7.08 7.08 7.08 7.08	1211 125 1213 103 103 103 104 104 104 104 104 104 104 104 104 104	20,0 197,4 197,4 213,6 289,5 231,5 151,0 70,3	92.9 113.8 193.2 193.2 193.2 180.7 180.7 180.7 180.7	240.9 56.5 106.7
-918,0 -396,4 -1110	-1202 -859,8 -991,6 -556,6 -946,1 -1465 (-598,7)	-1196 -578,0 -393,51 -223,0 -137,2 -137,2 -62,4 -62,5	-1206 (-785,8) (-785,8) -1214 -935,9 -635,1 -986,2 -1820 -2409 -3114,5	—4125 —478,3 —1424
Kpuct. F. Kongr	Крист. Крист. Крист. Крист. Крист. Крист.	Христ. Г. Г. Г. Т. Ж. Ж. Ж. Ж. Крист. α	Карист Крист. Крист. Крист. Крист. Крист. Крист. Крист.	Крист. «Крист. АКрист. Ангидри"
Associated Section 18 18 18 18 18 18 18 18 18 18 18 18 18	BaCOs BaCOs BaCOs BaCOs BaCOt BaSO4		CaCos CaCos CaCos Ca(Nos), Ca(OH), CaHPO4, CaHPO4, 2H,O Ca(H,PO4),	Ca(127 04/2 112 0 Ca(Po4)2 112 0 CaSO4

олжение таолицы	Температурный	интервал, К	273—841	273—1273	298—1273	298-2000	298-1000	298—700	286-319	` 	350-1800	298—918	298—894	ì	273—695	273—773	298—1250	273—1273	298-800	298-1200	298—376	1	ı	298—855	298-1600	7001-007
ii poodane	авнения с7-*	c.10-*	I	1 1	1	7,78	<u>;</u>	j	I	!	-15,65	I	1	1	1	i	J	J	1	ł	1	I	1	1	19,19	50,21
	Коэффициенты уравнения $c_{ ho}^0=a+bT+cT^{-st}$	6.10%	40,17	0 0 0 0 0	77,40	3,35	60.19 60.19	41,51	29,41	İ	9,20	9,54	11,21	1	40,6	50,21	20,08	11,05	71,96	23,85	130,54	1	1	112,13	0,24 79.13	01,4
	Коэфф С	В	61,25	40,50 54,0	77,32	53,18	60,59	125,9	81,34	1	119,4	49,79	48,53	1	43,9	64,52	38,79	42,05	78,53	62,34	39,24	j]	48,66	52,80 97,74	+ 1, 10
	$C_{p,298}^{0}$	Дж/(молъ × ×К)	73,22	45,45 55,2	09'66	45,6	78.6	138	91,8		104,6	52,63	51,87	ļ	56,1	79,5	44,78	47,82	100,0	63,64	76,24	34,27	82,42	82,13	48,12 103,70	2,600,1
	0%	Дж/(моль-К)	115,3	71,0	(123,1)	266,3	106.6	113,3	122,9	72	81,1	100,0	130	21,8	91,6	113	42,64	66,5	113,3	93,93	119,24	198,40	72,36	92,88	67,83 80,08	00,00
	04	кДж/моль	0,688—		-925,9	75,7	-325.5	6,798—	-554,8	594,5	-1141	-432,9	_336,7	-406,5	-134,7	-205,9	(-165,3)	-48,5	-771,1	-167,36	-82,01	-249,20	-294,61	-747,68		30,130
	Характерис-	тика вещества	Kpucr.	Крист.	Крист.	נינ	Крист.	Крист.	Крист.	Крист.	Крист.	Крист.	Крист.	Крист.	Крист.	Крист.	Крист.	Крист.	Крист.	Крист.	Крист.	∴ ¦	÷.	Крист.	Kpuct.	1/pures.
	•	Формула вещества	Z CPC	CdS	CdSO ₄	o. :: ::	<u>.</u>	CoSO	CrCI.	Ç	Cr_2O_3	[J.J.		CSOH	Çıçı		Ç. C.	Cus	Cuso.	Can	Cu ₂ S	D_2O	;	FeCO.	P. F.	D2 (1)

			••																														
100																																	
70.01	110,50	1	5,52	1	30,0	5,86	11,30	4,60	.	1	2,93	5,94	10,71	ı	140,16	117,15	15,40	1	1	J	ļ	I	43,10	30,96	16,74	ı	15,27	1	}	J	82,34	13,88	
167 02	20,52	1	74,81	1	46,86	26,15	39,37	26,53	109,87	58,58	27,70	26,32	30,00	1	-0,197	53,60	29,37	1	I	1	l	. 1	64,02	92,47	72,84	45,73	45,61	131,80	93,72	280,33	234,10	48,37	
142.40	50,5	100,54	61,92	92,05	52,09	29,16	35,90	29,16	1	1	29,16	29,16	33,56	75,31	1	88,41	33,93	137,57	106,10	}	l	1	26,60	101,67	77,82	45,73	50,21	131,80	93,72	280,33	293,00	53,62	
151 46	67,36	107,53	53,14	84,64	52,30	198,40	201.79	186,70	156,16	266,39	173,51	206,30	188,74	96,69	(39,33)	105,86	205,64	156,90	200,83	176,15	162,76	212,97	144,35	195,81	176,36	73,22	81,59	200,83	112,97	280,75	204,50	96 , 95	
111771	95,40	-922,57	-177,40	-1077,38	-539,74	-35,98	130,54	-92,30	-173,0	-133,90	-268,61	25,94	-241,84	-285,84	-291,85	-187,02	-20,15	-811,30	(-1271,94)	-1283,65	-169,45	-206,77	-230,12	264,85	-105,44	90,37	-58,16	-742,0	-926,76	2907,88	2465 	-392,04	
Trans.	Крист.	Крист.	Крист.	Крист.	Крист.	<u>_</u>	۲.	<u>د</u>	.≍	<u>.</u>	<u>.</u>	L'	<u>ر</u>	×	Крист.	Έ. Έ	Ľ	×	¥	Крист.	Крист.	Крист.	Крист.	Крист.	Крист. а	Красн.	Красн.	Крист.	Крист.	Крист.	Крист.	Крист.	
0,4	Fes.	FeSO4	FeS	Ga ² O ⁸	ြီ	HBr	HCN	#CI	HNO.	•	HF	H	Н,0			Н,0,	H ₂ S	H_2O4	H _s PO		HgBr	Hg,Br,	HgCl.	Hg,CI,	Hgľ.	H	HgS	Hg ₂ SO ₄	$I_{n_2^*O_3^*}$	$In_{\mathfrak{s}}(SO_{\mathfrak{d}})_{\mathfrak{s}}$	KAI(SÕĮ)2	KBr	

					Kosów	оправода продавания	Danenso	
	Хапактерис-	0,5	0	C, 298	= d C ₀	$= a + bT + cT^{-8}$	cT-*	Teunstanen
Рормула вещества	тика вещества	471298 • кДж/моль	. 2298 · Дж/(моль.К)	Дж/(мольх ХК)	а	b.10*	c-10-*	интервал, К
	Крист.	-435,85	82,68	51,49	41,38	21,76	3,22	298—1000
	Крист.	-391,20	142,97	100,25	100,25	10	ľ	289—371
	Крист.	327,01 813.37	17.17.	22,00 119,25	20,00 10,00 20,00	0 's	1 1	2/3-855 987-318
	Крист. а	-492,71	132,93	96,27	88,09	118,83	ı	273—401
-	Крист.	-425,93	59,41	1	1	١,	ļ	j
	Крист.	1383	200,0	146,0	-[1	I	j
	Крист.	_2033	291,21	219,70	179,08	171,54	1	298—671
	Крист.	-1433,44	175,73	129,90	120,37	99,58	-17,82	287—371
	Kpuct.	69,0701—	144,35	J	Ì	J	l	1
	Крист.	-1215,87	90,37	97,40		ı	I	
	Крист.	-408,78	58,16	51,0	46,02	14,18	.1.	273—887
	Крист.	-487,80	42,81	49,58	50,17	34,48	9,5	298—700
	Крист.	-482,33	105,44	80,12	38,37	150,62	1	273—523
	Крист.	-1434,28	148,0	ı	!	I.	l	j
	Крист.	-1096,21	62,69	75,52	77,91	57,74	-17,41	298—750
	Крист.	-641,83	89,54	71,03	79,08	5,94	-8,62	298900
	Крист.	-601,24	26,94	37,41	42,59	7,28	6,19	. 298-1100
	Крист.	-924,66	63,14	76,99	54,56	66,11	1	298—600
0	Крист.	-3083	352,0	348,1	I	1	I	1.
	Крист.	-894,96	85,77	81,50	92,01	38,91	-19,62	298—700
	Крист.	468,61	117,15	72,86	75,48	13,22	-5,73	273—923
	Крист.	384,93	60,25	44,83	46,48	8,12	. —3,68	298—2000
	Крист.	-519,65	53,14	54,02	69,45	10,21	-16,23	273—773
	Крист.	-929,81	110,46	107,70	103.50	35,06	13,51	273—1000
	Крист.	-1386,58	148,53	139,70	144,90	45,27	9,2	298-1350

					. 1
	298—458 275—600	298—2500 298—2000 298—2000 298—1000	298—2000 298—1900 298—550 — 298—1073 298—1265	298—936 298—550 298—566 298—723	298—1100 298—865 298—1000 298—518 518—1157
121	. 1-1-1	-0,59 -6,74 -14,9	-6,95 -17,74 - - - - - - - - - - - - - - - - - - -	13,38	11111111
26.25 88.1	133,89	39,88 8,54 39,75	7,7 17,7 8,79 16,32 16,23	6,78 225,94 125,0 135,6	22,59 65,26 68,61 220,9 80,92
29,80 1	49,37	29,58 42,93 45,69 83,89	44,89 87,95 49,66 45,94 43,51	52,30 25,69 7,34 70,63	65,69 69,87 82,88 65,0 121,6
8.08 8.08 7.7 7.7 7.7	84,10 226,40 187,07	29,83 37,11 38,71 78,99	39,37 73,3 52,3 80,33 46,82	87,72 54,31 93,05 59,66 110,0	557,0 72,43 89,33 103,22 120,1 130,8 146,0
78,23 192,50	94,56 216,20 220,30	210,62 240,45 220,0 304,3	263,5 70,71 83,7 123,1 72,36	102,1 91,2 116,3 64,18 189,5 136,0	71.1 93,3 94,1 146,0 149,4
—205,02 —46,19	—315,39 —2347 —1179,30	8,337 8,337 8,337 8,337	(12,8) (12,8) (133,0 (1	947,4 -287,9 -466,5 -426,6 -3250 -1129	—5297 —430,6 —510,9 —389,1 —1384 —1117
Kpuct. L.	 Крист. Крист. Крист.	Г. Г. Г.	I. T. Kpuct. Kpuct. Kpuct. Kouct.	Kpucr. Kpucr. Kpucr. a Kpucr. a Kpucr. a	Kpuct. Kpuct. Kpuct. Kpuct. Kpuct. α Kpuct. α Kpuct. α
MnS NH3	NH,CI NH,AI(SO,); (NH,)2SO,		N.O. NOCI NaAIO. NaC. NaC. NaC.	NaHCO ₃ NaI NaNO ₃ NaOH Na ₂ E ₄ O ₃ Na ₂ CO ₃ ·10H ₃ O	Natho, 12H, 6 Na.0 Na.0, Na.0, Na.50, Na.50, Na.50,

	i	·SZ		.]					-																	
ение таблицы	-	Температурны	интервал, К		298—1360	298—1148 998—845		298—523	298—600	298—1200	298-1500	298—631	298—643	286800	298—700	298—685	298 - 1000	2981000	1	298-300	0017			298-1800	219—342	
жиороди	авнения	cT-8	. d-01.2		-27,02	44 4,5 2,6	2:1	16,28	1	16	-16.49	1	-1	l	i	į	1	1	10	17,57		i	i	-5,65	11	
		$=a+bT+cT^{-8}$	b.10 ³ .		40,17	70,54 123,46	1	157,23	53,56	41,58	3,1 2,92	451,9	9,2	119,7	33,47	19,66	26,78	32,64	l:	129 70		j	.	12,55	79.50	
		$C_p = 0$	a		130,3	192,25	1	-20,88	38,70	60,08	129,5	70,08	77,78	51,84	66,78	75,31	37,87	53,14	37 30	45.86	Ì		1	42,55	131,8 53,72	
	,	Cp,298	Дж/(моль× ×К)		111,8	156,6 215.9	1	44,27	54.68 6.68	150,5 75,05	111,9	204,8	80,54	87,51	76,78	81,17	45,86	62,89 147,0	35,0	104.3	1	1	1	39,87	131,8 77,4	•
		S ₂₀₈ .	Дж/(моль-К)	214.64	113,8	104,0 238,5	224.7	38,07	67,36 07 -	311.7	362,9	280	161,4	130,96	136,4	1/6,4	67,4	0,44	01.90	147.28	130	506	142,26	248,1	217,2 311,3	•
		ΔH_{998}^0 ,	кДж/моль	2849,7	-1518	-3283,6	-192,5	-239,7	881.1	-277.0	-369,45	-3096	-277,0	002	1,500,1	1,0/1	02,712	7345	45,5	-918,1	-118	226	-1472,77	-296,9	-389,1 -358,7	
		Характерис-	Inka Belleciba	Крист.	Крист.	Крист. а	Крист.	Крист.	Kpacr.	Γ.	<u> </u>	Крист.	Kpucr.	Kpuct.	Npuct.	Nphci.	Keni.	Knacı	Kpact.	Крист.	Крист.	Крист.	Крист.	<u>.</u> ;	.∵ ¥∵	
		Формула вешества		Na_2SiF_6	Na.SiO.	Na ₃ AIF ₆	Na_3PO_4	Oil Nis	Niso.	PCI.	PC,	740 116		1000 1000	Dh.I. 2	P. C.	PhO	Pb.O.	Pbs *:	PbSO.		PtC.	KaSO ₄	, , , ,	202013	
																					4					

228—1206 273—346, 273—346, 273—330 273—821 298—331 298—1000 298—848 848—2000 298—390 390—2000 298—500	298—520 298—388 298—1273 273—1500 298—875 298—497 298—1000 298—1000 298—1000 298—1800 298—1800 298—1800 298—1800 298—1800 298—1800 298—1800 298—1800
13.06	- 21,59 3,77 3,77 - 6,69 - 15,02 - 1,05
26,86 213,8 71,55 71,55 71,55 13,26 34,31 8,12 103,8 11,05 88,12 88,12	38,74 14,64 10,04 31,30 55,65 55,65 11,0 11,0 11,0 11,0 11,0 11,0 11,0 11,
57,32 43,1 79,91 101,3 145,3 91,46 46,24 60,29 13,68 57,07 17,91	67,78 165,2 39,96 73,99 35,69 91,2 138,5 66,27 106,57 72,01 72,01 37,4
50,63 106,7 101,25 117,7 117,75 145,3 73,37 44,48 — 44,68 — 44,68	79,4 165,2 165,2 144,31 107,8 107,8 138,5 66,48 156,9 95,69 56,44 56,44 56,44 17,6
256,23 186,2 123,0 125,1 166,6 239,7 281,6 42,09 43,93 43,93	136,0 258,55 56,74 52,34 77,0 121,7 217,5 73,7 73,7 73,7 73,7 73,7 73,7 73,7 7
-395,2 -382,2 -700 -880 -160 -171,4 -1548 -859,3 -859,3 -856,9	-349.6 -544.9 -286 -580.8 -101.8 -101.8 -323.0 -323.0 -323.0 -1231 -1231 -1231 -1231 -204.97 -684.91
Г. Крист. Крист. Крист. Черн. Ж. Г. Кварц-а Кварц-а Кварц-а Кридимит-а Тридимит-а Тридимит-а Тридимит-а Кристоба-	лит-р
	*
SO SP C1 SP SP C1 SIC1 SP SP SP SP SP SP SP SP SP SP SP SP SP	SnC1, SnC1, SnC1, SnC2, SnC3, SnC3, TeC1, ThC2, ThC2, TiC1, TiC1, TiC1, TiC1,

maganna	
эпнэжис	
T_{DOOO}	
~	

3	1		• • • •						1			
интерва, К	1	298-1000	298—1500	373—593	273—425	1	293—573	273—1573	298—1200	298—1000	298—550	298—1478
6.10-	1	-19,37	-16,56	ı	ı		i	-9,12	-5,69	1	-12,18	-14,06
6.108		8,45	6,78	1	ı	ı	138,0	5,10	5,19	87,03	1	7,53
a	1	149,0	80,33	237,9	103,2	1	38,9	48,99	50,88	71,42	133,6	69,62
Дж/(моль × ×К)	166,75	129,7	63,76	1	103,2	1	80,18	40,25	46,02	97,35	119,9	56,04
	227,8	379,7	77,95	281,8	135,6	276,1	82,4	43,5	57,7	124,6	1,981	50,32
4.7.298 • кДж/моль	2163	-2113	-1084,5	-3583,6	-1637,6	-1377	7,018—	349,0	-201	-978,2	982,0	-1094
тика вещества	Крист.	ŗ.	-Крист.	Крист.	Крист.	Крист.	Крист.	Крист.	Крист.	Крист.	Крист.	Крист. а
Формула вещества	UF	N.	UO ₂	Usos	UO_2F_2	${ m UO_2(NO_3)_2}$	ZnCO3	ZnO	ZnS	ZnSO	ZrCl₄	ZrO2
	кДж/моль Дж/(моль.К) Дж/(моль. К) дж/жоль а 6.10°	тика вещества кДж/моль Дж/(моль.К) Дж/(моль.К) дж/(моль.К) дж хКО а b.10° с.10-° Крист. —2163 227,8 166,75 — —	тика вещества кДж/моль Дж/(моль К) Тика вещества Дл. 298 г. доль Кумоль К	Крист. —2163 227,8 166,75 —	Крист. —2163 227,8 (129,7) (129,7) (149,0) 8,45 —19,37 Крист. —1637,6 135,6 103,2 103,2 1149,0 8,45 —19,37 Крист. —3583,6 281,8 — 237,9 — — Крист. —1637,6 135,6 103,2 — — —	Крист. —2163 227,8 ПфК/(моль. К) дм/(моль. М) д	Крист. —2163 227,8 Дж/(моль. К) дж/дж/дж/дж/дж/дж/дж/дж/дж/дж/дж/дж/дж/д	Крист. —2163 227,8 Дж/(моль. К) дж/дж/дж дж/дж <	Крист. —2163 227,8 Дж/(моль. К) дж/дж/дж/дж/дж/дж/дж/дж/дж/дж/дж/дж/дж/д	Крист. —2163 227,8 Дж/(моль. К) дж/ к)	Крист. —2163 227,8 ПБб,75 — — — — Крист. —2113 379,7 129,7 149,0 8,45 —19,37 Крист. —2113 379,7 129,7 149,0 8,45 — Крист. —1084,5 77,95 63,76 80,33 6,78 —16,56 Крист. —1637,6 135,6 103,2 — — — Крист. —1637,6 135,6 103,2 — — — Крист. —1637,6 135,6 103,2 — — — Крист. —810,7 82,4 80,18 38,9 138,0 — Крист. —201 57,7 46,02 50,88 5,19 — Крист. —978,2 124,6 97,35 71,42 87,03 — Крист. —982,0 186,1 119,9 133,6 — —	

2.5. РАСПРОСТРАНЕННЫЕ НАЗВАНИЯ НЕКОТОРЫХ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

Принятые сокращения: Мин.— минерал тв.— твердый удобр.— удобрение

Название	Состав
	A-NO
Адский камень	AgNO ₃
Азурит (мин.)	2CuCO ₃ · Cu(OH) ₂
Аквадаг	Суспензия графита в воде
Алебастр 1 (мин.)	CaSO ₄ · 2H ₂ O
2	2CaSO ₄ · H ₂ O
Алунд	Плавленый А1208
Алунит (мин.)	$K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 2AlO_3 \cdot 6H_2O$
Алюминиевая пудра	Al (с примесью Al ₂ O ₃)
Алюмогель	Al_2O_3
Аммиачная вода	NH ₃ (водный раствор)
Аммонал	NH ₄ NO ₃ (до 72 %) с порошком Al (25 %) и углем (3 %)
Аммофос (удобр.)	C_{Mecb} $NH_4H_2PO_4$ и $(NH_4)_2HPO_4$
Ангидрид мышьяковистый	As_2O_3
мышьяковый	As_2O_5
серный	SO_3
фосфорный	$P_{2}O_{5}(P_{4}O_{10})$
хромовый	Cr O ₃
Ангидрит (мин.)	CaSO ₄
Ангидрон	$Mg(ClO_4)_2$
Антимонит (мин.)	Sb_2S_3
Антихлор	$Na_2^2S_2^2O_3$ или $Na_2S_2O_3\cdot 5H_2O$
Апатит (мин.)	$3Ca_3(PO_4)_2 \cdot Ca(F, Cl)_2$
Арагонит (мин.)	CaCO ₃
Аргентит (мин.)	Ag_2S •
Асбест (мин.)	3 (Mg, Fe) O · CaO · 4SiO ₂
Аспарит	Асбест, пропитанный NaOH
Аурипигмент (мин.)	As ₂ S ₃
Барит (мин.)	BaSO ₄
Баритовая вода	Ва(ОН), (водный раствор)
Белая сажа	SiO ₂
Белила баритовые	BaSO
бланфикс	BaSO ₄
свинцовые	2PbCO ₃ · Pb(OH) ₂
титановые	TiO ₂
цинковые	ZnO
Белый мышьяк	As ₂ O ₃
Белый преципитат неплавкий плавкий	IHg(NH ₃) ₂ Cl ₂
	$^{11}_{3BeO}$ $^{11}_{A}$ $^{12}_{2O_3}$ $^{12}_{A}$ $^{11}_{2O_3}$
Берилл (мин.)	Fa. (Fa/CN).
Берлинская лазурь	Fe ₄ [Fe(CN) ₆] ₈ KClO ₃
Бертолетова соль	NaHCO ₃
Бикарбонат (натрия)	
Бишофит (мин.)	$MgCl_2 \cdot 6H_2O$

Название	Состав
Бланфикс	BaSO ₄
Боксит (мин.)	$Al_2O_3 \cdot 2H_2O$
Болотная руда (мин.)	$2Fe_2O_3 \cdot 3H_2O$
Бордосская жидкость	Смесь водного раствора CuSO, с извест-
Бронзит (мин.)	ковым молоком (Mg, Fe)SiO ₃
Бура	$Na_2B_4O_7 \cdot 10H_2O$
Бура ювелирная	$Na_2B_4O_7 \cdot 5H_2O$
Бурый железняк (мин.)	2Fe ₂ O ₃ · 3H ₂ O
Веселящий газ	N_2O^2
Вивианит (мин.)	$Fe_3(PO_4)_2 \cdot 8H_2O$
Витерит (мин.)	BaCO ₃ .
Вюрцит	ZnS
Галенит (мин.)	PbS
Галит (мин.)	NaCl
Гематит (мин.)	Fe ₀ O ₀
Гетит (мин.)	Fe ₂ O ₃ · H ₂ O
Гидроборацит (мин.)	$Fe_2^2O_3^2 \cdot H_2O$ $CaO \cdot MgO \cdot 3B_2O_3 \cdot 6H_2O$
Гидрофиллит	СаСl ₂ (плавленный)
Гидросульфит (натрия) I	$Na_2S_2^2O_4$
2	NaĤŠO3 (раствор)
Гипосульфит (натрия) 1 2	$Na_2S_2O_3 \cdot 5H_2O$ или безводный $Na_2S_2O_3$ $Na_2S_2O_4 \cdot 2H_2O$ (термин в СССР мало-
	употребителен)
Сипс (мин.)	CaSO ₄ · 2H ₂ O
ипс жженый	$2CaSO_4 \cdot H_2O$
ипс кальцинированный	СаSO ₄ (прокален до 900 °С и выше)
лазерит (мин.)	2K ₂ SO ₄ · Na ₂ SO ₄
лауберит (мин.)	CaSO₄ (прокален до 900°C и выше) 2K₂SO₄ · Na₂SO₄ Na₂SO₄ · CaSO₄
Слауберова соль (мин.)	$Na_2SO_4 \cdot 10H_2O$
лет свинцовый	PbO * *
линозем	Al_2O_3
линозем сернокислый	$Al_2(SO_4)_3$
опкалит	Смесь активного МпО ₂ (50 %) с оксидами
	Cr, Fe и Ag (50 %)
орная мука	SiO ₂
орчичные масла	Эфиры изотиоциановой кислоты R—N=C=S
орькая соль	MgSO ₄ · 7H ₂ O
ремучая ртуть	Hg(CNO) ₂
Іеварда сплав	Cu - 50%; Al – 45%; Zn – 5%
Циатомит	SiO_2
Іоломит (мин.)	CaCO ₃ · MgCO ₃
дкий барит	Ba(OH),
дкий натр	NaOH 2
дкое кали	КОН
Кавелевая вода	КСІО (водный раствор)
Келезный колчедан (мин.)	FeS,
олотая соль	Na[ÂuCl ₄] · 2H ₂ O
звестковое молоко	Са(ОН) ₂ (водная суспензия)
	(/2 (Bodian Cyclichann)

Название	Состав
	C (OIT) (R income)
Известковая вода	Са(ОН) ₂ (водный раствор)
Известковое тесто	Ca(OH) ₂
≽Известково-серый Отвар	CaS_x
Известковый шпат (мин.)	CaCO ₃
Известняк (мин.)	CaCO ₃
Известь	C CLOCK
белильная	CaCl(OCl)
венская	Смесь CaO и MgO
воздушная	CaO
гашёная	Ca(OH) ₂
магнезильная	Смесь CaO и MgO
натронная	2CaO + NaOH
негашёная	CaO
обожженная	CaO
селитряная	Ca(OH)NO ₃
хлорная	CaCl(OCl) (32—35 % активного хлора)
Инфузорная земля	SiO_2
Исландский шпат (мин.)	CaCO ₃
Каинит (мин.)	$MgSO_4 \cdot KC1 \cdot 3H_2O$
Кальцит (мин.)	CaCO ₃
Каломель	Hg_2Cl_2
Каменная соль (мин.)	NaCl
Каолин (мин.)	$Al_2O_3 \cdot 2SiO_2 \cdot 2H_2O$
Карбид (кальция)	CaC ₂
Карборунд	SiC
Карналлит (мин.)	$KC1 \cdot MgCl_2 \cdot 6H_2O$
Касситерит (мин.)	SnO_2
Каустик	NaOH
Кварц (мин.)	SiO ₂
Квасцы алюминиевые	$KA[(SO_4)_2 \cdot 12H_2O]$
алюмокалиевые	$KA1(SO_4)_2 \cdot 12H_2O$
алюмоаммонийные	$NH_4A!(SO_4)_2 \cdot 12H_2O$
• аммиачные	$NH_4Al(SO_4)_2 \cdot 12H_2O$
аммонийные	$NH_4AI(SO_4)_2 \cdot 12H_2O$
железоаммиачные	$NH_4Fe(SO_4)_2 \cdot 12H_2O$
железные	$KFe(SO_4)_2 \cdot 12H_2O$
хромово-калиевые	KF ² (SO ₄) ₂ ···12H ₂ O KCr(SO ₄) ₂ ··12H ₂ O KCr(SO ₄) ₂ ··H ₂ O
хромовые	KCr(SO ₄) ₂ · H ₂ O
Кизерит (мин.)	$MgSO_4 \cdot H_2O$
Кизельгур (мин.)	SiO ₂
Киноварь (мин.)	HgS
Кипелка (известь)	См. известь негашёная
Кислота Каро	H ₂ SO ₅
Коагулянт алюминиевый	$Al_2(SO_4)_3$
железный	$Fe_2(SO_4)_3$
зольный	Смесь $Al_2(SO_4)_3$ и $Fe_2(SO_4)_3$
каолиновый	$Al_2(SO_4)_3$
нефелиновый	Смесь KAl(SO ₄) ₂ и NaAl(SO ₄) ₂
Корунд (мин.)	Al ₂ O ₃
Криолит (мин.)	3NaF ⋅ AlF ₃

Название	Состав
Кровяная соль желтая	$K_4[Fe(CN)_6] \cdot 3H_2O$
красная	K ₃ [Fe(CN) ₆]
Крокус	Fe_2O_3
Крап свинцовый	PbCrO ₄
цинковый	ZnCrO ₄
Купорос железный	FeSO ₄ · 7H ₂ O
медный	$CuSO_4 \cdot 5H_2O$
Цинковый	$ZnSO_4 \cdot 7H_2O$
Купоросное масло	H ₂ SO ₄ (90,5—92,5 %-ная техническая)
Лабарракова вода	NaClO (водный раствор)
Лангбейнит (мин.)	2MgSO ₄ · K ₂ SO ₄
Лейна-селитра	CMech (NH ₄) ₂ SO ₄ H NH ₄ NO ₃ K ₂ SO ₄ · MgSO ₄ · 4H ₂ O
Леонит (мин.)	$K_2SO_4 \cdot MgSO_4 \cdot 4H_2O$
Лимонит (мин.) Литопон	2Fe ₂ O ₃ · 3H ₂ O Смесь ZnS и BaSO ₄
Ляпис	CHECK ZIIS H BASO4
Магнезит (мин.)	Сплав 1 ч. AgNO ₃ с 2 ч. KNO ₃
Магнезия белая (магнезия альба)	MgCO ₃ MgCO ₃ или 3MgCO ₃ · Mg(OH) ₂ · 3H ₂ O
Магнезия жженая (магнезия уста)	MgO
Магнезия нювель	Cupar MacCO a 14 10 04 and
Магнетит (мин.)	Смесь MgCO ₃ с 14—19 % асбеста
Магнитный железняк (мин.)	Fe ₃ O ₄ Fe ₃ O ₄
Магнитный колчедан (мин.)	FeS
Мажеф	Смесь Mn(H ₂ PO ₄) ₂ и Fe(H ₂ PO ₄) ₂
Марказит (мин.)	FeS ₂
Малахит (мин.)	CuCO ₃ · Cu(OH) ₂
Манганит (мин.)	$MnO_2 \cdot Mn(OH)_2$
Массикот	PbO
Мел (мин.)	CaCO ₃
Медный колчедан (мин.)	CuFeŠ,
Меланж кислотный	Смесь HNO ₃ с H ₂ SO ₄
Метабисульфит калия	$K_2S_2O_5$
натрия	$Na_2S_2O_5$
Мирабилит (мин.)	$Na_2SO_4 \cdot 10H_2O$
Мрамор (мин.)	CaCO ₃
Мумия	Fe_2O_3
Мумия бокситная	Fe ₂ O ₃ и Al ₂ O ₃
Наждак	Al_2O_3
Нашатырный спирт	NH ₃ (водный раствор)
Нашатырь	NH ₄ Cl
Нефелин (мин.)	4(Na, K) ₂ O · 4Al ₂ O ₃ · 9SiO ₂
Нитропруссид калия Нитропруссид натрия	K ₂ Fe(NO)(CN) ₅ 2H ₂ O
Обманка цинковая (мин.)	$Na_{2} Fe(NO)(CN)_{5} \cdot 2H_{2}O$
Огарок колчеданный	ZnS
Ойльдаг	Fe ₂ O ₃ с примесью FeS
Оксигенит	Суспензия графита в масле
	Смесь КСІО3 с МпО2 и небольшим ко-
•	личеством угольной пыли

Название	Состав
Оксиликвит	Смесь жидкого кислорода с мелким уг-
	лем
Оксилит	Na_2O_2
Олеум	Раствор (15,5—60 %) SO ₃ в H ₂ SO ₄
Оливин (мин.)	(MgFe)SiO ₄
Оловянная соль	$SnCl_2 \cdot 2H_2O$
Оловянное масло	SnCl ₄ (безводный)
Оловянный камень (мин.)	SnO ₂
Охра	Смесь Fe ₂ O ₃ , Al ₂ O ₃ и SiO ₂
Парижская зелень	$Cu(CH_3COO)_2 \cdot 3Cu(AsO_2)_2$
Пергидроль	H ₂ O ₂ (27—31 %-ный водный раствор)
Пирит (мин.)	FeS ₂
Пиролюзит (мин.)	MnO ₂
Пирротин (мин.)	FeS
Плавиковая кислота	H_2F_2 (водный раствор)
Плавиковый шпат (мин.)	CaF ₂
Поваренная соль	NaCl
Полевой шпат (мин.) альбит	$N_{a_2}O \cdot Al_2O_3 \cdot 6SiO_2$
анортит	$Ca\bar{O} \cdot Al_2\bar{O}_3 \cdot 2SiO_2$
ортоклаз	K ₂ O · Al ₂ O ₃ · 6SiO ₂
Полигалит (мин.) Поташ	$K_2MgCa_2(SO_4)_4 \cdot 2H_2O$
	K ₃ CO ₃
Препарат Лавилова	Cu ₂ (OH) ₂ SO ₄
Препарат Давыдова	CM. REPORT OF THE CONTRACT OF
Преципитат (удобр.)	CaHPO ₄ · 2H ₂ O Ha(NH)Cl
Преципитат неплавкий плавкий	Hg(NH ₂)Cl
Протарс	[Hg(NH ₂) ₂]Cl ₂
Пушонка (известь)	Са(AsO ₂₎₂ См. известь гашёная
Раствор Рарбаха	Водный раствор ВаІ2 НдІ2
Раствор Туле	Водный раствор KI · HgI2
Реальгар (мин.)	As ₄ S ₄
Роговое серебро (мин.)	AgCl
Рубун (мин.)	Al ₂ O ₃ с примесью Ст
Сапфир (мин.)	Al ₂ O ₃ с примесью Ті и Fe
Сажа (газовая, ламповая)	C 1 s s s s s s s s s s s s s s s s s s
Сажа белая	SiO ₂
Свинцовый блеск (мин.)	PbS
Свинцовый сахар	Pb(CH ₃ COO) ₂
Селенит (мин.)	CaSO ₄ · 2H ₂ Ō
Селитра аммиачная (удобр.)	NH ₄ NO ₃
известковая (удобр.)	$Ca(NO_3)_2$
калиевая (удобр.)	NaNO ₃
кальциевая (удобр.)	Ca(NO ₂) ₀
натриевая (удобр.)	NaNO ₃
норвежская (удобр.)	$Ca(NO_3)_2$
чилийская	NaNO ₃
Серный колчедан (мин.)	FeS ₂
Сидерит (мин.)	FeCO ₃
Спена	Fe ₂ O ₃ и SiO ₂

Название	Состав
Силикагель	SiO ₂
Силикат глыба	Na ₂ SiO ₃
Сильвин (мин.)	KCI
Сильвинит (мин.)	KCl и NaCl
Синильная кислота	HCN
Синька	См. ультрамарин
Синь-кали	См. кровяная соль
Смесь Эшке	MgO и Na ₂ CO ₃
Сода	
бельевая	Na_2CO_3
бикарбона т	NaHCO ₃
двууглекислая	NaHCO ₃
кальцинированная	Na ₂ CO ₃
каустическая	NaOH
кристаллическая	$Na_2CO_3 \cdot 10H_2O$
очищенная	NaHCO _s
питьевая	NaHCO ₃
Соль Мора	$FeSO_4 \cdot (NH_4)_2SO_4 \cdot 6H_2O$
Рейнеке	$NH_4[Cr(NH_3)_2(NCS)_4] \cdot H_2O$
Пелиго	K[CrO ₃ Cl]
Станиоль	Оловянная фольга
Стекло жидкое	Водный раствор стекла растворимого
растворимое	$(Na, K)_2O \cdot mSiO_2; m$ колеблется от 0.000 до 0.000
Сулема	HgCl ₂
Сульфнитрам (удобр.)	$NH_4NO_3 \cdot (NH_4)_2SO_4$
Сульфоамофос (удобр.)	$(NH_4)_2SO_4$ и $(NH_4)_2HPO_4$
Суперфосфат двойной (удобр.)	$C_3(H_2PO_4)_2 \cdot H_2O$
простой (удобр.)	$C_{a}(H_{2}PO_{4})_{2} \cdot H_{2}O$ и $CaSO_{4}$
Сурик железный	Fe ₂ SO ₃
свинцовый	Pb ₃ O ₄
Сурьмяное масло	SbCl ₃
Сурьмяный блеск (мин.)	Sb ₂ S ₃
Сухой лед	CO ₂ (TB.)

Название	Состав
Сфен (мин.)	CaO · TiO ₂ · SiO ₂
Тальк (мин.)	$3MgO \cdot 4SiO_2 \cdot H_2O$
Текстон	NaClO ₂
Тенардит (мин.)	Na ₂ SO ₄
Термит	Смесь зернообразного Al с оксидами металлов (чаще железа)
Тинкал	$Na_2B_4O_7 \cdot 10H_2O$
Титанит (мин.)	CaO · TiO ₂ · SiO ₂
Томасшлак	4CaO · P ₂ O ₅
Топаз (мин.)	[Al(F, OH)] ₂ SiO ₄
Трепел (мин.)	SiO ₂
Трифолин	Fe ₃ O ₄ (80 %) и CaSO ₄ (20 %)
Тринатр	Na ₃ PO ₄ · 12H ₂ O ·
Турмалин (мин.)	Борсодержащий алюмосиликат натрия, лития, железа, магния и др.
Турнбулева синь	$Fe_3[Fe(CN)_6]_3$
Тяжелый шпат (мин.)	BaSO ₄
Угарный газ	co
Углекислота	CO ₂
Углекислый газ	CO ₂
Умбра	Fe ₂ O ₃ с оксидами Мп
Ультрамарин	$Na_{8}[Al_{6}Si_{6}O_{24}]S_{(2-4)}$
Флюорит (мин.)	CaF ₂
Фольга	Тонкие листы металла
Фоспор (фоссода)	Na ₂ HPO ₄ (65—75 %) и (25—35 %) Na ₂ CO ₃
Халькопирит (мин.)	CuFeS ₂
Хромистый железняк (мин.)	FeO · Cr ₂ O ₃
Хромит (мин.)	FeO · Cr ₂ O ₃
Хромпик калиевый	$K_2Cr_2O_7$
натриевый	Na ₂ Cr ₂ O ₇ · 2H ₂ O

Название	Состав
Царская вода (водка)	Смесь концентрированных кислот: 1 объем HNO ₃ с 3 объемами HCl
Целестин (мин.)	SrSO ₄
Цемент магнезиальный (Сореля)	Получают смешиванием MgO с 30 % водным раствором MgCl ₂
Цементит	Fe ₃ C
Цинковая обманка (мин.)	ZnS
Циркон (мин.)	ZrSO ₄
Цианплав	NaCl и Ca(CN) ₂
Черный цианид	См. цианплав
Шенит (мин.)	$K_2SO_4 \cdot MgSO_4 \cdot 6H_2O$
Эпсомит (мин.)	$MgSO_4 \cdot 7H_2O$

ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ-ВЕЩЕСТВ

В аналитической химии для определения количества элементов в соединениях и смесях, а также примесей в чистых веществах используются многие физические методы. В этой главе приведены только некоторые справочные данные для химических методов анализа.

Пользование индикаторами имеет свою специфику. Например, для титриметрического определения кислот и щелочей в присутствии индикаторов следует применять индикаторы с возможно более узкими диапазонами перехода окраски и изменяющими свой цвет в как можно более далеких областях спектра, лучше всего в противоположных — от красного к сине-фиолетовому.

Для колориметрического определения рН не требуется очень узкого диапазона его изменения: лучшие результаты дают индикаторы, у которых заметное изменение оттенков происходит при изменении величины рН на 0,1—0,2.

Методы работы с индикаторами подробно описаны в соответствующих руководствах по аналитической химии. В этой главе приведены только количественные характеристики индикаторов, которые, как и остальные сведения данной главы, ни в коей мере не могут заменить руководство по аналитической химии.

3.1. КИСЛОТНО-ОСНОВНЫЕ ИНДИКАТОРЫ

дикатора	в щелочной среде	Зеленая	Голубовато- зеленая	Желтая	Янтарно- желтая	Синяя	Желтая	Бесцветная	Желтая
Окраска индикатора	в кислой среде	Желтая	♠	Красная	Пурпурная	Зеленая	Красная	Красно-	Красная
-	Растворитель	Вода	Á	 Спирт (20 %) 5,3 см³ раствора NaOH концентранией 0,05 моль/дм³ и вода до 100 см³ 	 Спирт (20 %) 5,3 см³ раствора NаОН концентрацией 0,05 моль/дм³ 	Вода	1) Chupt (20 %) 2) Boga 95,7 cm³ n 4,3 cm³ NaOH 6) 05 mort/ms³	Спирт (70 %)	Вода
ŧ	Массовая доля, %	0,1	0,1	0,05	0,05	0,1	0,1	0,1	1,0 0,1 0,01
	Диапазон перехода	0,13-0,5	0,13—2,0	0,5—2,5	0,6—2,8	1,0—1,5	1,2—2,8	1,2—3,2	1,4—3,2
Название	другое	Метилвиолет	Малахитгрюн	м-Крезолпурпур	Ксиленолсульфофта- леин; ксиленолбляу	Метилвиолет	Тимолсульфофталенн; тимолбляу	Пентаметоксирот	Дифенилоранж; анилин гельб; оранж IV
Назв	наиболее распространенное	Метиловый фиолето- вый, 1-й переход	(см. № 5 и 9) Малахитовый зеле- ный, І-й переход	см. м ⁸ 44) Крезоловый пурпу- ровый, 1-й переход (см. № 33)	Ксиленовый синий, 1-й переход (см. № 35)	Метиловый фиолетовый, 2-й переход	см. м. 1 и 3) Тимоловый синий, 1-й переход (см. № 34)	Пентаметоксикрас-	Тропеолин 00
	п \ п •М	-	63	ო .	4	'n	9	2	∞

¥ 2 5	Метиловый фиоле- товый, 3-й переход (см. № 1 и 5)	Метилвиолет	2,0—3,0	0,1	A	Синяя	Фиолетовая
.φ.Σ	роф Зый	2,6-Динитрофенол Метилгельб; лиметилгельб	2,4—4,0 2,9—4,0	0,1 0,1 и 0,01	* Спирт (90 %)	Бесцветная Красная	Желтая "
ΩE	Бромфеноловый си- ний	Бромфенолбляу; теграбромфенол- сульфофталенн	3,0—4,6	0,1	 Спирт (20 %) Вода 97 см³ и 3 см³ раствора NaOH концентрацией 0,05 моль/дм³ 	Желтая	Синяя
¥	Конго красный	Конгорот	3,0—5,2	0,1	Вода	Сине-фио- летовая	Красная
×ά	Метиловый оранже- вый	Метилоранж; гели- энтин: оранж III	3,1—4,4	0,1		Красная	Оранжево-
CH A	Ализариновый крас- ный, 1-й переход (см. № 39)	антив, оралм та Ализаринрот; ализа- ринсульфонат нат- рия	3,7—5,2	0,1	*	Желтая	Фиолетовая
C D	Бромкрезоловый синий (зеленый)	Бромкрезолбляу; бромкрезолгрюн	3,8—5,4	0,1	 Спирт (20 %) 2,9 см³ раствора NaOH концентрацией 0,05 моль/дм³ и воля по 100 см³ 	A .	Сяняя
>-≥	γ-Динитрофенол Метиловый красный	2,5-Динитрофенол Метилрот	4,0—5,4 4,4—6,2	0,1 0,1 и	Вода Спирт (60 %)	Бесцветная Красная	Желтая ,
Ë	Лакмоид	Резорциновый синий	4,46,4	0,0 1,2 7.	Спирт (90 %)	*	Синяя
N X X	Гематоксилин Хлорфеноловый красный	Хлорфенолрог; дихлорфенолсульфо- фталеин	5,0—6,0 5,0—6,6	0,00	Спирт (90 %) 1) Спирт (20 %) 2) 4.7 см³ раствора NaOH концентра- цией 0,05 моль/дм³ и вода,до 100 см³	Желтая	Фиолетовая Красная

1	,	1	Ì

						Продолжение таблицы	таблицы
•	Ная	Название	-	٠.		Окраска и	Окраска индикатора
n\n •M	наиболее распространенное	другое	Диапазон перехода	Массовая доля, %	Растворитель	в кислой среде	в щелочной среде
22	Бромкрезоловый пурпуровый	Бромкрезолпурпур	5,6—6,8	0,1	1) Спирт (20 %) 2) 3,7 см³ раствора NaOH кочцентра- цией 0,05 моль/дм³ и вода до 100 см³	Желтая	Пурпурная
23	23 Ализарин	α - β -Диоксиантрахи- нон	5,6—6,8	0,02	Спирт (90 %)	*	Фиолетовая
24	п-Нитрофенол		5,6—7,6	0,1	Вода	Бесцветная	Желтая
52		Бромтимолбляу; ди- бромтимолсульфо- фталени	6,0—7,6	0,05	1) Спирт (20%) 2) 3 ₄ 2 см ³ раствора NаОН концентра- цией 0,05 моль/дм ³ и вода до 100 см ³	Желтая	Синяя
8	Нейтральный крас- ный	Нейтральрот	6,8—8,0	0,1	Спирт (60 %)	Красная	Янтарно- желтая
23	Розоловая кислота	Аурин; метилаурин; желтый корралин; корралинфталеин	6,8—8,0	0,5	Спирт (50 %)	Янтарно- желтая	Пурпурная
	Феноловый красный	Фенолрот; фенол- сульфофталенн	6,8—8,0	0,1	 Слирт (20 %) 5.7 см³ раствора NaOH концентра- цией 0,05 моль/дм³ и вода до 100 см³ 	Желтая	Красная

					10 m			
81	ж. Нитрофенол			6,8-8,4	0,3	Вода	Беспветная	Желтая
ଞ୍ଚ	Хинолиновый синий	синий	Цианин; хинолин- бляу	7,0—8,0	0,1	Спирт	A	Фиолетовая
33	Креозоловый ный	крас-	Kpesonpor	7,2—8,8	0,1	1) Спирт (20%) 2) 5,3 см³ раствора NaOH концентра- цней 0,05 моль/дм³ в вода до 100 см³	Янтарно- желтая	Пурпурно- красная
32	α-Нафтолфталенн	ни		7,4—8,6	1,0 и 0,1	Спирт (50 %)	Желто- розовая	Сине-зеле- ная
8	Крезоловый ровый, 2-й п (см. № 3)	пурпу- переход	м- Крезолпурпур	7,6—9,2	0,05	 Спирт (20%) 5,3 см³ раствора NaOH концентра- пией 0,05 моль/дм³ вода до 100 см³ 	Желтая	Пурпурная
34	.Тимоловый 2-й переход (см. № 6)	синий,	Тимолсульфофталеин	8,0—9,6	0,1	Спирт (20 %)	^	Синяя
8	Ксиленолов ний, 2-й (см. № 4)	ый си- переход	Ксиленолсульфофта- леин; ксиленолбляу	8,0—9,6	0,5	 Спирт (20 %) 5,3 см³ раствора NаОН концентра- цией 0,05 моль/дм³ и вода до 100 см³ 		Фиолетово- синяя
36	Крезолфталеин		о-Крезолфталеин	8,29,8	0,2	Спирт (90 %)	Бесцветная	Красная
37	Фенолфталеин			8,2—10,0	1,0 и 0,1	Спирт (60 %)	•	Пурпурная

					просолжение таблицы	mao unin
Назв	Тазвание				Окраска ин	ндикатор а
наиболее распространенное	другое	Диапаз он перехода	Массовая доля, %	Растворитель	в кислой среде	в щелочной среде

88	Тимолфталеин		4,9—10,6	0,1	Спирт (90 %)	Бесцветная Синяя	Синяя
33	Ализариновый красный S, 1-й переход (см. № 15)	Ализаринрот; али- заринсульфонат натрия	10,0—12,0	0,1	Вода	Фиолетовая	Бледно- желтая
40	Нильский голубой	Нильбляу	10,1—11,1	0,1	*	Синяя	Красная
4	Ализариновый жел- тый	Ализарингельб	10,1—12,1	0,1	*	Желтая	Лиловая
43	Ализариновый синий	Ализаринбляу	11,0—13,0	0,05	Спирт	Оранжево- желтая	Зеленовато- синяя
43	43 Тропеолин О	Хризоин золотисто- желтый	11,0—13,0	0,1	Вода	Желтая	Оранжево-коричневая
44	Малахитовый зеле- ный 2-й переход (см. № 2)	Малахитгрюн	11,5—13,2	0,1	*	Голубовато- зеленая	Бесцветная
45	2,4,6-Тринитрото- луол		11,5—13,2	0,1 и 0,5	Спирт (90 %)	Бесцветная	Оранжевая
46	Индигокармин	Индигосу льфонат натрия	11,6—14,0	0,25	Спирт (50 %)	Синяя	Желтая
47	Тринитробензойная кислота	•	12,0—13,4	0,1	Вода	Бесцветная	Оранжево- красная
48	1,3,5-Тринитробен- зол	•	12,2—14,0	0,1 и 0,5	Спирт (90 %)	*	Оранжевая

3.2. СМЕШАННЫЕ ИНДИКАТОРЫ (КИСЛОТНО-ОСНОВНЫЕ)

1

Показатель титрования рT- условная величина р H , при которой наблюдатель может заметить изменение окраски индикатора и признать титрование законченным.

ель Вин	Состав раство	Состав растворов индикатора	Соотноше-	Ū	Скраска индикатора
Показат вводтит	A	ū	ние объе-	в кислой среде	в щелочной среде
3,25		Метиленовая синяя, раствор в спирте с массовой долей индикатора 0,1 %	1::1	Сине-фиоле- Зеленая товая	Зеленая

Показ Титро	Ą	В
3,25	3,25 Метиловый желтый, раствор в спирте Метиленовая синяя, раствор в спирте с массовой долей индикатора 0,1% с массовой долей индикатора 0,1%	Метиленовая синяя, раствор в спирте с массовой долей индикатора 0,1 %
4,1	 4.1 Метиленовый оранжевый, раствор Индигокармин, раствор в воде с мас- в воде с массовой долей индикатора совой долей индикатора 0,25 % 0,1 % 	Индигокармин, раствор в воде с мас- совой долей индикатора 0,25 %
4,3	Бромбензоловый синий, натриевая Метиловый оранжевый, раствор в вод соль, раствор в воде с массовой до. с массовой долей индикатора 0,2 %	Бромбензоловый синий, натриевая Метиловый оранжевый, раствор в воде соль, раствор в воде с массовой до- с массовой долей индикатора 0,2 %

	Бромкрезоловый синий, раствор Метиловый красный, раствор в спирв спирте с массовой долей индикатора 10.2% 0.2%	Метиловый красный, раствор в спир- Метиленовая синяя, раствор в спир- те с массовой долей индикатора те с массовой долей индикатора 0,1 %
леи индикатора 0,1 %	Бромкрезоловый синий, раствор в спирте с массовой долей индикатора 3,1 %	Метиловый красный, раствор в спир- ге с массовой долей индикатора),2 %

	-	
	твор в спир- индикатора	S, раствор г индикатора
0,2 %	Метиленовая синяя, рас те с массовой долей 0,1%	Ализариновый красный в воде с массовой долей 0,1 %
0,1%	Метиловый красный, раствор в спир- Метиленовая синяя, раствор в спирте с массовой долей индикатора те с массовой долей индикатора 0.2%	Бромкрезоловый синий, раствор в воде Ализариновый красный S, раствор с массовой долей индикатора (2,9 см³ 0,05 моль/дм³ NaOH на 0,1% 100 см³)

7	*	Желто-зеле- ная
ная	Красно- фиолетовая	Фиолетовая
	1::1	
гора	пир- гора	твор тора

Сине-зеленая

Желтая

Ξ

Фиолетовая

::

Винно-крас- Зеленая

3:1

5,6

5,4

5,1

3.8 УНИВЕРСАЛЬНЫЕ ИНДИКАТОРЫ [КИСЛОТНО-ОСНОВНЫЕ]

Универсальные индикаторы готовятся смешиванием различных кислотно-основных индикаторов.

Состав четырех смесей.

А. В 500 см³ чистого спирта растворяют 100 мг фенолфталенна, 200 мг метилового красного, 300 мг метилового желтого, 400 мг бромтимолового синего и 500 мг тимолового синего, затем прибавляют раствор NaOH концентрацией 0,1 моль/дм³ до появления чисто-желтой окраски (рН = 6).

Б. Смешивают 15 см³ раствора метилового желтого с массовой долей индикатора 0,1 %, 5 см³ раствора метилового красного с массовой долей индикатора 0,1 %, 20 см³ раствора бромтимолового синего с массовой долей индикатора 0,1 %, 20 см³ раствора фенолфталенна с массовой долей индикатора 0,1 % и 20 см³ раствора тимолфталенна с массовой долей индикатора 0,1 %.

В. В 100 см³ раствора спирта с массовой долей его 50 % растворяют 70 мг тропеолина, 100 мг метилового оранжевого, 80 мг метилового красного, 400 мг бромтимолового синего, 500 мг фенолфталенна и

100 мг ализаринового желтого.
Г. В 500 см³ чистого спирта растворяют 100 мг метилового красного, 100 мг бромтимолового синего, 100 мг α-нафтолфталеина, 100 мг

фенолфталенна и 100 мг тимолфталенна.

Окраска их в зависимости от рН раствора дана в таблице.

рН р аство	Окраска индикатора						
	A	Б	В	г			
2	Красная	Красно-розовая	Оранжево-красная				
2 3 4	Оранже- вая	Красно-оранжевая Оранжевая	Красно-оранжевая Оранжевая	Красная			
5 6 7 8 9	Желтая	Желто-оранжевая Лимонно-желтая Желто-зеленая	Желто-оранжевая Оранжево-желтая	Оранжевая Желтая			
8	Зеленая	Зеленая	Зелено-желтая Зеленая	Зелено-желтая Зеленая			
9 10	Синяя	Сине-фиол етовая Фиолетовая	Зелено-синяя Фиолетовая	Сине-зеленая Сине-фиолето-			
11			Красно-фиолетовая				
12		• • •	Фиолетово-красная	товая			

3.4. АДСОРБИМОННЫЕ ИНДИКАТОРЫ

1	한 -		Ион		Окраска и	ндикатора
Ин дика гор	Массовая д ля индикат ра, %	Растворитель	тит- рую- щего реак- тива	Опреде- ляемый ион	Начало перехода	Қонец перехода
Ализариновый	0,4	Вода	Pb2+	Fe(CN) ₆	Желтая	Розово- красная
красный Бромфеноловый синий	0,1	Спирт	Ag+	Cl-; I-	Зеленова- то-жел- тая	
Дифенилкарба- зон	0,2	Спирт	Ag+	Cl- Br-; I- CNS-	Светло- красная Желтая Розовая	Фиолетовая Зеленая Синяя
Дихлорфлуорес- цеин	0,1 0,1	Спирт (60—70 %) Вода	Ag ⁺	Cl ⁻ ; Br ⁻ ; I ⁻	Желто- зеленая Красная	Розово- красная Синяя
Конго красный Родамин 6Ж	0,1	»	Ag+	Br-; I- Br-	Оранже- вая	Красно- фиолето- вая
Феносафранин Флуоресцеин	10,1 0,1	° Спирт	Ag ⁺ Ag ⁺	Cl ⁻ ; Br ⁻ Cl ⁻ ; Br ⁻ ; I ⁻	Красная Желто- зеленая	Синяя Розовая
Эозин	0,1	Спирт (60—70 %).	Ag+	Br-; I-; CNS-	Оранже-	Красная
Эритрозин	0,5	Вода	Pb2+	MoO_4^2	»	»

3.5. ФЛУОРЕСЦЕНТНЫЕ ИНДИКАТОРЫ

1			Цвег флуоресценции			
№ п/п Названи	Название	диапазон перехода рН		в щелочной среде		
24- 3 Са 4 β- 5 Д 6 о 7 а 8 Ф	ензофлавин Этоксиакридон алициловая кислота Нафтиламин иметилнафтиридин Фенилендиамин -Нафтиламин локсин луоресцеин	0,3—1,7 0,3—3,2 2,5—3,5 2,8—4,4 3,0—3,6 3,0—5,0 3,4—4,8 3,4—5,0 3,8—6,1	Желтый Зеленый Нет Нет Фиолетовый Нет Нет Нет	Зеленый Синий Фиолетовый » Оранжевый » Синий Светло-желтый Зеленый		

	e e	Цвет флуоресценции		
№ п/п Название	Диапазон перехода рН	в кислой среде	в щелочной среде	
10 Хинин, 1-й переход (см. № 24)	3,86,1	Голубой	Фиолетовый	
11 Эритрозин	4,0-4,5	Her	Зеленый	
12 Акридин	4,8-6,6	Зеленый	Фиолетовый	
13 Нейтральный красный	5,0-7,4	Фиолетовый	Оранжевый	
14 4- Метилумбеллиферон	5,8—7,5	Нет	Синий	
15 3,6-Диоксифталимид	6,0-8,0	Желтый	Желто-зелены	
16 Умбеллиферон	6,5—7,6	Нет	Синий	
17 2,3-Дициангидрохинон	6,88,8	Синий	Зеленый	
18 Магний-8-оксихинолин	7,0—7,2	Нет	Золотисто-жел	
19 Кумаровая кислота	70.00		тый	
20 Г-соль (2-нафтол-3,6-ди-	7,2—9,0	Нет	Зеленый	
сульфокислота, натриевая соль)	7,5—9,0	Нет	Синий	
21 Р-соль (2-нафтол-6,8-ди- сульфокислота, калийная соль)	8,0—10,5	Зеленый	*	
22 Акридиновый оранжевый	8,4-9,2	Оранжевый	Зеленый	
23 β-нафтол	8,6-10,4	Нет	Синий	
24 Хинин, 2-й переход (см. № 10)	9,5—10,5	Фиолетовый	Her	
25 Кумарин	9,8-12,0	Зеленый	Wa	
26 СС-кислота (1-амино- 8-нафтол-2,4-дисульфо- кислота, калийная соль)	10,0—12,0	Фиолетовый	Желтый Зеленый	
27 Нафтионовая кислота, натриевая соль	12,0—13,0	Синий	Фиолетовый	

3.6. ХЕМИЛЮМИНИСЦЕНТНЫЕ ИНДИКАТОРЫ

Индикатор	Массовая доля инди- катора, %	Объем раствора индикатора на 100 см ³ рабочето раствора, см ³	рН, при кото- ром возникает свечение
N, N'-Диметилбиакридиен Лофин Люминол Люцигенин Силоксен	0,001 0,01 0,5 (твердый)	3 3—10 1 (0,02 mr)	8,9—9,4 8,0—8,5 9,0—10,0 <2

3.7. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ ИНДИКАТОРЫ [В ПОРЯДКЕ ИХ НОРМАЛЬНЫХ ОКИСЛИТЕЛЬНЫХ ПОТЕНЦИАЛОВ]

3.7.1. Индикаторы, мало чувствительные к изменению pH и ионной силы раствора

		Окраска		
Индикатор	<i>E</i> ₀ , B	окисленной формы	восстановлен ной формы	
2,2'-Дипиридил (комплекс с рутением)	+1,33	Бесцветная	Желтая	
Нитрофенантролин (комплекс с Fe ²⁺)	+1,25	Бледно-голубая	Красная	
N-Фенилантраниловая кислота о-Фенантролин (комплекс с Fe ²⁺) (ферроин)	+1,06	Фиолетово-красная Бледно-голубая	Бесцветная Красная	
n -Этоксихризоидин	+1,00	Красная	Желтая	
<i>n</i> -Этоксихр́изоидин 2,2' -Дипиридил (комплекс с Fe ²⁺)	+0,97	Бледно-голубая	Красная	
5,6-(Диметил-1,10-фенантролин) (комплекс с Fe ²⁺)	+0,97	Желто-зеленая	»	
o- Дианизидин	+0.85	Красная	Бесцветная	
Дифениламинсульфонат натрия или бария		Красно-фиолетовая	*	
Дифенилбензидин	+0,76	Фиолетовая	>	
Дифениламин	+0,76	» ·	»	

3.7.2. Индикаторы, чувствительные к изменению рН и ионной силы раствора

	E₀ , B		Окраска окисленной
Индика тор	при pH=0-	при рН=7	формы
2,6-Дибромбензолиндофенол	+0,64	+0.22	Синяя
2,6-Дихлорфенолиндофенол	0.64	+0.22	>
о-Крезолиндофенол	+0.62	± 0.19	»
Тионин (диаминофенотиазин)	+0.56	+0.06	Фиолетовая
Метиленовая синь	+0,53	+0.01	Синяя
Индиготетрасульфоновая кислота	+0.37	-0.5	>
Индиготрисульфоновая кислота	+0,33	-0.08	»
Индигокармин (индигодисульфоновая кислота)	+0,29	-0,13	>
Индигомоносульфоновая кислота	+0.26	-0.25	Красная
Феносафранин	+0.28	-0.25	` >
Сафранин Т	-1-0.24	-0.29	Фиолетово-красная
Нейтральный красный	+0.24	-0.33	Красная

Примечание. Восстановленные формы всех индикаторов бесцветные.

3.8. ИНДИКАТОРНЫЕ БУМАГИ

3.8.1. Иодкрахмальная и уксусносвинцовая

		Окраска		
Тип	Реактивная бумага	собствен- ная	после реакции	Чувствительность
A1 A2	Иодкрахмальная Уксусносвинцовая	Белая »	Синяя Коричневая до черного	5.10-5 моль/дм ³ 2.10-4 моль/дм ³

3.8.2. Кислотно-щелочная двухцветная

		Окраск	а в среде	
Тип	Реактивная бумага	кислой	щелочной	Чувствительность
	•			
RI	Тропеолин 00	Фиолето- вая	Желтая	9·10-8 моль/дм ⁸ HCl
R2	Метилфиолетовая	Желтая	Фиолетовая	5-10-3 моль/дм ³ HCl
R3 *	Метилоранжевая	Красная	Желтая	7·10-4 моль/дм3 HCl
R4	Конго-красная	Синяя	Красная	4·10-4 моль/дм ³ HCl
R5	Метилкрасная	Красная	Желтая	4·10-5 моль/дм ³ HCl
R6	Лакмусовая синяя	»	Синяя	9·10-4 моль/дм ³ HCl
R7	Лакмусовая крас- ная	*	»	9·10 ⁻⁴ моль/дм ⁸ NaOH
R8	Бриллиант-желтая	Желтая	Красная	8 · 10 - 8 моль/дм3 NaOH
R9	Куркумовая	* *	Красно-ко- ричневая	8·10 ⁻⁵ моль/дм³ NaOH
R10	Крезолфталеиновая	Белая	Фиолетово- красная	1 · 10−4 моль/дм³ NaOH
R11	Фенолфталеиновая	>	Красная	9·10-4 моль/дм3 NaOH
R12	Тимолфталеиновая	>	Синяя	4 ·10 ⁻³ моль/дм ³ NaOH

3.8.3. Кислотно-щелочная многоцветная

Тип	Диапазон рН	Окраска в щелоч- ной среде	рН сравнительной цветовой шкалы

Восьмицветная

	3,9—5,4	Синяя	3,9-4,1-4,3-4,5-4,8-5.0-5,2-5,4
	4,5—6,3	П у рпуровая	4,5-4,7-4,9-5,1-5,4-5,7-6.0-6.3
I3	5,0—6,8	Фиолетовая Синяя	5,0—5,3—5,5—5,8—6,1—6,3—6,5—6,8 6,5—6,8—7,0—7,2—7,5—7,8—8,1—8,4

Восемнадцатицветная

Примечание. Окраска всех типов индикаторной бумаги в кислой среде **ж**елтая.

3.9. КОНСТАНТЫ УСТОЙЧИВОСТИ КОМПЛЕКСНЫХ ИОНОВ

В таблицах приведены логарифмы констант устойчивости (константы образования, константы полной диссоциации комплексов) β_n , равные произведению констант устойчивости отдельных ступеней диссоциации комплекса $\beta_n = K_1 \cdot K_2 \cdot K_3, \ldots, K_n$. Например:

$$\beta_1 = K_1 = \frac{[\text{FeCl}^2]}{[\text{Fe}^{3+}][\text{Cl}^-]},$$

$$\beta_2 = K_1 K_2 = \frac{[\text{FeCl}^4_2]}{[\text{Fe}^{3+}][\text{Cl}^-]^2},$$

$$\beta_n = K_1 K_2 K_3, \dots, K_n = \frac{[\text{FeCl}_n^{(3-n)+}]}{[\text{Fe}^{3+}][\text{Cl}^-]^n}.$$

Логарифмы констант устойчивости отдельных ступеней диссоциации определяются по разности

$$\lg K_n = \lg \beta_n - \lg \beta_{n-1}.$$

Все данные приведены для температур 20—30 °C. Константы нестойкости комплексов являются обратными величинам констант устойчивости, логарифмы констант нестойкости равны логарифмам констант устойчивости, взятым с обратным знаком.

	Ионная		Логарифмь	констант у	устойчивос:	LR .	ν,
Централь- ный ион	сила раст- вора	lg β,	lg β,	lg β _a	lg β ₄	lg βs	lg β
В. Ком	плекс	ысбор	содерж	ащими	лиган	дами	
Комплек	сы с мен	паборат-і	лоном (ВО	<u>-</u>)	\$-		
02+	0			• • •	10,09	• • •	
e3+	ŏ	8,58	15,54		•••		• • •
vi2+	Ö		•••	8,44		• • •	• • •
b2+	ŏ	5,23	• • •	11,17	•••	•••	,•••
Br Koi	иплек (сы с бр	омсоде	эжащим	и лига	ндами	
		мид-ионо					
\g+	0	4.38	7,34	8,00	8,73	0,44	• • •
\u^+			12,46	• • •	•••	•••	
u ³⁺	0				31.5	37	
3i3+	$\overset{\circ}{2}$	2.26	4.45	6.33	7,84	9.42	9.52
112+	Õ	2.23	3,00	2,83	2,93	0,12	0,02
	Ξ.		•	2,00	2,30		
e ³⁺	- 0	0,38	0.40	•••	•••	•••	•••
02+	1	-0,13	-0,42		•••	••••	• • •
s+	0	0,03		•••	•••	•••	• • •
ùu⁺	0	•••	5,92		• • •		• • •
112+	0	0,55	0,82	• • •	• • •	• • • •	• • •
⁷ e ³⁺	0.5	9,05	17,33	19,74	21,00	• • •	• • •
!g2+	0	1,30	1,89	0.67	-1.25	* • • • •	•••
\ i2+	$\dot{\tilde{2}}$	-0.12	-3,24	• • •	-8,12		
5b2+	ō	2,23	3,00	2,83	2,93		
⊃d2+	ŏ	2,20	0,00	2,00	13,10		
D { 2+	ŏ				20,5		
Sn ²⁺	4	0.90	1.73	2,13	1,66	1.98	
					,		•••
[] +	0	0,95	1,01	0,6	-0,2	0	06.0
T13+	0	9,7	16,6	21,2	29,3	25,5	26,2
Zn ²⁺	. 0	 0,8	2,2	-2,9	 2,5	•••	•••
С. Ком	плекс	ы с уг	леродс	держаг	цими л	иганда	ми
	-	гнид-ионо.					
Ag+	0	• • •	19,85	20,55	19,42	•••	•••
Au+	0		38,3	• • •	• • •	• • •	• • •
4u8+	. 0		•••	•••	56		• • •
Cd2+	•••	5.18	9,60	13,92	17,11	• • •	
Co2+ -	5		• • •	• • •	• • •	19,09	
Co3+	• • • •					• • • •	64
Cu+	0		24.0	28,6	30.3		
Fe ²⁺	ŏ		44,0	20,0	00,0	18,6	36,9
		•••	• • •	•••	•••	10,0	43,9
Fe3+	0	17.00	20.75	20.01	20.07		40.62
Hg ²⁺	0	17,00	32 ,75	36,31	38,97	39,83	40,02
Ni ²⁺	0	• • •	• • •	22,2	31,0	30,3	• • • •
⊃d2+	0	• • •	• • •	• • •	42,4	45,3	
					35		
L[3+	• • •	• • •	• • •	• • • •	30	• • • •	• • • •

	Ионная		Логарифмы констант устойчивости						
Централь- ный вон	сила раство- ра	lg β ₁	lg β₂	lg β,	lg β.	lg βs	lg β		
Комплекс	ы с ци	анат-ионо	м (CNO-)	•					
Ag+	0	• • •	5,00	•••	•••				
Coa+	•••	1,80 -	3,06	4,10	5.00				
Cu ²⁺	• • •	2,70	4,71	6,14	7,45				
Fe*+	0,7	2,15	2,56		• • • •				
Ni ²⁺	•••	1,97	3,53	4,90	6,20	•••	••		
Комплекс	ы с ти	оцианат-(' род анид-)	ионом (SC	CN-)				
Ag+	0 .	4,75	. 8,23	9,45	9,67				
Als+	ŏ	0,42	• • • •	•••					
Au+	• • • •		25	• • •		• • •			
Au ⁸⁺	0	•••	20	•••	• • • •	42,00	42,0		
Bi ³⁺	0.4	1.15	2,26	•••	3,41	12,00	42,0		
Cq ₈₊	0,4	1,74	2,40	2,30	2,91	• • • •	4,2		
Cos+	1,5	1,74					• •		
C0-3-			1,6	1,8	0,3		• • •		
Cr ³⁺	0	3,1	4,8	5,8	6,1	5,4	3,8		
Cu+	•••	0.00	0.05	9,90	10,05	9,59	9,2		
Cu ^{s+}	Ö .	2,30	3,65	5,19	6,52	. •••	• •		
Fe ²⁺	0	1,31	0,43	• • •	• • • •	• • • •	• •		
e ⁸⁺ •	0	3,03	4,33	4,63	4,53	4,23	3,2		
Hg2+	• • •	17,60	20,40	21,20	• • •		• •		
DP3+	• • • .	1,09	2,52	1,90	0,85	• • •	• •		
Th4+	1	1,08	./ •••	1,78	• • •	• • •	• •		
T1+	0	0,80	0,65	0,2		• • •			
J 4 +	1	1,49	1,95	2,18		• • • •			
Zn²+	Ō	1,57	1,56	1,51	3,02				
Zr4+	0,1	2,0	3,4	4,7	5,8	6,9	7,9		
Комплекс	ыс кај	обонат-ио	ном (CO ₃ -	-)			٠,		
Cá²+	0	3,2				• • •			
Cu ²⁺	Ŏ.	6,77	10,01						
Mg ²⁺	Ŏ	3,40		• • • •			• • •		
Na ⁺	ŏ	1,27	• • • •	• • •		•••	•••		
P b 2+	ĭ		9,09		:		- • •		
	•				***	•••			
Комплекс	, 6 eud	рокарбона	т-ионом ((HCO ₃)					
Ca ²⁺	. 0	1,26	• • •	•••					
Mø2+	Õ	1,16		,		• • •			
Mn2+	ŏ	1,8			•••	• • •	• • •		
Na+	ŏ	-0,25	•••,	•••	• • •	•••	• • •		
Pb ²⁺	ŏ.	-0,20	177	5,19	• • •	• • •	• • •		
	· ·	• • •	4,77	D.19					

Пентраль	Ионная		Логари	фмы констан	г устойчивос	ти	<u> </u>		
Централь- ный ион	сила раство- ра	lg β ₁	lgβ2	lgβ _a	lg β₄	lg βs	lgβ		
Cl. Kom	плек	сы с хл	орсоде	ржащи	ми лига	ндами	I		
Комплек	сы с хл	о рид-и оно	м (CI-)	•					
Ag+	0	3,04	5,04	5,04	5,30	•••	•••		
Aŭ+	0	• • •	9,42			• • •			
Au ³⁺	0	• • •	•••	16,96	21,30	• • •			
Bi³+	1	2,43	4,7	5,0	5,6	6,1	6,42		
Cd2+	0	2,05	2,60	2,4	1,7				
Ce ³⁺	0	0,48	• • •	• • •	•••	• • •			
Cr3+	0	0,60	0,11	• • •	• • •	• • • .	• • •		
Cu+	0		5,35	5,63	• • •	. • • •			
Cu ²⁺	0	0,07	-0,57	-2,1	• • •	• • •			
Fe ²⁺	2	0,36	0,40	• • •		• • •			
Fe ⁸⁺	0	1,45	2,10	1,10	0,85	• • •	• • •		
Hf4+	2	0,07	-0.48	-0,40	• • •				
Hg² ↑	0,5	6,74	13,22	14,17	15,22	•••			
In³+	0	1,0	1,5	1,55	1,35	• • •			
La ^{s+}	1	-0,15	• • •	•••	•••				
Mn³+	2	0,95		• • •	• • •		• • •		
Pb ²⁺	0	1,62	2,44	2,04	1.0	•••	• • •		
Pd ²⁺	0	6,1	10,5	12,9	15,5	13,4	11.3		
Pt2+	0	•••	11,48	14,48	16,00	• • •	• • •		
Sc3+	0	1.95	3,52	•••	• • •				
Sn2+	0	1,51	2,24	2,03	1,48				
Th4+	0	1,38	0,38	0,23	-0,51	• • •			
Tl+	0	0.52	0,09	0,8	• • •	• • •			
T13+	Ō	7 ,72	13,48	16,48	18,29	`			
Ŭ 4 +	Ö	0,85	•••	•••	•••				
Zn²+	Ō	-0,19	0,18	-1.4	-1,52				
Zr4+	6,5	0,9	1,3	1,5	1,2	•••	•••		
Комплек	сы е хл	орат-ион	ом (ClO ₃)		•				
Ag+	0	0,22	•••		• • •	•••	•••		
Ba ²⁺	0	0,7	• • •	•••	• • •	• • •	• • •		
Th4+	0,5	0,26	• • •	• • •	• • •	• • •			
Tl+	0	0,47	••,•	•••	•••	•••	•••		
Комплек	сы с пе	рхлорат-	ионом (СІ	O ₄)					
Ce ³⁺	0	1,91	•••	•••					
Fe ³⁺	Ŏ	1,15	•••	•••					
Hg_2^{2+}	• • • •	-0,05	•••		• • •	• • •			
		0,2							

	Ионная		Логариф	мы констан	г устойчиво	сти	
Централь- ный нон	сила раство ра	lg β _ι	lg β ₂	lg β _s	lg β₄	lg β _δ	1g β ₀
Г . Ком	плеко	сы'с фт	орсодер	жащим	и лига	ндами	
		порид-ионо				-	
Ag+	0	0,36					• • •
A 3+	Ō	7,10	11,98	15,83	18,53	20,20	20,67
Ba ²⁺	0	0,45	• • •		•••		,-
Be ²⁺	0,5	4,71	8,32	11,12	13,39		• • •
Bi 3+	2	4,7	8,3		• . •	• • •	• • •
Ca ²⁺	0	1,04	• • •	• • •		• • •	• • •
Cd2+	1	0,3	0,53	1,2	• • •	• • •	• • •
Ce ³⁺	0	3,99	6,90	•••	• • •	• • •	• • •
Cr3+	0	5,20	8,54	11,02	• • •	• • •	
Cu2+	0,	1,23	• • •	• • •	• • •	• • •	• • •
Fe ³⁺	0 .	6,04	10,74	13,74	15,74	16,10	16,10
Ga ³⁺	0	4,5	8,3	11,0	12,5	12,8	• • •
Hg2+	0	1,56	• • •	•••	• • •	• • •	• • •
Ir3+	0	4,63	7,41	10,23	• • •	• • •	• • •
La ³⁺	0	3,56	• • •	• • •	• • •	• • •	• • •
Mg2+	0	1,82	•••	• • •	•••	• • •	• • •
Mn ²⁺	1	0,79	. •••	• • •	• • •	• • •	• • •
Mn3+	2	5,76	• • •	• • •	• • •	• • •	• • •
Pb2+	1	1,48			•••	. • • •	• • •
Sc3+	0	7,08	12,88	17,33	20,81	• • •	• • •
Sn ²⁺	0 .	4,85	• • •	10	• • •	• • •	• • •
Sn4+		7.05	•••		• • •	• • •	25
Th4+	0,5	7,65	13,46	17,97	• • • •	• • •	• • •
TI+	0	0,10			•••	•••	• • •
U4+ 3/2+	0,12	7,15	12,41	16,64	20,91	22,50	24,80
Y3+	0	4,81	8,54	12,14	. • • •	• • •	• • •
Zn ²⁺	0	1,26			• • •	•••	• • •
Zr ⁴⁺	0	9,80	17,37	23,45	• * •	•••	•••
І. Комі	лекс	ы с иод	дсодерж	кащими	лиганд	ами	•
	_	дид-ионом	•	•			
Ag+	0	6,58	11,74	13,68	13,10	• • •	
Bi 3+	0 '	2,89	• • •	•••	14,95	16,80	19,1
Cd2+	0	2,17	3,67	4,34	5,35	5,15	
Cs+	0	0,03	• • •	• • •	•••	•••	
Cu+	0	• • •	8,85	• • •	• • •		• • •
Fe ²⁺	0	1,88	• • •	•••	• • • •	· • • •	• • •
Hg ²⁺	0,5	12,87	23,82	27,60	29,83	• • •	• • •
In ³⁺	0,7	1,64	2,56	2,48	•••	•••	• • •
Pb2+	1	1,26	2,80	3,42	3,92		• • •
Rb+	Ò	0,04	• • •	• • •	• • •	• • •	• • •
T +	1	1,41	1,82	2,0	1,6	• • •	• • •
T 3+	0	11,41	20,88	27,60	31,82	•••	• • •
Zn ²⁺	4	-0,47	—1,53	1,26	0,51	•••	•••

Heurnes.	Ионная		Логарис	рмы констан	нт устойчив	ости	
Централь- ный ион	сила раст- вора	lg β ₁	lg β ₂	lg βs	lg β ₄	lg βs	lg f
Комплекс	ы с иод	дат-ионом	(IO ₃)		<u>'</u>		\
Ag+	0	0,63	1,90			,	
Ba ²⁺	0	1,1	•••		•••	•••	•••
Ca ²⁺	0	0,89	•••			•••	•••
Cu2+	0	0,82			•••	•••	• • •
Mg2+	0	0.72			•••	•••	•••
Sr2+	0	0,98	• • •			•••	•••
Th4+	0,5	2.88	4.81	7,18	•••	. • • •	• • • •
Tl+	0	0,50	• • •	•••	•••	•••	11,0
N. Ком	плеко	сы с аз	отсодер	жащим	и лига	ндами	•
		миаком (N					
Ag+ Au+	0	3,32	7,23	•••	•••		•••
գս, Հ ոչ+	•••	• • •	27	• • •	•••	•••	•••
Cd2+	•••	•••	• • •	30	• • •		
_0~'	0	2,51	4,47	5,77	6,56	6,26	4.56
Co2+	. 0	1,99	3,50	4,43	5,07	5,13	4.39
_08+	2	7,3	14,0	20,1	25,7	30,8	35,21
Çu [∓]	2	5,93	10,86	• • •	• • •	•••	00,21
Cu2+	0	3,99	7,33	10,06	12.03	11,43	8.9
Fe2+	0	1,4	2,2	• • •	3,7		بدك.
1g2+	2	8,8	17,5	18,5	19,3		•••
/Jg2+	2	0,23	0,08	-0,34	-1,04	-1,99	-3,29
/n²+	2	0,8	1,3	•••	• • •	• • • •	9
li 2+ ` +	0	2,67	4,79	6,40°	7,47	8,10	8,01
	2 .	-0,9	• • •		• • •	•••	0,01
/n ²⁺	0	2,18	4,43	6,74	8,70	•••	•••
(омплексы	с гид	разином (N ₂ H ₄)	. 1		• *	
d2+	1.	2,25	2,40	0.70	0.00		
02+	i	1,78	2,40	2,78	3,89	• • •	• • •
u ²⁺	i	6,67	3,34	• • •		• • •	• • •
[n²+	i	4,76	• • •	•••	• • •	• • •	
i2+	0,5	2,76	F 00	•••	• • •	• • •	• • •
n ²⁺	1	3,40	5,20	0.70	•••	•••	•••
			3,70	3,78	3,88	•••	•••
омплексы		оксилами	ном (NH ₂ 0	OH)			
g ⁺	0,5	1,9	4,9	•••			
0 ²⁺	0,5	0,9	• • •	• • •		•••	•••
u ²⁺	0,5	2,4	4,1	•••		•••	•••
n2+	0,5	0,5	•••	• • •		• • •	•••
i 2+	0,5	1,5	9,72	• • •	12,53	• • •	10 55
b2+	1	0,78	2,18	• • •	12,00	• • •	18,55
	_					• • •	
72+	1.	0,40	0,01				

100	Ионная		Продолжение таблицы Логарифмы констант устойчивости						
Централь пый ион	сила раство ра	lgβ,	lg β ₂	lg βs	lg β.	lg β ₅	lg β		
Комплек	сы с ни	трит-ион	ом (NO ₂)	- 	!		_ ' : -		
Ag+	0	1,88	3,83						
€ Cq ₈₊	3	1.80	3,01	3,81	2.10	• • •	• • •		
Cs+	0	-0,36	• • •	0,01	3,10	• • •	• • •		
Cu ²⁺	- 1	1,30	1,65	• • •		• • •	• • • •		
Hg ²⁺	•••	• • •	•••		13,54	• • • •			
K† Li†	0	-0,1	• • •	•••		• • •	•••		
Na ⁺	0	-0,04%		• • •	• • •		• • • •		
Rb+	ŏ	-0.42 -0.52	•••	• • •	• • •				
	-		• • •	•••	• • •	• • •			
74234Au 1 1 4 4	ы с ниг	прат-ионо	ом (NO ₃)						
.⊱Ag [†]	0	-0,29	• • •	•••					
Ba ²⁺	0	0,92	• • •	• • •	• • •	•••	• • •		
Bi 3+	0,1	1,26	• • •	• • •	•••	•••	•••		
← Ca ²⁺ € Cd ²⁺	0	0,88	• • •	• • •	• • •		•••		
Ce ³⁺	0	- 0,40	• • •	• • •					
Fe8+	2	1,04	1,51	• • •		• • •			
	U	1,00	• • •	•••	•••				
Комплексь Ад+	0	2,30	юм (OFI-) 4,0	5,2					
.' Α[3+ Ba²+	0	9,0	• • •	27	00		• • •		
Be ²⁺	0	V 6E		21	33				
	^	0,85	• • • •		33 	•••	* • •		
- KONT	0	7,48	14,0		• • •	•••	•••		
Bj3+ Ca2+	0	7,48 12,4	15,8	• • •	33 15,0 35,2	•••	•••		
Ca ²⁺	0 0	7,48 12,4 1,46	15,8 11,0	15,2	15,0	•••	•••		
	0 0 0	7,48 12,4 1,46 6,08	15,8 11,0 8,70	15,2	15,0 35,2	•••	•••		
Ca ²⁺ Cd ²⁺	0 0 0 0	7,48 12,4 1,46 6,08 4,6	15,8 11,0 8,70	15,2	15,0 35,2	•••	•••		
Ca ²⁺ Cd ²⁺ Ce ³⁺ Ce ⁴⁺ Co ²⁺	0 0 0	7,48 12,4 1,46 6,08 4,6 13,28	15,8 11,0 8,70 27,06	15,2 8,38 	15,0 35,2 8,42 	•••	•••		
Ca ²⁺ Cd ²⁺ Ce ³⁺ Ce ⁴⁺ Co ²⁺ Cr ³⁺	0 0 0 0 0	7,48 12,4 1,46 6,08 4,6	15,8 11,0 8,70 27,06 9,2	15,2	15,0 35,2 8,42 		•••		
Ca ²⁺ Cd ²⁺ Ce ³⁺ Ce ⁴⁺ Co ²⁺ Cr ³⁺ Cu ²⁺	0 0 0 0 0 0	7,48 12,4 1,46 6,08 4,6 13,28 4,4	15,8 11,0 8,70 27,06 9,2 17,8	8,38 10,5	15,0 35,2 8,42 29,9				
Ca ²⁺ Cd ²⁺ Ce ³⁺ Ce ⁴⁺ Co ²⁺ Cr ³⁺ Cu ²⁺ Fe ²⁺	0 0 0 0 0 0 0	7,48 12,4 1,46 6,08 4,6 13,28 4,4 10,1 6,0 5,56	15,8 11,0 8,70 27,06 9,2 17,8 13,18	15,2 8,38 10,5 	15,0 35,2 8,42 29,9 14,56				
Ca ²⁺ Cd ²⁺ Ce ³⁺ Ce ⁴⁺ Co ²⁺ Cr ³⁺ Cu ²⁺ Fe ²⁺ Fe ³⁺	0 0 0 0 0 0 0 0	7,48 12,4 1,46 6,08 4,6 13,28 4,4 10,1 6,0 5,56 11,87	15,8 11,0 8,70 27,06 9,2 17,8 13,18 9,77 21,17	15,2 8,38 10,5 14,42 9,67	15,0 35,2 8,42 29,9				
Ca ²⁺ Cd ²⁺ Ce ³⁺ Ce ⁴⁺ Co ²⁺ Cr ³⁺ Cu ²⁺ Fe ²⁺ Fe ²⁺ Ga ³⁺	0 0 0 0 0 0 0 0 0	7,48 12,4 1,46 6,08 4,6 13,28 4,4 10,1 6,0 5,56 11,87	15,8 11,0 8,70 27,06 9,2 17,8 13,18 9,77 21,17 22,18	15,2 8,38 10,5 14,42 9,67 30,67	15,0 35,2 8,42 29,9 14,56 8,56				
Ca ²⁺ Cd ²⁺ Ce ³⁺ Ce ⁴⁺ Co ²⁺ Cr ³⁺ Cu ²⁺ Fe ²⁺ Fe ²⁺ Fa ³⁺ Hf ⁴⁺	0 0 0 0 0 0 0 0 0 0 0	7,48 12,4 1,46 6,08 4,6 13,28 4,4 10,1 6,0 5,56 11,87 11,44 14,12	15,8 11,0 8,70 27,06 9,2 17,8 13,18 9,77 21,17	15,2 8,38 10,5 14,42 9,67	15,0 35,2 8,42 29,9 14,56 8,56 	38,0			
Ca ²⁺ Cd ²⁺ Ce ³⁺ Ce ⁴⁺ Co ²⁺ Cu ²⁺ Fe ²⁺ Fe ³⁺ Ga ³⁺ Hf ⁴⁺	0 0 0 0 0 0 0 0 0 0 0 0 0 0	7,48 12,4 1,46 6,08 4,6 13,28 4,4 10,1 6,0 5,56 11,87	15,8 11,0 8,70 27,06 9,2 17,8 13,18 9,77 21,17 22,18	15,2 8,38 10,5 14,42 9,67 30,67 31,78	15,0 35,2 8,42 29,9 14,56 8,56	38,0			
Ca ²⁺ Cd ²⁺ Ce ³⁺ Ce ³⁺ Co ²⁺ Cu ²⁺ Fe ²⁺ Fe ³⁺ Ga ³⁺ Hf ⁴⁺ Hg ² + Hg ²⁺	0 0 0 0 0 0 0 0 0 0 0 0 0	7,48 12,4 1,46 6,08 4,6 13,28 4,4 10,1 6,0 5,56 11,87 11,44 14,12 9,0 10,30	15,8 11,0 8,70 27,06 9,2 17,8 13,18 9,77 21,17 22,18 27,89	15,2 8,38 10,5 14,42 9,67 30,67 31,78 41,47	15,0 35,2 8,42 29,9 14,56 8,56 34,3 54,95	 38,0			
Ca ²⁺ Cd ²⁺ Ce ³⁺ Co ²⁺ Co ²⁺ Cr ³⁺ Cu ²⁺ Fe ²⁺ Fe ³⁺ Ga ³⁺ Hf ⁴⁺ Hg ² Hg ² In ³⁺	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7,48 12,4 1,46 6,08 4,6 13,28 4,4 10,1 6,0 5,56 11,87 11,44 14,12 9,0 10,30 11,89	15,8 11,0 8,70 27,06 9,2 17,8 13,18 9,77 21,17 22,18 27,89	15,2 8,38 10,5 14,42 9,67 30,67 31,78 41,47 	15,0 35,2 8,42 29,9 14,56 8,56 34,3 54,95	38,0			
Ca ²⁺ Cd ²⁺ Ce ³⁺ Co ²⁺ Co ²⁺ Cr ³⁺ Cu ²⁺ Fe ²⁺ Fe ³⁺ Ga ³⁺ Hf ⁴⁺ Hg ² + In ³⁺ La ³⁺	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7,48 12,4 1,46 6,08 4,6 13,28 4,4 10,1 6,0 5,56 11,87 11,44 14,12 9,0 10,30 11,89 3,9	15,8 11,0 8,70 27,06 9,2 17,8 13,18 9,77 21,17 22,18 27,89 	15,2 8,38 10,5 14,42 9,67 30,67 31,78 41,47	15,0 35,2 8,42 29,9 14,56 8,56 34,3 54,95	38,0			
Ca ²⁺ Cd ²⁺ Ce ³⁺ Ce ⁴⁺ Cr ³⁺ Cu ²⁺ Fe ²⁺ Fe ³⁺ Ga ³⁺ Hf ⁴⁺ Hg ² + In ³⁺ La ³⁺ Li ⁺	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7,48 12,4 1,46 6,08 4,6 13,28 4,4 10,1 6,0 5,56 11,87 11,44 14,12 9,0 10,30 11,89 3,9 0,17	15,8 11,0 8,70 27,06 9,2 17,8 13,18 9,77 21,17 22,18 27,89 	15,2 8,38 10,5 14,42 9,67 30,67 31,78 41,47 	15,0 35,2 8,42 29,9 14,56 8,56 34,3 54,95	38,0	···· ··· ··· ··· ··· ··· ··· ··· ··· ·		
Ca ²⁺ Cd ²⁺ Ce ³⁺ Ce ⁴⁺ Cr ³⁺ Cu ²⁺ Fe ²⁺ Fe ³⁺ Ga ³⁺ Hf ⁴⁺ Hg ² + Hg ² + La ³⁺ La ³ + Li ⁴ Mg ²⁺	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7,48 12,4 1,46 6,08 4,6 13,28 4,4 10,1 6,0 5,56 11,87 11,44 14,12 9,0 10,30 11,89 3,9 0,17 2,60	15,8 11,0 8,70 27,06 9,2 17,8 13,18 9,77 21,17 22,18 27,89 	15,2 8,38 10,5 14,42 9,67 30,67 31,78 41,47 21,20 34,76 	15,0 35,2 8,42 29,9 14,56 8,56 34,3 54,95	38,0	 40,3 		
Ca ²⁺ Cd ²⁺ Ce ³⁺ Ce ⁴⁺ Cr ³⁺ Cu ²⁺ Fe ²⁺ Fe ³⁺ Ga ³⁺ Hf ⁴⁺ Hg ² + In ³⁺ La ³⁺ Li ⁺	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7,48 12,4 1,46 6,08 4,6 13,28 4,4 10,1 6,0 5,56 11,87 11,44 14,12 9,0 10,30 11,89 3,9 0,17	15,8 11,0 8,70 27,06 9,2 17,8 13,18 9,77 21,17 22,18 27,89 	15,2 8,38 10,5 14,42 9,67 30,67 31,78 41,47 	15,0 35,2 8,42 29,9 14,56 8,56 34,3 54,95	38,0	40,3		

							
Централь- ный нон	сила раство- ра	lg β ₁	lgβ ₂	lg β ,	lg β4	lg β _s	lg β
D1 81	_						
Pb2+	0	7,52	10,54	13,95	• • •	• • •	• • •
Pd2+	0	13,0	25,8	• • •	• • •	• • •	• • •
Sb3+	0	6,07	24,3	36,7	38,3		• • •
Sn ²⁺	0	11,93	20,94	25,40	•••	• • •	• • •
Sn4+	0		• • •		• • •	• • •	63,0
Sr ²⁺	0	0,82	• • •		• • •		
Th4+	0	10,11	21,2	32,0			38.7
Ti4+	0	18.0	35,2	47,7	58,7	•••	
T1+	0	0,82		• • •	• • •		
T 3+	3	12,86	25,37		• • •		
U4+	0	13,3	25,7		• • •		
V 3+	Ō	11,6	21,75	•••	•••		
Zn2+	ī	6,31	11,19	14,31	17,70		
Zr4+	Ō	14,58	29,38	43,72	57,85	•••	•••
Р. Ком	плекс	ы с фо	e do ne o i	цержащ	ими пи	ганпаі	M 12
Комплек	сы с гип	офосфит-	ионом (Н ₂	PO ₂)			
Комплек Се *+	сы с гип 0,5	лофосфи т- 1.2	•••	•••	•••	•••	•••
Комплек Се ⁴⁺ Ге ³⁺	сы с гип 0,5 0,1	1,2 3,62	 6,40	PO ₂) 8,5	•••	•••	• • •
Комплек Се ⁴⁺ Ге ³⁺	сы с гип 0,5	лофосфи т- 1.2	•••	•••	•••	•••	•••
Komnnek Ce ⁴⁺ Fe³+ Zn²+	сы с гип 0,5 0,1 4	1,2 3,62	6,40 0,1	•••	•••	•••	•••
Комплек Се ⁴⁺ Fe ³⁺ Zn ²⁺ Комплек	сы с гип 0,5 0,1 4	1,2 3,62 0,4 фат-ионо	6,40 0,1	•••			
Комплек Се ⁴⁺ Fe ³⁺ Zn ²⁺ Комплек Са ²⁺	сы с гип 0,5 0,1 4	1,2 3,62 0,4	6,40 0,1	•••			•••
Комплек Се ⁴⁺ Fe ³⁺ Zn ²⁺ Комплек Са ²⁺	о,5 0,1 4 сы с фос	1,2 3,62 0,4 фат-ионо.	6,40 0,1	•••			***
Komnлек Ce ⁴⁺ Fe ³⁺ Zn ²⁺ Komnлек Ca ²⁺ Ce ³⁺	0,5 0,1 4 сы с фос	1,2 3,62 0,4 фат-ионо 6,3 18,53	6,40 0,1	 8,5 			•••
Комплек Се ⁴⁺ Fe ³⁺ Zn ²⁺ Комплек Са ²⁺ Се ³⁺	сы с гип 0,5 0,1 4 сы с фос 0 0	1,2 3,62 0,4 фат-ионо 6,3 18,53	 6,40 0,1 м. (PO ³ —) 	 8,5 			•••
Комплек Се ⁴⁺ Fe ³⁺ Zn ²⁺ Комплек Са ²⁺ Се ³⁺	сы с гип 0,5 0,1 4 сы с фос 0 0	1,2 3,62 0,4 фат-ионо 6,3 18,53	 6,40 0,1 м. (PO ³ —) 	 8,5 			•••
Комплек Се ⁴⁺ Fе ³⁺ Zп ²⁺ Комплек Се ²⁺ Се ²⁺ Сг ³⁺ Си ²⁺	сы с гип 0,5 0,1 4 сы с фос 0 0	1,2 3,62 0,4 сфат-ионо. 6,3 18,53 идрофосфа	 6,40 0,1 м. (PO ³ —) 	 8,5 			•••
Комплек Се ⁴⁺ Fe ³⁺ Zп ²⁺ Комплек Се ²⁺ Се ²⁺ Сг ³⁺ Сг ²⁺ Fe ²⁺	о,5 0,1 4 сы с фос 0 0	1,2 3,62 0,4 фат-ионо 6,3 18,53	 6,40 0,1 м. (PO ³ —) 	 8,5 			•••
Комплек Се ⁴⁺ Fе ³⁺ Zп ²⁺ Комплек Са ²⁺ Се ³⁺ Се ²⁺ Сг ³⁺ Сг ²⁺ Fе ²⁺	о,5 0,1 4 сы с фос 0 0 сы с г 0 0	1,2 3,62 0,4 фат-ионо. 6,3 18,53 идрофосфа 2,77 9,45 3,2 7,2	 6,40 0,1 м. (PO ³ —) 	 8,5 			
Комплек Се ⁴⁺ Fе ³⁺ Zп ²⁺ Комплек Се ²⁺ Се ³⁺ Се ²⁺ Сг ³⁺ Сг ²⁺ Fе ²⁺ Fe ²⁺	сы с гип 0,5 0,1 4 сы с фос 0 0 0 0,1 0	1,2 3,62 0,4 фат-ионо. 6,3 18,53 идрофосфа 2,77 9,45 3,2 7,2 9,75	 6,40 0,1 м. (PO ³ —) 	 8,5 			•••
Комплек Се ⁴⁺ Fe ³⁺ Zn ²⁺ Комплек Са ²⁺ Се ³⁺ Комплек Се ²⁺ Ст ³⁺ Си ²⁺ Fe ²⁺ Fe ²⁺ M g ²⁺ Ni ²⁺	сы с гип 0,5 0,1 4 сы с фос 0 0 0 0,1 0 0	1,2 3,62 0,4 фат-ионо 6,3 18,53 идрофосфа 2,77 9,45 3,2 7,2 9,75 2,91	 6,40 0,1 м. (PO ³ —) 	 8,5 			•••
Комплек Се ⁴⁺ Fе ³⁺ Zп ²⁺ Комплек Се ²⁺ Се ³⁺ Се ²⁺ Сг ³⁺ Сг ²⁺ Fе ²⁺ Fe ²⁺	сы с гип 0,5 0,1 4 сы с фос 0 0 0	1,2 3,62 0,4 фат-ионо. 6,3 18,53 идрофосфа 2,77 9,45 3,2 7,2 9,75	 6,40 0,1 м. (PO ³ —) 	 8,5 			

& <u>_</u>	Ионная _	· · · · · · · · · · · · · · · · · · ·	Логариф	мы констан	т устойчив	ости	
Централь. вый ион	сила раство- ра	lg β ₁	lg β ₂	ig βs	lg β₄	lg βs	lg βe
Koun sav.	ori o dua	udnohood	baт-ионом	(H DOD			
NUMII NEKO	ioi c oue	ио рофосц	оит-ионом	$(\Pi_2 P O_4)$			
A18+	0,1	3	5,3	7,6		• • •	• • •
Ca ²⁺	0	1,41		•••	• • •	• • •	• • •
Cu ²⁺	0	• • •	1,49	• • •	• • •	• • •	• • •
Fe ³⁺	•••	3,5	• • •	• • •	9,15	• • • •	• • •
ne.	٠.		· · · · · · · · · · · · · · · · · · ·		*		
Комплекс	ы с диф	осфат-ис	ном (P ₂ O ₇	-)			
Ba ²⁺	·	4,64					
Ca ²⁺	0	5,60	•••	• • •	•••	•••	• • •
Cď²+	ŏ	8,7	•••	•••	• • •	• • •	• • •
Ce8+	ŏ	17,15	•••	• • •			• • •
Co2+	0,1	6,1	• • •	• • •	•••		• • • •
Cu+	0,1	•••	26,72		• • • •		
Cu ²⁺	ì	7,6	12,45	• • •	• • • •		
Fe ³⁺	• • •		5,55				,,,,
K+	0	2,3	0,00			•••	
Las+	ŏ	16,72	18,75				
Li+	0 -	3,1	10,10			• • •	• • •
Mg2+	ŏ	7,2	• • • •		• • •	,	
Na+	ŏ	2,22		• • •	• • •	• • • •	•••
Ni ²⁺	0,1	5,82	7.19	•••	•••	•••	• • •
Pbs+	1			•••	• • •	•••	• • •
Sn ²⁺	1	6,4	9,40	•••	• • •	• • •	• • •
Sr ²⁺		 E 1	16,4	•••	• • •	• • •	• • •
71+	0	5,4	1.0	•••	• • •	• • •	• • •
Zn ²⁺	2	1,69	1,9	• • •	•••	• • •	• • •
Zn"	U	8,7	11,0	• • •	•••	. • • •	• • •
							1
Комплекс	ы с гидр	одифосф	ат-ионом ()	HP ₀ O ₂ ³ —)			
× .			•	- , ,			
Ca ²⁺	0	3,6	• • •	•••,	• • •		•••
Co ²⁺	0,1	4,05	•••	•••	• • •	•••	•••
Cu ²⁺	• • •	6,4	10,0	• • •	• • •	• • •	• • •
Hg_2^{2+}	1	5,93	•••	•••	• • •	• • •	• • •
La ^{S+}	0,1	0,85	•••				
Li+	1	1,03		• • •			• • •
Mg2+	î	3,06	• • •		• • •		• • •
Na+	Ô	1,52	•••	• • •		• • •	
Zn ²⁺	0,1	3,83	***	•••			•••
211	0,1	0,00	•••		•••	* * *	

	Ионная		Логарифмы констант устойчивости				
Јен траль	сила раство- ра	lg β ₁	lgβ,	lg β ₈ .	lgβ₄	ig β.	lg β

Комплексы c дигид родифосфат-ионом ($H_2P_2O_7^2$)

Fe3+	0	6,62	12,07			• • •	
Sn ²⁺	2	4,48	6,08	• • •	• • •	•••	• • •

Комплексы с триметафосфат-ионом ($P_8O_9^{3-}$)

Ba ²⁺	0	3,35		• • •		•••	•••
Ca ²⁺	0	3,45	• • •		• • •		• • •
Fe ²⁺	1	1,15		• • •	• • •	•••	• • •
La ³⁺	0	5,70	• • •	• • •	• • •	• • •	• • •
Mg ²⁺	0	3,31		•••	• • •		
Mn ²⁺	0	3,57	• • •		• • •	• • •	• • •
Na+	0 .	1,17			• • • •	•••	
Ni2+	0	3,22	••• .		• • •	• • •	
Sr2+	0	3,35	• • •	• • •	• • •	• • •	• • •
		•					

Комплексы с тетраметафосфат-ионом $(P_4O_{12}^4)$

					•		
Ba ²⁺	0	4,99	• • •	• • •		•••	
Ca ²⁺	0	5,42	• • •	• • •	• • •	• • •	• •
La ³⁺	0	6,66	• • •	•••	• • • .	• • •	
Mg ²⁺	0	5,17	• • •	•••		. • • •	
Mn ²⁺	0	5,74	• • •	• • •		• • •	
Na+	0	2,05	• • •	• • •		• • •	٠.
Ni ²⁺	0 -	4,95	• • •		•••	• • •	•
Sr2+	0	5,15	•••	•••	• • •	• • •	• •

S. Комплексы с серосодержащими лигандами

Комплексы c гидросульфид-ионами (SO_3^{2-})

Ag+	0	14.05	18,45				• • •
Ag+ Cd2+	1	9,41	16,57	18,49	20,86	• • •	• • •
Co2+	0	5,67	8,77	•••		• • •	• • • •
Cu2+	1		• • •	25,90	•••	• • •	• • •
H g ²⁺	0 ,	•••	37,72	• • •	• • •	• • •	• • •
Pb2+	• • •	15,25	16,52	• • •	• • •	• • •	• • •
Zn²+	• • •	14,90	16,10		• • •	• • •	• • •

	Ионная_	Логарифмы констант устойчивости						
Централь- ный ион	сила раство- ра	lg β ₁	lg β ₂	lgβ _s	lg β ₄	lg β _s	lg β ₆	

- **Комплексы** с сульфат-ионом (SO_4^{2-})

Ag ⁺ 2 0,31 0,50 Al ³⁺ 0 3,2 5,1 Ba ²⁺ 0 2,36 ···	0,90			
Ro2+ 0 936				
Da 0 (2,00 *** *		• • •		
Be ²⁺ 1 · · · 1.78	2,08	• • •		
Ca^{2+} 0 2.31	•••	• • •		
Cd ²⁺ 0 2.11 ···	• • •	• • •		
Ce^{3+} 0 3,72		• • •	• • •	
Co ²⁺ 0 2,47 ···	• • •	• • •		
Cr ³⁺ 0.1 1.6 ···	• • •	• • •		
Cu^{2+} 0 2,36	• • •	• • •	• • •	
Fe^{2+} 0 2,30 ···	• • •	• • •		
Fe ³⁺ 0 4,04 5,38	• • •	• • •		
Hf^{4+} 2 3,11 5,58	•••	•••	•••	
Hg_2^{2+} 0,5 1,30 2,40	•••	• • •	•••	
Hg^{2+} 0.5 1.34 2.44	• • •			
In^{3+} 1 1.85 2.60	3,00			
K+ 0 0.85 ···				
La ³⁺ 0 3,70 ···				
Li+ 0 0.64 ···				· • •
Mg^{2+} 0 2.36				
Mn^{2+} 0 2,27 ···				
Na ⁺ 0 0,72 ···	• • •			
Ni^{2+} 0 2,32	• • •	•••		
Pb ²⁺ 0 2,62 3,47	• • •		• • •	
Th ⁴⁺ 2 3,32 5,70	• • •	• • •	• • •	
TI+ 0 1.37 · · ·	• • • •	• • •	• • •	
T1 ³⁺ 3 1.95 3.74		• • •	• • •	
U ⁴⁺ 2 3,24 5,42	• • •		• • •	
Zn^{2+} 0 2,34	• • •		• • •	
Zr ⁴⁺ 2 3,79 6,64	7,77	• • •	• • •	• • •

Комплексы с сульфит-ионом (SO_3^{2-}).

Ag+ Cd2+	0 '	5,60	8,68	9,00	•••		• • •
Cď2+	1	• • •	4,19	•••	• • •	• • •	
Ce ³⁺	0	8,04	•••	• • •	•••	• • •	
Cu+	1	7,85	8,70	9,36	•••		
Hg2+ Tl3+	0	• • •	24,07	24,96		• • • •	
T 3+	•••	• • •	• • • •		34		• • •

	Ионная _		Логариф	мы констант	устойчиво	ти	
Централь- ный ион	сила раство- ра	lg β _i	lgβ ₂	lgβa	1gβ4	lg βs	lg f
	· ·		<u></u>	·			<u> </u>
Комплек	сы с тио	сульфат	-ион о м (S ₂)	03-)			
Ag+	0	8,82	13,46	14,15	•••	•••	• • •
Ba ²⁺	0	2,33	• • •		• • •		
Ca ²⁺	0	1,91	3,98		• • •	• • •	
Cd2+	0	3,94	6,48	8,2	• • •		
Co2+	0	2,05	• • • •				• • • •
Cu+	0,8	10,35	12,27	13,71		•••	• • •
Cu2+	• • •		12,29	10,71		• • • •	•••
Fe ²⁺	0	2.0	12,23	•••	• • • •	•••	• • •
Fe3+	0,5	2,10	• • •	• • •	•••	• • •	•••
Hg2+	0,5	2,10		20.06	22.61	•••	• •
Λ1g Κ+	0		29,86	32,26	33 ,61	• • •	••
		1,00	• • •	• • •	• • •	• • •	••
La ³⁺	0	2,99	•••	• • •	• • •	• • •	• •
Mg2+	0	1,79	•••	• • •	• • •	* * * *	• •
Mn ²⁺	0	1,95	• • •	• • •	• • •	• • •	• •
Na ⁺	0	1,08	• • •	•••	• • •	• • •	• •
Ni ²⁺	0	2,06	•••	• • •	• • •	• • •	
⊃b2+	• • •	2,7	5,13	6,35	7,2	• • •	• •
Sr2+	0	2,04		• • •	•••		
T +	0	1,91	• • •	• • •		• • •	• •
L 3+		•••	• • •		41		
Zn2+	0	2,29	4,59	•••	• • • •		• • •
		- 				, ·	,
	,				,		
Se. Kon	иплекс	ы с се	ленсоде	ержащи	ми лиг	андам	И
Комплекс	сы с сел	енит-ион	ом (SeO ₃ -			× .	
					•		•
∵d2+	1	• • •	5,15	• • •	, • • •	• • •	• • •
Co2+	0,3	• • •	3,25		• • • •	• • •	• • •
-Ig²+	1	• • •	12,48	• • •	•••	• • •	• • •
			·				
			-	,			
Комплека	зы с сел	енат-ион	ом (SeO ₄ -	-)			
			4	•			
Cd2+	0	2,27	•••	•••	•••		
` n.ı	0,5	1,78	2,64	• • •			
Sc 8+			-,				•
oc • ⊤ Zn2+	o´	2,19	• • •	• • •			

3.9.2. Константы устойчивости комплексов с органическими лигандами

Центральный	Ионная сила	Логарифмы констант устойчивости				
нон	раствора	lgβ ₁	igβ₂	$\lg \beta_3$	lgβ₄	
Комплексы с	анионом 2-амин	ома <i>сляно</i> й	кислоты С	C₂H₅CH (NI	H ₂) COO	
Co²+	0,2	4,31	7,5			
Cu ²⁺	0,2	8,21	14,93	• • •	• • •	
Fe ²⁺	1	3,37			• • •	
Fe ³⁺	ī	9,7				
Hg ²⁺	0,01	• • •	18,5			
Ni ²⁺	0,2	5,46	9,82			
Zn ²⁺	0,2	4,78	8,68	•••	• • • •	
Комплексы с	анионом аминој	уксусной н	шслоты На	NCH,COO-		
Ag+	0	3,51	6,89	•••		
A]3+	0,1	7,8		•••	• • •	
Ba ²⁺	0,1	0,77	• • •			
Be ²⁺	0,1	6,7		• • •		
Ca ²⁺	0,1	1,38	• • •			
Cd ²⁺	ő	4,80	8.83	• • •		
Co2+	Ŏ	5,02	8,99			
Cr3+	0,5	8,4	14,8	20,5		
Cu+	0,0	•		20,0	•••	
_u'	0,3	0.00	10,0	• • •	• • •	
Cu ²⁺	0	8,62	15,59	•••	• • •	
Fe ²⁺	0,01	4,3	7,8	•••	• • •	
Fe³+	1.	10,0		• • •	•••	
∃g²+	0,5	10,3	19,2	•••	• • •	
Mg ²⁺	0,09	2,20			,	
M ₁₁ 2+	0,01	3,2	5,5		• • •	
Vi ²⁺	0	6,18	11,14		• • •	
Pb ²⁺	0	5,47	8,86	• • •	• • •	
Pd ²⁺	0,01	9,12	17,55	***		
Zn2+	0	5,52	9,96	• • •	•••	
Крмплексы с і	тартрат-ионом	([(СНОН) ₂ (COO) ₂] ²⁻))		
Ba 2 + `	0	2,54	•••	•••		
Be ²⁺	0,1	2,89	• • •			
Bi³+	0,1	•••	11.3		• • •	
Ca2+	o, ·	2,98	9,01		• • •	
Ce³+	0,1	5,5	8,4			
Co ²⁺	0,1	3,08	4,2			
Cu²+	i,.	3,00	5,11	5,76	6.20	
Fe ³⁺	0,1	7,49	11,86	•••	* * *	
n ³⁺	0,1	4,48				
_a ³⁺	0,1	3,68	6,37			
√g2+	0,2	1,91	0,07			
Vi ²⁺	0,1	5,92	• • • •	•••	•••	
Ob2+		5,92	1.7.7	•••	•••	
[]3+	0,1		9,9	12 24		
n ²⁺	0	11,57 3,31	12,81 5,16	13,34	•••	
.11 - '	U	കാവ	a. (b			

Центральный	Ионная сила	Логарифмы констант устойчивости			
нон	раствора	lgβ ₁	lgβ ₂	lgβa	lgβ4
Комплексы с	2,2′-дипиридило	м С ₁₀ Н ₈ N ₂	• .		
Ag+	0,1	3,03	6,67	• • •	•••
Cd2+	0,1	4,3	7,8	10,4	
Co2+	1,0	5,75	11,25	16,0	• • •
Cr ₃₊	0,1	4	10,4	14	• • •
Cu 2+	0,1	8,2	13,8	17,2	•••
Fe ²⁺	0,1	4,35	• • •	17,4	
Hg ²⁺	0,1	9,64	16,74	19,5	
ln³+	1,0	3,45	8,06	• • •	
Mn ²⁺	0,1	2,55	4,45	5,9	
N i 2+	0,1	7,0	13,8	20,2	
Ti3+	•••	• • •	•••	25,28	
T 3+	0,1	9,66	15,16	20,05	
V2+	0,1	4,91	9,68	13,43	
Pb2+	0,1	2,9	• • •		
Zn2+	1,0	5,2	9,7	13,4	•••
Ba ²⁺ Be ²⁺	0,1 0,1	2,89 3,6	•••	•••	•••
Ca ²⁺	0,1	4,68	•••	•••	• • •
Cd2+,	Ö	5,36	•••	• • •	
Ce ³⁺	0,1	7,38	10,79	• • •	
Ce4+	0,1	11,84	22,32	•••	• • •
_	-,-	~ - , ~ -			
Co2+	0,1	5,00	22,02		• • •
Co ²⁺ Cu ²⁺			•••		•••
Co ²⁺ Cu ²⁺ Fe ²⁺	0,1	5,90	•••	• • • •	•••
Cu ²⁺ Fe ²⁺ Fe ³⁺			•••		••• ••• •••
Cu ²⁺ Fe ²⁺ Fe ³⁺ Hg ²⁺	0,1 0,1	5,90 4,4 11,40 10,9	***	•••	•••
Cu ²⁺ Fe ²⁺ Fe ³⁺ Ig ²⁺	0,1 0,1 0,1	5,90 4,4 11,40	•••		
Cu ²⁺ Fe ²⁺ Hg ²⁺ In ³⁺ K+	0,1 0,1 0,1 0,1 0,5 0,1	5,90 4,4 11,40 10,9 6,18 0,59	•••	•••	
Cu ²⁺ Fe ²⁺ Fe ³⁺ Hg ²⁺ In ³⁺ K+ La ³⁺	0,1 0,1 0,1 0,1 0,5 0,1 0	5,90 4,4 11,40 10,9 6,18 0,59 8,37	11,05	•••	
Cu ²⁺ Fe ²⁺ Fe ³⁺ Hg ²⁺ In ³⁺ K+ La ³⁺	0,1 0,1 0,1 0,1 0,5 0,1 0	5,90 4,4 11,40 10,9 6,18 0,59 8,37 0,83	•••	•••	
Cu ²⁺ Fe ²⁺ Fe ²⁺ Hg ²⁺ Hg ³⁺ K+ La ³⁺ Li ⁺	0,1 0,1 0,1 0,1 0,5 0,1 0	5,90 4,4 11,40 10,9 6,18 0,59 8,37 0,83 3,96	•••	•••	
Cu ²⁺ Fe ²⁺ Fe ³⁺ Hg ²⁺ Ha ³⁺ K+ La ³⁺ Li ⁺ Mg ²⁺	0,1 0,1 0,1 0,1 0,5 0,1 0 0,1	5,90 4,4 11,40 10,9 6,18 0,59 8,37 0,83 3,96 3,72	•••		
Cu ²⁺ Fe ²⁺ Fe ²⁺ Hg ²⁺ n ³⁺ K+ La ³⁺ Li ⁺ Mg ²⁺ Mn ²⁺	0,1 0,1 0,1 0,1 0,5 0,1 0 0,1 0,1 0,15	5,90 4,4 11,40 10,9 6,18 0,59 8,37 0,83 3,96 3,72 0,70	•••		
Cu ²⁺ Fe ²⁺ Fe ²⁺ Hg ²⁺ n ³⁺ K+ La ³⁺ Li ⁺ Mg ²⁺ Mg ²⁺ Na ⁴	0,1 0,1 0,1 0,1 0,5 0,1 0 0,1 0 0,15 0,1	5,90 4,4 11,40 10,9 6,18 0,59 8,37 0,83 3,96 3,72 0,70 5,40	11,05		
Cu ²⁺ Fe ²⁺ Fe ²⁺ Hg ²⁺ n ³⁺ K+ La ³⁺ Li ⁺ Mg ²⁺ Mn ²⁺ Ni ²⁺ Ni ²⁺	0,1 0,1 0,1 0,1 0,5 0,1 0 0,1 0,15 0,1 0,1 3	5,90 4,4 11,40 10,9 6,18 0,59 8,37 0,83 3,96 3,72 0,70 5,40 6,08	•••		
Cu ²⁺ Fe ²⁺ Fe ²⁺ Hg ²⁺ Hg ²⁺ K+ La ³⁺ Li ⁺ Mg ²⁺ Mn ²⁺ Va ⁺ Va ²⁺ Va ²⁺ Va ²⁺ Va ²⁺	0,1 0,1 0,1 0,1 0,5 0,1 0 0,1 0,1 0,1 0,1 0,1 0,1	5,90 4,4 11,40 10,9 6,18 0,59 8,37 0,83 3,96 3,72 0,70 5,40 6,08 2,36	11,05		
Cu ²⁺ Fe ²⁺ Fe ²⁺ Hg ²⁺ Hg ²⁺ K+ La ³⁺ Li ⁺ Mg ²⁺ Mn ²⁺ Va ²⁺ Va ²⁺ Ca ²⁺ Ca ²⁺ Ca ²⁺ Ca ²⁺	0,1 0,1 0,1 0,1 0,5 0,1 0 0,1 0,1 0,1 0,1 0,1	5,90 4,4 11,40 10,9 6,18 0,59 8,37 0,83 3,96 3,72 0,70 5,40 6,08 2,36 0,49	11,05		
Cu ²⁺ Fe ²⁺ Fe ²⁺ Ig ²⁺ Ig ²⁺ La ³⁺ Li+ Mug ²⁺ Mug ²⁺ Va ²⁺ Va ²⁺ Va ²⁺ Va ²⁺ Va ²⁺ Va ²⁺ Va ²⁺	0,1 0,1 0,1 0,1 0,5 0,1 0 0,1 0,1 0,1 0,1 0,1 0,1	5,90 4,4 11,40 10,9 6,18 0,59 8,37 0,83 3,96 3,72 0,70 5,40 6,08 2,36 0,49 7,00	11,05		
Cu ²⁺ Fe ²⁺ Fe ²⁺ Ig ²⁺ Ig ²⁺ La ³⁺ Li ⁺ Mu ²⁺ Mu ²⁺ Na ⁺ Vi ²⁺ Ca ³⁺ Ca ³	0,1 0,1 0,1 0,1 0,5 0,1 0 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0	5,90 4,4 11,40 10,9 6,18 0,59 8,37 0,83 3,96 3,72 0,70 5,40 6,08 2,36 0,49 7,00 2,90	11,05 6,97		
Cu ²⁺ Fe ²⁺ Fe ²⁺ Ig ²⁺ Ig ²⁺ Na ³⁺ K+ La ³⁺ Li ⁺ Mg ²⁺ Ma ²⁺ Na ²⁺ Na ²⁺ Ro ²⁺ Ro ²⁺ Ro ²⁺ Ro ²⁺ Ro ²⁺ Ro ²⁺ Ro ²⁺ Ro ²⁺	0,1 0,1 0,1 0,1 0,5 0,1 0 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0	5,90 4,4 11,40 10,9 6,18 0,59 8,37 0,83 3,96 3,72 0,70 5,40 6,08 2,36 0,49 7,00 2,90 13,0	11,05 6,97		
Cu ²⁺ Fe ²⁺ Fe ²⁺ Hg ²⁺ Hg ²⁺ K+ La ³⁺ Li ⁺ Mg ²⁺ Mn ²⁺ Na ²⁺ Na ²⁺ Na ²⁺ Ca ²⁺ Ca ²⁺ Cb ²⁺ Cb ²⁺ Cc ³⁺ Cf ²⁺ Cf ⁴⁺ Cf ⁴⁺ Cf ⁴⁺	0,1 0,1 0,1 0,1 0,5 0,1 0 0,15 0,1 0,1 0,1 0,1 0,1 0,1 0,1	5,90 4,4 11,40 10,9 6,18 0,59 8,37 0,83 3,96 3,72 0,70 5,40 6,08 2,36 0,49 7,00 2,90 13,0 1,04	11,05 6,97 20,97		
Cu ²⁺ Fe ²⁺ Fe ²⁺ Ig ²⁺ Ig ²⁺ Na ³⁺ K+ La ³⁺ Li ⁺ Mg ²⁺ Ma ²⁺ Na ²⁺ Na ²⁺ Ro ²⁺ Ro ²⁺ Ro ²⁺ Ro ²⁺ Ro ²⁺ Ro ²⁺ Ro ²⁺ Ro ²⁺	0,1 0,1 0,1 0,1 0,5 0,1 0 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0	5,90 4,4 11,40 10,9 6,18 0,59 8,37 0,83 3,96 3,72 0,70 5,40 6,08 2,36 0,49 7,00 2,90 13,0	11,05 6,97		

Lент ральный	Ионная сила	Логарифмы констант устойчивости				
нон	раствора	lgβ ₁	lgβ,	lgβ _s	lgβ₄	
омплексы с	гидроцитрат-ис	оном [(CH ₂)	₂ C (OH) (CC	ООН) (СОО)2]2-	
3a ²⁺	0,1	1,75	• • •	• • •		
Be ²⁺	0,1	2,56	• • •	• • •	• • •	
Ca2+	0	3,05	* • • •	• • •	• • •	
d²⁺	0,1	2,20	• • •	• • •	• • •	
2 02+	0,1	3,02	• • •	• • •	• • •	
u ²⁺	0,1	3,42	• • •	• • •	• • •	
e2+	0	2,12	•••	• • •	• • •	
es+	1	6,3	•••	.,.	• • •	
1g2+	0,1	1,84	• • •	•••	• • -•	
An ²⁺	0,15	2,08	•••	• • •		
Vi ²⁺ -	0,1	3,30		• • •		
Դ ե	0,16	5,72	• • •	• • •		
Zn²+	0,1	2,98	• • •	•••	• • •	
Zr ⁴⁺	1	10,78	• • •	•••	•••	
Комплексы с	дигидроцит рат	-ионом [(С	H ₂) ₂ C (OH) ((COOH) ₂ (C	OO)]-	
3a ²⁺	0,1	0,79	•••	•••	• • •	
Ca2+	0	1,15	• • •		• • •	
Cd2+	0,1	0,97	•••	• • • •		
Çe3+	1,14	3.2	• • •	• • •		
Co ²⁺	0,1	1,25	• • •	.,.	• • •	
Cu2+	0,1	2,26	•••	•••	• • •	
Ng 2+	0,1	0,84	• • •	·	• • •	
Vi ²⁺	0,1	1,75	•••	• • •		
n ²⁺	0,1	1,25	•••	• • •	• • •	
Комплексы с	анионом метио	нина [CH ₃ S	SCH ₂ CH ₂ CH	(NH ₂) CO)]-	
Co2+	0,1	4,12	7,56	•••	•••	
u2+	0,1	7,87	14,77	• • •	• • •	
e3+	1,0	9,1		•••	• • •	
lg2+	. 0,1	6,52	11,45	•••	• • •	
¶n²+	0,1	2,77	4,57		• • •	
Ji2+	0,1	5,19	10,84	• • •		
b ²⁺	0,1	4,38	8,62	. •••	· • • •	
Сомплексы с 8	3-оксихинолинат	1-ионом (С ₁	,H ₆ NO ⁻)			
	0,1	5,20	9,56	• • •	•••	
lg ⁺		0.07			• • •	
lg ⁺ Ba ²⁺	0,	2,07				
1g ⁺ 3a ²⁺ 3a ²⁺		2,07 3,27	•••	•••	• • •	
3a ²⁺	0	3,27 7,2	13,4	•••	•••	
a ²⁺ a ²⁺	0	2,07 3,27 7,2 9,1 12,2	13,4 17,2	•••	•••	

	·		Про	должение	таблицы		
Центральный	Ионная сила	Логарифмы констант устойчивости					
ион	раствора	lgβ ₁	lgβ ₂	lgβ ₃	lgβ₄		
Fe²+	0,01	8,0	15,0				
Fe³+	0,01	12,3	23,6	33,9	•••		
Mg ²⁺	0,01	4,74	20,0	00,3	•••		
Mn ²⁺	ŏ,01	6,8	12,6	• • •	•••		
Ni ²⁺	0,01	9,9		•••	•••		
Pb2+	0,01		18,7	. • • •	• • •		
Sr ²⁺	0	9,02		• • •	• • •		
Th4+	0 .	2,56		00.05			
Zn ²⁺	_	10,45	20,40	29,85	38,80		
211	0	8,50	16,72	•••	•••		
Комплексы с	пиридином (С _в Н	I ₅ N)					
Ag+	0 .	2,05	4,10	•••	•••		
Cd ²⁺	0,1	1,27	2,14	2,3	2,50		
Co ²⁺	0,5	1,14	1,54	• • •	• • •		
Cu+	0,3	3,9	6.6	7,9	8,7		
Cu2+	0	2,50	4,30	5,16	6,04		
Fe ²⁺	0,5	0,71	• • •		6,7		
Hg 2+	0.5	5,1	10.0	10,4	• • • •		
Ni ²⁺	0,5	1,78	2,82	3,13	•••		
Z n ²⁺	0,1	1,41	1,11	1,61	1,93		
	-,-	-,	2,11	1,01	1,50		
Комплексы с	салицилат-ионо	$M [C_6H_4O]$	(COO)]2-	•			
A 3+	0	14,11	•••	•••	•••		
Be ²⁺	0,1	12,37	22,02	0.00			
Co ²⁺	0,1	6,72	11,42				
Cu ²⁺	0,1	12,02	20,70	• • •			
Fe ²⁺	0,1	6,55	11,25	• • •	• • •		
Fe³+	0,05	15,35	27,20	36,27			
La ³⁺	0,1	2,64	,	•••			
Mn ²⁺	0,1	5,90	9,8	•••			
Ni ²⁺	0,1	6,95	11,75	•••			
Th4+	0,1	4.25		_	1160		
7n2+ ·		6 95	7,60	10,05	11,60		
21 1	0,1	6,85	•••	• • •	•••		
Комплексы с	<i>сульфосал</i> ицила	т-ионом [(C ₆ H ₃ O (COC)) (SO ₃)] ³⁻			
A [3+	0,1	13,20	22,83	28,89	• • •		
Be ²⁺	0,1	11,71	20,81	•••	• • •		
Ce³+	0,1	6,83	12,40	•••	• • •		
Co2+	0,1	6,47	10,77	• • •	• • •		
Cr3+	0,1	9,56	• • •	• • •			
Cu ²⁺	0,1	9,52	16,45	• • •			
Fe ²⁺	0,1	5,90	9,90				
	0.05						
Fe8+	0,05	5,90 14,05	9,90 2 4,3 3	33,10	••		

Центральный	Ионная сила	Логар	ифмы конста	нт устойчиво	сти
ион .	раствора	lgβ ₁	lgβ ₂	lgβ ₃	lgβ₄
Mn³÷	0,1	5,24	8,24		• • •
Vi2+	0,1	6,61	10,81	• • •	• • •
rjs+	0,1	12,41	10,01		
n ²⁺	0,1	6,05	10,65	•••	•••
Комплексы с (ацетат-ионом	CH ₃ COO-			
Ag+	. 0	0,73	0,64		• • •
3a ² +	ŏ	1,15	0,01		
Ca ²⁺	ŏ	0,98	•••		
Zd*+	ő	1,93	3,15		
.u.~` `e³+	1	1,68	2,65	3,23	
2+	ó	1,46	2,00	0,20	
202+		2,23	3,63	•••	•••
/U-' 2-8+	0	2,23		0.0	•••
e ²⁺	0,1	3,2	6,1	8,3	
-e ³⁺	0,1	3,38	6,1	8,7	100
Ig2+	1	5,55	9,30	13,28	17,01
n ³⁺	2	3,50	5,95	7,90	9,08
.a ³⁺	0	2,55	4,02	• • •	• • • •,
.i+	- 0	0,26	•••	• • •	• • •
Mg ²⁺	0	1,25	• • •	•••	• • •
An ²⁺	0	1,40	• • •	• • •	• • •
√i ²⁺	0 .	1,43	2,12	• • •	• • •
րի ջ +	0	2,68	4,08	6,48	8,58
r ²⁺	0	1,19	• • •	• • •	
ri+	Ö	-0.11			
r 3+	š	6,17	11,28	15,10	1,83
n ²⁺	ő	1,57	2,38	•••	•••
Комплексы с	фенантролинол	C ₁₂ H ₈ N ₂		•	-
Ag+	0,1	5,02	12,07	•••	• • •
Ca ²⁺	0,1	0,7	• • •	• • •	• • •
d^{2+}	0,1	5,8	10,6	14,8	• • •
Co2+	0,1	7,2	13,9	19,9	• • •
Cu ²⁺	0,1	9,1	15,9	20,9	
Fe ²⁺	0,1	5,8	• • •	21,2	• • •
?e³+	1,0	6,5	11,4	23,5	• • •
ìa ³⁺	1,0	5,57	9,17		
Ig ²⁺	0,1	•••	19,6	23,35	
n ³ +	1,0	5,51	10,10	14,50	
Mg ²⁺	0,1	1,2	10,10	11,00	• • •
Mn ²⁺	0,1	4,1	7,3	10,4	
viii Vi ²⁺	0,1	8,7	16,9	24,7	
DP5+ И1	0,1	4,65	10,9	£ T ,1	
[]8+	1,0	11,08	18,48	24,3	
	1.0	11,00	10.40	44.0	
Zn ²⁺	0,1	6,5	11,1	17,1	

Центральный	Ионная сила	Логарифмы констант устойчивости				
нон	раствора	lgβ ₁	lgβ₂	lgβ _a	lgβ,	
Комплексы с	цистеинат-ионо	м [SCH ₂ C	H (NH ₂) CO	O]2-		
Cd2+	0,2		9,89			
Cu2+	0,17		16,0	•••	•••	
e ²⁺	0		11,77			
Fe ³⁺	0	•••	•••	32,10	• • • •	
Комплексы с с	оксалат-ионом	[(COO) ₂]2-			•	
\g+	0,1	2				
\[3+·	0,1	7,3	13	16,3	•••	
3a ²⁺	Ö -	2,3	10	10,0	•••	
3e ²⁺	ŏ,1	4.08	5,91			
a ²⁺	1	1,66	2,69	•••	•••	
d2+	Ô	4,00	5,77	•••	•••	
e ³⁺	ŏ	6,52	10.48	11,30	•.••	
O2+ .	Ŏ	4,7	6,8	9,7	•••	
r3+	0	5,34	10.51	15,44	• • •	
	-ŏ,3	6,7	10,31	10,77	• • •	
e2+	0,5	3.05	4,52	5,22		
e3+	0,0	9.4	16.2	20,2	•••	
n ³⁺	ĭ	5,30	10,52	14,7		
a³+	i	4,3	7,9	10,3	•••	
1g2+	Ô	2,55	4.38	10,0		
n ²⁺	ŏ	3,82	5,25	• • •	•••	
(¹¹ 3+	$\overset{\mathtt{o}}{2}$	9,98	16,57	19,42	•••	
d3+	0	7,21			•••	
112+	ŏ	5,3	11,51 6,51	13,5 14	•••	
b ²⁺	ŏ	4,9	6,54	14	•••	
r ²⁺	Ŏ	1,25		•••	•••	
h4+	ő	10,6	1,90 20,2	26,4	00.6	
n ²⁺	Ŏ	4.85	7,55	8,34	29,6	
11		4,00	7,00	0,34	. •••	
Сомплексы с s OOCCH.).NC	тилендиаминт H ₂ CH ₂ N (CH ₂ C(empàaye m o	т-ионом	• •		
.c ³⁺	•••	14,2				
g+	0,1	7,22	• • •	• • •		
[3+	0,1	16,7		• • •	•••	
ma+	0,1	16.91		•••	• • • •	
a ²⁺	0,1	7,73		• • •	• • • •	
e ²⁺	0,1	9,27	•••		•••	
i 3+	1.0	25,7	• • •			
a ²⁺	0,1	10,7	•••	•••		
d ²⁺	0,1 0,1	16,62	•••	•••	•••	
e ³⁺		16,07	•••	•••	•••	
[3+	0,1		•••	•••	•••	
4	0,1	17,09	• • •	• • •	• • •	

Центральный	Ионная сила	Лога	онфмы конста	нт устойчив	ости
нон	раствора	lgβ,	lgβ ₂	lgβ _s	1984
Cm³+	0,1	17,1			
Co2+	ŏ,i	16,49	• • •	Α.	
Cos+	0,1	41,5	• • •		
Cr2+	0,1	13,6	• • •		
Cr ⁸⁺	0,1	23,4	•••	•••	• • •
Cs+	0,32	0,15	• • •		
Cu2+	0,1	18,86	• • •		
Dv ³⁺	0,1	18,19	• • •		• • • •
Er3+	0,1	18,98	• • •		
Eu3+	0,1	17,22	• • •		
Fe ²⁺	0,1	14,3	• • •		
Fe ³⁺	0,1	25,1	• • •		• • •
Gas+	0,1	20,8			
Gd3+	0,1	17,27	•••		
Hg ²⁺	0,1	21,80.	•••		
Ho3+	0,1	18,42	•••		
In ³⁺	0,1	24,95			
K+ -	0,1	0,55			
La3+	0,1	15,5			
Li+	0,1	2,79			
Lu3+	0,1	20,03			
Mg2+	0,1	8,65			
Mn ²⁺	0,1	13,95	• • • •		
Mn ³⁺	0,1	24,85			
Na ⁺	0,1	1,66			
Nd3+	0,1	16,59	•••	•••	
Ni ²⁺		10,59	• • • • • • • • • • • • • • • • • • • •	•••	
Np4+	0,1 1,0	18,67	•••	• • •	
Pp.2+		24,55	•••	•••	
	. 01	18,3	•••	•••	•••
Pd2+	0,2	18,5	•••	•••	•••
Pm3+	0,1	16,96	•••	• • •	•••
Pr ³⁺	0,1	16,31	• • •	• • •	•••
Pu ^{s+}	0,1	18,12	• • •	•••	• • •
Ra ²⁺	0,1	7,07	•••	• • •	
Rb+	0,32	0,59	•••	•••	•••
Sc3+	0,1	23,1	•••	•••	•••
Sm ³⁺	0,1	16,99	• • •	•••	•••
Sn2+	1,0	18,3	•••	• • •	•••
Sr ²⁺	0,1	8,60	• • •	•••	•••
Tb3+	0,1	17,83	•••	• • •	•••
Th ⁴⁺	0,1	23,25	•••	•••	•••
T1+	1,0	6,53	•••	•••	• • •
T13+	1	37,8	•••	•••	•••
Ti 3+	• • •	21,5	•••	•••	•••
Tm ³⁺	0,1	19,6	• • •	• • •	•••
U4+ ·	0,1	25,8	• • •	•••	* * *
UO2*	0,1	7,36	• • • •	• • •	
V2+	0,1	12,7			
•	٠,1	,, ,			

Продолжение таблицы

Центральный	Ионная сила	Логарифмы констант устойчивости				
нон	раствора	1gβ,	lgβ ₂	lgβ _s	lgβ4	
√3+ ⁱ	0,1	25,9				
VO2+	' 0,1	18,76	•••			
VO_2^{2+}	0,1	15,55	• • •	• • •		
Υ8+	0,1	18,11		• •••	•••	
- Ү Ь 3+	0,1	19,73	•••	•••		
Zn²+	0,1	16,68	•••		•••	
Z r4 +	1,0	28,1	. • • •	•••		
Комплексы с (OOCCH ₂) ₂ NC	гидроэтиленди CH ₂ CH ₂ N (CH ₂ C	аминте тр ас СООН) (СН ₂	auemam-uor COO)]3-	ном		
Ag+	0,01	3,46	•••	•••		
/ [3+	0,1	3,4	•••	•••	•••	
3e ²⁺	0,1	2,1	•••	•••	•••	
Ca ²⁺	0,1	3,51	•••	•••	•••	
Cd2+	0,1	9,1	• • •	•••	•••	
Co2+	0,1	9,15	• • • •	•••	•••	
u ²⁺	0,1	11,54	•••	•••		
e ²⁺	0,1	6,86	• • •	•••		
e8+	0,1	14,59		•••	•••	
Ig ² +	0,1	14,6	•••	•••		
n 3+	1	15,0	•••	• • •	• • •	
(+	0,32	—0,31	•••			
i+	0,32	0,86	• • • •	•••	• • •	
[g²+	0,1	2,28	•••	•••		
ln ²⁺	0,1	6,9	•••	• • •		
la*	0,32	0,49	•••	• • •	٠	
li ²⁺	0,1	11,56	•••	• • •		
b²+	0,1	10,61	•••		•••	
b+	0,32	-0,57	•••	•••	•••	
r ²⁺	0,1	2,30	•••	•••		
1+	0,1	2,06	•••	•••	• • •	
n ²⁺ ·	0,1	9,0				

3.9.3. Константы устойчивости комплексов с макроциклическими лигандами

	Ионная сила	Логарифм констант	ы устойчивості	
Центральный ион	раствора	lg β _i	lg β ₂	
Макроциклически кислорода	е лиганды с	донорными	атомами	
Комплексы с 15-краун-5	$(C_{10}H_{20}O_5)$			
Ag+		0,94	•••	
Κ [‡]		0,74	• • •	
Na ⁺		0,70		
Pb ²⁺	• • •	1,85	• • •	
T I+	• • •	1,23	• • •	
Комплексы с циклогекси	n-15-краун-5 (С ₁₄ Н	1 ₂₆ O ₅)		
K+	•••	0,6		
Li+	***	<1	• • •	
Na ⁺	. •••	<0,3	• • •	
Комплексы с 18-краун-6	$(C_{12}H_{24}O_6)$			
Ag+		1,50		
Cs ⁺		0,99		
K+		2,03		
Na ⁺	***	0,80	• • •	
Rb+	• • • •	1,56		
TI+	•••	2,27	• • •	
Комплексы с циклогексил	1-18-краун-6 (С ₁₈ 1	130Oa)		
Ag+		1,8		
Cs ⁺		0,8		
K ⁺	,	1,9	• • •	
Na ⁺	• • • • • • • • • • • • • • • • • • • •	0,8	• • •	
	,	•		
Комплексы с дициклоген	ссил-18-краун-6 (С	$L_{20}H_{36}O_{6}$		
Изомер А . Ag+		2,3		
Ba ²⁺		3,57	• • •	
Ca ²⁺	***	0,4		
Cs+	•••	0,96	• • •	
	•••		-,	
Hg ₂ ²⁺	• • •	1,6	•••	
Hg ²⁺	***	2,75	• • •	
K+	• • •	2,02	• • •	
Li ⁺	* • •	0,6	• • •	
Na ⁺		1,7	• • •	
Pb2+	• • •	4,9	• • •	
Rb ⁺	•••	1,52	• • •	
Sr ²⁺	• • •	3,24	• • •	
T1+	• • •	2,45	• • •	

		прообляст	ше тиолицы	
Центральный ион	Ионная сила	Логарифм константы устойчивости		
	раствора	lg β ₁	ig β ₂	
Изомер Б				
Ag+				
Ag Ba ² +	• • •	1,59	• • •	
Cs ⁺	•••	3,27	•••	
K+	•••	3,49	• • • .	
Na+	•••	1,63	• • •	
Rh+	•••	1,4	. •••	
Sr2+	•••	0,87	•••	
	•••	2,64	•••	
	,			
Комплексы с дибензо-18-кр	раун-6 (С ₂₀ Н ₂₄ О ₆)		
Cs+		0.0		
K+	•••	0,8 1,7	•••	
Va+	•••	1,7	•••	
Rb+	• • •	1,1	•••	
Γ Ι +	• • •	1,5	•••	
		1,0	•••	
Комплексы с дициклогексил	n-21-кпанн.7 (С	н от		
Cs ⁺	o 21 npagn-1 (Ca	•		
	•••	1,9	• • •	
Комплексы с дициклогексил	94 9 70	П. О.		
	•24-краун-8 (С ₂			
Cs+	• • •	1,9	•••	
Макроциклические зота	лиганды с	донорными	атомами	
Сомплексы с аза-10-краун-8	3 {([10]-ан-N ₃), ($C_7H_{17}N_3$		
Cd2+				
u u2+	0,2	7,8	***	
ia i2+	0,1	15,5	• • •	
n ²⁺	1,0 1,0	14,6	•••	
	0,1	10,2	•••	
_		_		
омплексы с аза-12-краун-	3 {([12]-ан-N ₃),	$C_9H_{21}N_3$		
<i>Сомплексы с аза-12-краун-</i> . u ²⁺				
	0,1	12,6	•••	
u ²⁺				

•	Ионная сила	Логарифм констан	гы устойчивости
Центральный ион	раствора	- 1g β ₁	lg β2
Комплексы с ава-12-краун	-4 {([12]-ан-N ₄),	$C_8H_{20}N_4\}$	
Cd2+	0,2	14,3	4,4 4
Co ²⁺	0,2	13,8	• • •
Cu ²⁺	0,2 0,2	24,8	•••
Hg2+	0,2	25,5	• • •
Zn ²⁺	0,2	16,2	• • •
			•
Комплексы с аза-14-краун	-4 {([14]-ан-N ₄),	$C_{10}H_{24}N_{4}$	
Ca2+	0,2	12,7	•••
Co2+	0,2	27,2	• • •
Cu ²⁺	0,2	23,0	
Hg 2+	0,2		
Ni ²⁺	0,1	22,2	• • •
Zn ²⁺	0,2	15,5	•••
Комплексы с ава-15-крау. Co ²⁺ Cu ²⁺ Hg ²⁺	0,2 0,2	12,4 24,4 23,7	•••
	0,2 0,2	15,0	•••
Zn ²⁺ Комплексы с аза-16-краз	0,2	15,0	
Zn²+ Комплексы с аза-16-крау	0,2 n-4 {([16]-an-N₄ 0,5	15,0), C ₁₂ H ₂₈ N ₄ } 20,9	•••
Zn²+ Комплексы с аза-16-крау	0,2 ин-4 {([16]-ан-N ₄	15,0), C ₁₂ H ₂₈ N ₄ }	•••
Zn ²⁺ Комплексы с аза-16-крау Cu ²⁺	0,2 n-4 {([16]-an-N₄ 0,5	15,0), C ₁₂ H ₂₈ N ₄ } 20,9	•••
Zn ²⁺ <i>Комплексы с аза-16-крау</i> Си ²⁺	0,2 ин-4 {([16]-ан-N ₄ 0,5 0,5	15,0), C ₁₂ H ₂₈ N ₄ } 20,9 13,1	 N4), C ₁₈ H ₃₈ N ₄
Zn ²⁺ Комплексы с аза-16-крау Сu ²⁺ Zn ²⁺ Комплексы с гексаметило	0,2 nн-4 {([16]-ан-N ₄ 0,5 0,5 nsa-14-краун-4 {(15,0), C ₁₂ H ₂₈ N ₄ } 20,9 13,1	 N ₄), C ₁₈ H ₃₆ N,
Zn²+ Комплексы с аза-16-крау Сu²+ Zn²+ Комплексы с гексаметило Сu²+ («красный изомер»)	0,2 nн-4 {([16]-ан-N ₄ 0,5 0,5 nsa-14-краун-4 {(15,0), $C_{12}H_{28}N_4$ } 20,9 13,1 (мезо-Ме ₆ [14]-ан-	 N ₄), C ₁₆ H ₃₆ N,
Zn ²⁺ Комплексы с аза-16-крау Сu ²⁺ Zn ²⁺ Комплексы с гексаметило	0,2 nн-4 {([16]-ан-N ₄ 0,5 0,5 nsa-14-краун-4 {(15,0), $C_{12}H_{28}N_4$ } 20,9 13,1 (Me30-Me ₆ [14]-ah-	 N ₄), C ₁₈ H ₃₆ N ₄
Zn ²⁺ <i>Комплексы с аза-16-крау</i> Cu ²⁺ Zn ²⁺ <i>Комплексы с гексаметило</i> Cu ²⁺ («красный изомер») Cu ²⁺ («синий изомер»)	0,2 nн-4 {([16]-ан-N ₄ 0,5 0,5 nsa-14-краун-4 {(0,1 0,1	15,0), $C_{12}H_{28}N_4$ } 20,9 13,1 (мезо-Ме ₈ [14]-ан-	 N ₄), C ₁₈ H ₃₆ N ₄

Harring and the Rose	Ионная сила	Логарифм констан	ты устойчивост
Центральный ион	раствора	Igβ ₁	lg β2
		, 1	
Комплексы с аза-15	-краун-5 {([15]-ан-N _ь),	$C_{10}H_{24}N_{5}$	
Cd2+	0,1	19,2	
Co2+	0,1	16,8	•••
Cu ²⁺	0,1	28,3	• • • •
Hg2+	0,1	28,5	• • •
Ni ²⁺	0,1	18,1	• • •
Zn ²⁺	0,1	19,1	. •••
1.			2
Комплексы с аза-18	-краун-6 {([18]-ан-N ₆),	$C_{12}H_{28}N_{6}$	
Cd2+	0.1	17 0	*
Cu2+	0,1 0.1	17,9 17.8	•••
Cu2+	0,1	17,8	•••
			•••

3.10. КОНСТАНТЫ ИОНИЗАЦИИ КИСЛОТ И ОСНОВАНИЙ

В таблице приведены термодинамические константы ионизации кислот и оснований в водных растворах. Звездочкой отмечены концентрационные константы ионизации (как правило, вычисленные в интервале концентраций 0,001—0,1 н.):

$$K_{a} = \frac{a_{H^{+}}a_{An^{-}}}{a_{HAn}} = \frac{[H^{+}][An^{-}]}{[HAn]} \cdot \frac{f_{H^{+}}f_{An^{-}}}{f_{HAn}},$$

$$K_{b} = \frac{a_{K^{+}}a_{OH^{-}}}{a_{K^{+}OH}} = \frac{[K^{+}][OH^{-}]}{[K^{+}OH]} \cdot \frac{f_{K^{+}}f_{OH^{-}}}{f_{K^{+}OH^{-}}},$$

где $a_{\rm H^+}$, $a_{\rm An^-}$ и т. д.— активности ионов или молекул; $[H^+]$, $[An^-]$ я т. д.— концентрации ионов или молекул; $f_{\rm H^+}$, $f_{\rm An^-}$ и т. д.— коэффициенты активности ионов или молекул.

В водных растворах азотсодержащих органических оснований происходит реакция

$$R_3N + H_2O \rightarrow R_3NH^+ + OH^-$$

Показателем константы ионизации рK называют догарифм константы диссоциации, взятый с обратным знаком: рK = -1gK.

3.10.1. Константы ионизации неорганических кислот

3.10.1. ROHCTAHTM	ионизации	veohi a	MATE	MIN MICHO	'
Кислота	Формула _	Сту- пень иони- зации	Тем- пера- тура, °С	Конст анта ионизац ии К _а	$ pK_a = \\ = -\lg K_a $
Азидная	HN ₃	1	25	$2.0 \cdot 10^{-5}$	4,70 -
Азотистая	HNO_{2}	Ī	25	$6,9 \cdot 10^{-4}$	3,16
Азотная	HNO ₃	i	25	4,36 • 10	-1,64
Азотноватистая	$H_2N_2O_2$	1	25	$6,2 \cdot 10^{-8}$	7,21
		2	25	$2,9 \cdot 10^{-12}$	11,54
Борная (мета)	HBO_2	1	18	$7.5 \cdot 10^{-10}$	9,12
Борная (орто)	H_3BO_3	1	25	$7.1 \cdot 10^{-10}$	9,15
		$\frac{2}{3}$	$\frac{20}{20}$	1,8 · 10 ⁻¹³ 1,6 · 10 ⁻¹⁴	12,7 4 13,80
F ()	11 D O	3 I	25 25	1,8 • 10 • •	3,74
Борная (тетра)	$H_2B_4O_7$	$\overset{\scriptscriptstyle{1}}{2}$	25 25	2,0 · 10-8	7,70
E	HBr	1	25	1,0 · 10°	<u>_9</u> ,,,
Бромистоводородная	HBrO ₃	1	. 18	2 · 10-1	0,7
Бромноватая Бромноватистая	HBrO	i	25	2.2 10-9	8,66
Ванадиевая (орто)	H ₃ VO ₄	î	25	1,8 • 10-4	3,74
Ванаднева (орто)	113104	$\dot{\hat{2}}$	25	$3,2 \cdot 10^{-10}$	9,50
		2 3	25	$4.0 \cdot 10^{-15}$	14,4
Водорода пероксид	H_2O_2	1	30	$2,63 \cdot 10^{-12}$	11,58
Вольфрамовая	H ₂ WO ₄	1	25	$6.3 \cdot 10^{-8}$	2,20
		2	25	$2.0 \cdot 10^{-4}$	3,70
Германиевая	$H_{4}GeO_{4}$	1	25	$7.9 \cdot 10^{-10}$	9,10
•		2	25	$2.0 \cdot 10^{-13}$	12,7
Дитионистая	$H_2S_2O_4$	1	25	$5.0 \cdot 10^{-1}$	0,30
(гидросернистая)		2	25	$3,2 \cdot 10^{-3}$	2,50
Дитионовая	$H_2S_2O_6$	1	25	$6.3 \cdot 10^{-1}$	0,2
377	TI CE (CN) 3	2 3	25 25	4,0 · 10 ⁻⁴ 5,6 · 10 ⁻³	3,4 _. 2,25
Железистосине-	$H_4[F_2(CN)_6]$	ა 4	25 25	$6.0 \cdot 10^{-5}$	4,22
родистая	HI	1	25 25	1 · 1011	-11
Иодистоводородная Иодист	H ₅ IO ₆	i	25 25	$2.45 \cdot 10^{-2}$	1.61
Иодная	115106	$\dot{\hat{2}}$	25	$4.3 \cdot 10^{-9}$	8,33
		3	$\frac{-5}{25}$	$1.0 \cdot 10^{-15}$	15,0
Иодноватая	HIO_3	Ĭ	25	$2.3 \cdot 10^{-11}$	10,64
Кремниевая	H_2SiO_3	1	18	$2,2 \cdot 10^{-10}$	9,66*
(мета)		2	18	$1,6 \cdot 10^{-12}$	11,80*
Кремниевая	H ₄ SiO ₄	1	25	$1,3 \cdot 10^{-10}$	9,9
(opmo)		2	25	$1,6 \cdot 10^{-12}$	11,8
• • •		3	25	$2,0 \cdot 10^{-14}$	13,7
Марганцовая	HMnO ₄	1	25	$2 \cdot 10^{2}$	-2,3
Марганцовистая	H_2MnO_4	1	25	10-1	1 .
	11.14.0	2	25	$7,1 \cdot 10^{-11}$	10,15
. Молибденовая	H_2MoO_4	1	25	$2.9 \cdot 10^{-3}$	2,54
M	н жа О	$\frac{2}{1}$	25 25	$1,4 \cdot 10^{-4}$ $9,55 \cdot 10^{-6}$	3,86 5,02
Молибденовая (ди)	H₂Mo₂O₃ H₃AsO₄	1	25 25	$5.6 \cdot 10^{-3}$	2,25
Мышьяковая (орто)	11g/15O4	9	25 25	$1,7 \cdot 10^{-7}$	6,77
(opmo)		2 3	25	$2,95 \cdot 10^{-12}$	11,53
Мышьяковистая	H ₀ AsQ ₋				9,23
	H _o SnO _o	i	25	4 · 10-10	9,4*
Мышья ковистая Оловянная	H ₃ AsO ₃ H ₂ SnO ₃	1	25 25	5,9 · 10 ⁻¹⁰ 4 · 10 ⁻¹⁰	9,2 9,4

Кислота	Формула	Сту- пень иони- зации	Тем- пера- тура, °С	Константа ионизации К _а	$ pK_a = \\ -\lg K_a $
Селенистая	H₂SeO₃	1	·25	1,8 · 10-8	2,75
Селеновая	H ₂ SeO ₄	2 1	25 25	3,2 · 10 ⁻⁹ 1 · 10 ⁻³	8,50 3
Селеноводородная	H ₂ Se	2 1 2	25 25 25	1,2 · 10 ⁻² 1,3 · 10 ⁻⁴ 1,0 · 10 ⁻¹¹	1,92 3,89
Серная	H ₂ SO ₄	1 2	25 25 25	$ \begin{array}{c} 1 \cdot 10^3 \\ 1,15 \cdot 10^{-2} \end{array} $	11,0 -3 1,94
Сернистая	H_2SO_3	1 2	25 25	$1,4 \cdot 10^{-2}$ $6,2 \cdot 10^{-8}$	1,85 7,20
Сероводородная	H_2S	1 2	25 25	1,0 · 10 ⁻⁷ 2.5 · 10 ⁻¹⁸	6,99 12,60
Синильная Соляная	HCN HCI	Î I	. 25 25	5,0 · 10 ⁻¹⁰ 1 · 10 ⁻⁷	9,30 -7
Сульфаминовая	H[SO,NH.]	1	25	1.0 · 10-1	0.99
Сурьмяная	H _o SbO ₄	1	25	$4.0 \cdot 10^{-5}$	4,40
Сурьмянистая.	HSbO ₂	1	18	1.1011	11,0*
Теллуристая	H_2 Te O_3	1	25	$2,7 \cdot 10^{-3}$	2,57
Теллуровая	H ₂ TeO ₄	2 1 2 3	25 25 25	1,8 · 10 ⁻⁸ 2,45 · 10 ⁻⁸ 1,1 · 10 ⁻¹¹	7,74 7,61 10,95
Теллуроводородная	H_2Te	$\frac{3}{1}$	25 25	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 2,64
Тиосерная	$H_2S_2O_3$	1 2	25 25 25	$6,9 \cdot 10^{-13}$ $2,5 \cdot 10^{-1}$ $1,9 \cdot 10^{-2}$	12,16 0,60 1,72
Тиоциановая	HSCN	ĩ ·	25	1,9 . 10 -	-1,72
Угольная («истин- ная» константа)	H ₂ CO ₃	ĩ	25	1,32 • 10-4	3,88
Угольная («кажу-	CO_2 (aq) + H_2O	1	25	4,45 • 10-7	6,35
_ щаяся» константа)		2	25	$4,69 \cdot 10^{-11}$	10,33
Фос фористая	H_3PO_3	1	25	$3,1 \cdot 10^{-2}$	1,51
Doodoning (onno)	H DO	2 1	25 25	$1.6 \cdot 10^{-7}$	6,69
Фосфорная (орто)	H ₈ PO ₄	. 0	25 25	$7.1 \cdot 10^{-3}$ $6.2 \cdot 10^{-8}$	2,15 7,21
		2	25	$5.0 \cdot 10^{-13}$	12,0
Фосфорная (пиро-	$H_4P_2O_7$	ĭ	25	$1,2 \cdot 10^{-1}$	0,91
или ди)	4- 2-7	$\overline{2}$	25	$7.9 \cdot 10^{-3}$	2,10
		2 3	25	$2.0 \cdot 10^{-7}$.	6,70
		4	25	$4.8 \cdot 10^{-10}$	9,32
Ф ос форноватая	$H_4P_2O_6$	1	25	6,3 · 10 ⁻³	2,20
		3	25	$1,6 \cdot 10^{-3}$	2,81
		3 4	25	$5.4 \cdot 10^{-8}$	7,27
Фосфорноватистая	H_3PO_2	1	25 25	$9.3 \cdot 10^{-11}$ $5.9 \cdot 10^{-2}$	10,03 1,23
Фтористоводород- ная	HF	i.	25 25	6,2 · 10 ⁻⁴	3,21
Фторфосфорная	H ₈ [PO ₃ F]	1 2	25 25	$2.8 \cdot 10^{-1}$ $1.6 \cdot 10^{-5}$	0,55 4,80

		11 pooralice than the same			
Кислота	Формула	Сту- пень иони- зации	Тем- пера- тура, °С	Константа ионизации <i>К_а</i>	$pK_a = -\lg K_a$
Хлористая Хлорная Хлорноватистая Хромовая Хромовая (ди) Циановая	HCIO ₂ HCIO ₄ HCIO H ₂ CrO ₄ H ₂ Cr ₂ O ₇ HOCN	1 1 1 2 2	25 25 25 25 25 25 25 25	1,1 · 10 ⁻² 1 · 10 ⁸ 2,95 · 10 ⁻⁸ 1,6 · 10 ⁻¹ 3,2 · 10 ⁻² 2,3 · 10 ⁻² 2,7 · 10 ⁻⁴	1,97 8 7,53 0,80 6,50 1,64 3,57

3.10.2. Константы ионизации неорганических оснований

5, ()					
Название	Формула	Сту- пень иони- зации	Тем- пера- тура, °С		$pK_b = - \lg K_b$
Гилозопи	N_2H_4	1	25	9,3 · 10-7	6,03
Гидразин Гидроксид алюминия	Al(ÕH) ₃	3	25	$1,38 \cdot 10^{-9}$	8,86*
аммония («истинная»	ATT OTT	1	25	$6.3 \cdot 10^{-5}$	4,2
константа)					
аммония («кажу-	$NH_3(aq) + H_2O$	1	25	$1,76 \cdot 10^{-5}$	4,755
щаяся» констента)				0.0 10-1	0.04
бария	$Ba(OH)_2$	2 2 3	25	$2,3 \cdot 10^{-1}$	0,64
галлия	Ga(OH) ₃	2	18	$1.6 \cdot 10^{-11}$	10,8*
		3	18	4 10 ⁻¹²	11,4*
железа (II)	Fe(OH) ₂	2	25	$1.3 \cdot 10^{-4}$	3,89*
железа (III)	Fe(OH) ₃	2	25	1,82 · 10-11	10.74*
	0.4.077	3	25	$1,35 \cdot 10^{-12}$	11,87* 2,80*
кадмия	Cd(OH) ₂	2 3 2 2 2 3 1	30	5,0 · 10 ⁻³	1.40
кальция	Ca(OH) ₂	2	25	$4.0 \cdot 10^{-2}$ $4 \cdot 10^{-5}$	1,40 4,4*
кобальта (II)	Co(OH) ₂	2	25	$3.2 \cdot 10^{-4}$	3,30
лантана	La(OH) ₃	3	25	$6,75 \cdot 10^{-1}$	0,17
лития	LiOH	1	25	$2.5 \cdot 10^{-3}$	2,60*
магния	Mg(OH) ₂	2	25	5,0 · 10 ⁻⁴	3,30*
марганца (II)	Mn(OH) ₂	2	30 25	$3,4 \cdot 10^{-7}$	6,47*
меди (II)	Cu(OH) ₂	2 2 2 1	25 25	5,9	0,77
натрия	NaOH	2	30	2,5 × 10 ⁻⁵	4,6*
никеля (II)	Ni(OH) ₂	1	25	$9.55 \cdot 10^{-4}$	3,02
свинца (II)	Pb(OH) ₂		25 25	$3.0 \cdot 10^{-8}$	7,52
	AgOH	$\frac{2}{1}$	25 25	$5.0 \cdot 10^{-3}$	2,30
серебра	Sc(OH) ₃	3	25	$7.6 \cdot 10^{-10}$	9,12
скандия	Sr(OH) ₃	- 2	25	1,50 · 10 ⁻¹	0,82
стронция (Т)	TIOH	ī	25 25	10-1	Ĭ
таллия (I)	Th(OH)	4	25	$2.0 \cdot 10^{-10}$	9,70*
тория	Cr(OH) ₃	3	25	$1,02 \cdot 10^{-10}$	9,99*
хрома (ІІІ)	$Zn(OH)_{3}$	2	25	4 · 10-5	4,4*
цинка	NH ₂ OH	ĩ	25	$8.9 \cdot 10^{-9}$	2,85
Гидроксиламин	2011	-		·	
					

ж 3.10.3. Константы ионизации органических кислот

Кнслота	Формула	Ступень нонизации	Темпера- тура,	Константа нонизации $K_{m{a}}$	$ \begin{array}{c c} pK_a = \\ = -1g K \end{array} $
Адипиновая	HOOC(CH ₂) ₂ COOH	1	25	39 . 10-6	
Акриловая	CH CHCOOH	62 -	22		5.28
а-Аланин	CH3CH(NH2)COOH	→ —	25 25	$5,5 \cdot 10^{-6}$	4,26
р-мланин Аминобензойная <i>(мета</i>)	NH ₂ (CH ₂) ₂ COOH	·	22		
	NH, C, H, COOH (1, 3)		25	1,8 · 10-5	4,74
Аминомасляная	NH²(CH²)³COOH		3 53	$1,4 \cdot 10^{-5}$	4,85
Аминоуксусная Антраниловая	NH, CH, COOH		22	$1,7 \cdot 10^{-10}$	9,77
Аскорбиновая	C.H.O.	•	25	$1,1 \cdot 10^{-5}$	4,95
Аспарагиновая	HOOCCH,CH(NH,)COOH		53 H	$9.1 \cdot 10^{-6}$	4,04
Δ 11.01.01.01.01.01.01.01.01.01.01.01.01.0		- 63	3.5	1,20 . 10-1	06,67
лдетоумсусная	CH3COCH3COOH	-	- - - -	2.62 · 10-4	10,00 3,78
Бензойная	C.H.COOH	7	22	$2 \cdot 10^{-13}$	12.7*
Бензолсульфокислота	C, H, SO, H	-	22	6,3 . 10-6	4,20
\sim	BřC,H,ČOOH		ខម	2,0 - 10-1	***************************************
~	BrC,H4COOH		25 55	1.4 • 10 °	2, 8 6, 8
Бромоензоиная (<i>napa)</i> Валериановае	BrC,H,COOH	. —	22	1,03 : 10 -	3,90 0,70
Валериановая (430)		,d ;	25	1,4 · 10-5	4.86
Валин	(CH ₃),CHCH(NH ₃)COOH	- -	8 5	$1,7 \cdot 10^{-5}$	4,78
Бинилуксусная	CH, =CH -CH, COOH	- -	20	0.1-01 · 16.1	9,72
Бинная	НООССН(ОН)СН(ОН)СООН		S 55	4,0 · 10-5	4,34
Галловая	HOOD (HO) H J	2	22	3,0 . 10-5	2,03 52
Гидрохинон	C.H.(OH), (1, 4)	 4 +	52	3,9 · 10-5	4,41
Гликолевая	CH,(OH)COOH		2 72 22 72	$1,1\cdot 10^{-10}$ $1.5\cdot 10^{-4}$	9,06 8,8,8
					֓֓֓֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֓֓֓֡֓֡֓֡

14,18 9.90 9.90 10,50 10,00 10	1,92	1,38 5,68	4,82
6,6 · 10-15 3,0 · 10-4 3,0 · 10-4 4,7 · 10-5 4,6 · 10-6 1,4 · 10-6 1,3 · 10-6 1,3 · 10-6 1,3 · 10-6 1,3 · 10-6 1,3 · 10-6 1,3 · 10-6 1,3 · 10-6 1,3 · 10-6 1,3 · 10-6 1,3 · 10-6 1,3 · 10-6 1,3 · 10-6 1,3 · 10-6 1,3 · 10-6 1,3 · 10-6 1,4 · 10-6 1,4 · 10-6 1,7 · 10-1 1,7 · 10-1		Ξ.	1,5 · 10-5
<i>មិនមន្តមន្តមន្តមន្តមន្តមន្តមន្តមន្តមន្តមន្</i>	ននន	888	32
0_0	t — C	1 — C	
HOCH, CH, OH HOCH, CH(OH) CH, OH HOCH, CH(OH) COOH HOOC(CH ₂) ₂ CH(NH ₂) COOH HOOC(CH ₂) ₂ COOH CH ₂ OH(CHOH) ₄ COOH Cl ₂ H ₄ COOH IC, H ₄ COOH IC, H ₄ COOH IC, H ₄ COOH IC, H ₄ COOH IC, H ₄ COOH IC, H ₄ COOH IC, H ₄ COOH ICH, CHOOH ICH, CHOOCCH, COOH ICH, CHOOCCH, COOH	НООССН=СНСООН	HOOCCH ₂ COOH	СН ₃ СН,СООН (СН ₃),СНСООН
Гликоль Глицериновая Глицериновая Глутаминовая Глутаминовая Глутаровая Глюконовая Каробензойная (орто) Иодбензойная (мета) Иодбензойная (мета) Иодбензойная (мара) Иодбензойная (мара) Иодбензойная (мара) Капроновая Капроновая (цис) Корччная (цис) Корччная (пара) Корччная (пара) Крезол (пара) Лауриновая Лауриновая Лауриновая Лейцин (изо)	Малеиновая	Малоновая	Масляная (норм.) Масляная (изо)

2		-		Продолжение	mabauuu
Кислота	Формула	Ступень ионизации	Tewnepa. rypa,	Константа вонизации К _а	$\begin{vmatrix} pK_a = \\ = -\lg K_a \end{vmatrix}$
Миндальная Молочная Муравьиная сНафтол рНафтол Нитробензойная (пара) Нитробензойная (пара) Нитробензойная (пара) Нитробензойная (пара) В-Оксихинолин Пикриновая Пирокатехин Пропионовая Салициловая Себациновая Сульфаниловая Сульфобензойная (мета)	C ₆ H ₅ CH(OH)COOH CH ₃ CH(OH)COOH HCOOH C ₁₀ H ₇ OH C ₁₀ H ₇ OH C ₁₀ H ₇ OH C ₁₀ H ₇ OOH (1, 2) O ₂ NC ₆ H ₄ COOH (1, 3) O ₂ NC ₆ H ₄ COOH (1, 4) C ₆ H ₇ ON (NO ₂) ₃ C ₆ H ₂ OH HOOC(CH ₂) ₅ COOH C ₆ H ₄ (OH) ₂ (1, 2) C ₆ H ₄ (OH) ₂ COOH HOOC(CH ₂) ₆ COOH		ននេះ	4,3 . 10-4 1,5 . 10-4 1,8 . 10-4 1,4 . 10-10 1,5 . 10-6 1,5 . 10-6 1,5 . 10-6 1,3 . 10-10 4,9 . 10-10 6,5 . 10-12 1,3 . 10-13 1,3 . 10-13 1,3 . 10-13 1,1 . 10-3 2,6 . 10-13 1,1 . 10-3 4,0 . 10-13 1,1 . 10-3 6,3 . 10-4 6,3 . 10-4 6,9 . 10-14 1,7 . 10-4	3,37 3,37 3,37 3,37 3,49 9,85 4,51 1,19 9,90 11,06 11,
			The state of the s		
Сульфобензойная (пара) Сульфосалициловая Терефталевая Трихлоруксусная Уксусная Фенилуксусная Фенилуксусная Фенилуксусная Фенилуксусная Фенилуксусная Фенилуксусная Марараяя Хлорбензойная (пара) Хлорбензойная (пара) Хлорбензойная (пара) Хлорбензойная (пара) Хлорфенол (пара) Хлорфенол (пара) Хлорфенол (пара) Хлорфенол (пара) Хлорфенол (пара) Хлорфенол (пара) Хлорфенол (пара) Хлорфенол (пара) Хлорфенол (пара) Хлорфенол (пара) Хлорфенол (пара) Хлорфенол (пара)	HOOCC, H, SO, H HOOCC, H, CODH CH, COOH CH, CH, C		ស្តីស្តីស្តីស្តីស្តីស្តីស្តីស្តីស្តីស្តី	4,3. 10-1 2,0. 10-4 2,0. 10-4 2,0. 10-4 4,88 10-4 1,0. 10-1 1,0. 1	• • • • • • • • • • • • • • • • • • •
Энантовая	CH ₃ (CH ₂) ₅ COOH	4	3) 1	•

356				, , , ,	Продолжение таблицы	nabauus
Название	Формула	7.18	Степень нонизации	јемпера- тура.	Константа нонизации К _b	$pK_b = -\lg K_b.$
Пропиламин	C,H,NH,			52	3,4 · 10-4	3,47
Пурин	$C_bH_4N_4$		-	22	$2,45 \cdot 10^{-12}$	11,61
Семикарбазид	$NH_2CONHNH_2$			53	$2,7 \cdot 10^{-11}$	10,57
Серин	HOCH ₂ CH(NH ₂)COOH		-	ĸ	1,62 · 10-12	11,80*
Тиомочевина	$CS(NH_2)_2$		-	23	$1,1 \cdot 10^{-12}$	11,97
Толундин (орто)	$CH_3C_6H_4NH_3$ (1, 2)		-	53	2,8 . 10-10	9,55
Толуидин (мета)	CH ₃ C ₆ H ₄ NH ₂ (1, 3)	•	-	23	5,4 .,10-10	9,27
Толуидин (пара)	CH ₃ C ₆ H ₄ NH ₂ (1, 3)		-	22	1,2 · 10-9	8,92
Триметиламин	(CH ₃) ₃ N		-	23	$6,5 \cdot 10^{-6}$	4,19
Триэтиламин	$(C_2H_5)_3N$		-	23	$1,0 \cdot 10^{-3}$	2,99
Уротропин	(CH ₂),8N ₄		<u>-</u>	52	$1,4 \cdot 10^{-9}$	8,87
Фенилаланин	C,H,CH,CH(NH2)COOH	•	-	ĸ	$1,3 \cdot 10^{-12}$	11,11
Фенилгидразин	C ₆ H ₅ NHNH ₂		-	32	1,6 · 10-9	8,80
Хинолин	C,H,N			13 3	$7.4 \cdot 10^{-10}$	9,13
Циклогексиламин	$C_6H_{11}NH_2$		-	23	4,6 . 10-4	3,34
Цистеин	HSCH ₂ CH(NH ₂)COOH		-	8	$7,23 \cdot 10^{-13}$	12,86*
Этаноламин	HOCH2CH2NH2	1	-	क्ष	1,8 · 10-5	4,75
Этиламин	C ₂ H ₆ NH ₃		-	18	4,7 · 10-4	3,67
Этилендиамин	NH2CH2CH2NH2		-	52	1,2 . 10-4	3,92
			87	ĸ	9,8 · 10-8	7,01
	er e	-				

3.11. ПРОИЗВЕДЕНИЯ РАСТВОРИМОСТИ ТРУДНОРАСТВОРИМЫХ ВЕІНЕСТВ В ВОДЕ

Произведения растворимости (ПР) электролита, диссоциирующего по уравнению

$$Kt_xAn_y \gtrsim xKt^{y+} + yAn^{x-}$$
,

определяется по формуле $\Pi P = a_{Kt}^x a_{An}^y$, где a_{Kt} — активность катиона; a_{An} — активность аниона.

Показателем произведения растворимости рПР называют логарифм произведения растворимости, взятый с обратным знаком: рПР == — lg ПР.

При вычислении растворимости малорастворимой соли в воде или в растворе других солей по значению произведения растворимости необходимо учитывать возможность протекания реакции между ионами данной соли с ионами водорода (и другими катионами), ионами гидроксила (и другими анионами), а также возможность образования комплексных ионов. Также следует учитывать наличие в растворе недиссоциированных молекул растворенной соли, концентрация которых находится умножением произведения растворимости ПР на полную константу устойчивости β соответствующего нейтрального комплекса (логарифм которой находят по таблице на с. 324). Таким образом, к величине растворимости, найденной по произведению растворимости, необходимо добавить величину

$$\Pi P \beta = \Pi P \cdot \frac{[Kt_x An_y]}{[Kt^{y+}]^x [An^{x-}]^y}.$$

Формула вещества	Образующиеся ионы	Произведение раствори- мости (ПР)	Показа- тель про- изведения раствори- мости, рПР
Ag ₃ AsO ₃	$3Ag^+ + AsO_3^{3-}$	1 · 10-17	17,00
Ag ₃ AsO ₄	$3Ag^+ + AsO_4^{3-}$	1 • 10-22	22,00
AgBr	$Ag^+ + Br^-$	$5.3 \cdot 10^{-13}$	12,28
AgCN	$Ag^+ + CN^-$	$1,4 \cdot 10^{-16}$	15,84
Ag ₂ CO ₃	$2Ag^+ + CO_3^{2-}$	$1,2 \cdot 10^{-12}$	11,09
$Ag_2C_2O_4$	$2Ag^{+} + C_{2}O_{4}^{2-}$	$3.5 \cdot 10^{-11}$	10,46
AgCl .	$Ag^+ + Cl^-$	$1,78 \cdot 10^{-10}$	9,75
Ag ₂ CrO ₄	$2Ag^+ + CrO_4^{2-}$	$1,1 \cdot 10^{-12}$	11,95
Ag ₂ Cr ₂ O ₇	$2Ag^{+} + Cr_{2}O_{7}^{2-}$	1 · 10-10	10,00
$Ag_3[Co(CN)_6]$	$3Ag^{+} + [Co(CN)_{6}]^{3-}$	3,9 · 10 ⁻²⁶	25,41

Формула вещества	Образующиеся ионы	Произведение раствори- мости (ПР)	Показа- тель про- изведения раствори мости, рПР
Ag ₃ [Fe(CN) ₆]	3Ag++ [Fe(CN) ₆]3-	1 · 10-22	22,00
Ag ₄ [Fe(CN) ₆]	$4Ag^+ + [Fe(CN)_6]^{4-}$	$8,5 \cdot 10^{-45}$	44,07
AgI	$Ag^+ + I^-$	$8,3 \cdot 10^{-17}$	16,08
AgIO ₃	$Ag^+ + IO_3^-$	$3,0 \cdot 10^{-8}$	7,52
Ag_2MoO_4	$2Ag^{+} + MoO_{4}^{2-}$	2,8 · 10 ⁻¹²	11,55
AgN ₃	$Ag^+ + N_3^-$	2,9 · 10 ⁻⁹	8,54
$Ag_2O(+H_2O)$	Ag+ + OH-	$1,6 \cdot 10^{-8}$	7,80
AgOCN	$Ag^+ + OCN^-$	2,3 · 10 ⁻⁷	6,64
Ag ₃ PO ₄	$3Ag^+ + PO_4^{3-}$	$1,3 \cdot 10^{-20}$	19,89
Ag ₂ S	$2Ag^+ + S^{2-}$	2,0 • 10-50	49,7
AgSCN	Ag+ + SCN⁻	$1,1 \cdot 10^{-12}$	11,97
Ag ₂ SO ₃	$2Ag^{+} + SO_{3}^{2-}$	1,5 · 10-14	13,82
AgSeCN	Ag+ + SeCN→	4,0 · 10 ⁻¹⁶	15,40
Ag ₂ SeO ₃	$2Ag^+ + SeO_3^{2}$	9,8 · 10 ⁻¹⁶	15,01
Ag ₂ SeO ₄	$2Ag^+ + SeO_4^{2}$	5,6 10~8	7,25
Ag_2WO_4	$2Ag^+ + WO_{a}^{2}$	$5,5 \cdot 10^{-12}$	1,26
AlAsO ₃	$Al^{3+} + AsO_3^{3-}$	1,6 · 10-16	15,80
Al(OH) ₃	$A1^{3+} + 3OH^{-}$	1 · 10-32	32,00
Al(OH) ₃	$A1OH^{2+} + 2OH^{-1}$	1 • 10-23	23,00
Al(OH) ₃	$H^+ + AlO_3^-$	1,6 · 10-13	12,80
AIPO ₄	$Al^{3+} + PO_4^{3-3}$	5,75 · 10 ⁻¹⁹	18,24
A uBr	Au+ + Br-	$5.0 \cdot 10^{-17}$	16,30
AuBr ₃	Au ³⁺ + 3Br*	$4,0 \cdot 10^{-86}$	35,40
AuCl	Au++ Cl-	2,0 · 10-18	12,70
AuCl ₃	$Au^{3+} + 3C1^{-3}$	$3,2 \cdot 10^{-25}$	24,50
AuOH	Au+ + OH-	$7.9 \cdot 10^{-20}$	19,10
Au(OH)3	Au³+ + 3OH³	$5.5 \cdot 10^{-48}$	45,20

Формула вещества	Образующнеся ноны	Произведение раствори- мости (ПР)	Показа- тель про изведения раствори мости, рПР
AuI	Au+ + I-	$1,6 \cdot 10^{-23}$	22,80
AuI ₃	$Au^{3+} + 3I^{-}$	1 · 10-46	46,00
$Ba_3(AsO_4)_2$	$3Ba^{2+} + 2AsO_{4}^{3-}$	$7.8 \cdot 10^{-51}$	50,11
$Ba(BrO_3)_2$	$Ba^{2+} + 2BrO_3$	$5.5 \cdot 10^{-6}$	5,26
BaCO ₃	$Ba^{2+} + CO_3^{2-3}$	$4,0 \cdot 10^{-10}$	9,40
BaC_2O_4	$Ba^{2+} + C_2O_4^{2-}$	$1.1 \cdot 10^{-7}$	6,96
BaCrO ₄	$Ba^{2+} + CrO_A^{2-}$	$1,2 \cdot 10^{-10}$	9,93
BaF ₂	$Ba^{2+} + 2F^{-*}$	$1,1 \cdot 10^{-6}$	5,98
$Ba_2[Fe\ (CN)_6]$	$2Ba^{2+} + [Fe(CN)_6]^{2-}$	$3 \cdot 10^{-8}$	7,52
$Ba(IO_3)_2$	$Ba^{2+} + 2IO_3$	1,5 · 10 ⁻⁹	8,82
BaMnO ₄	$Ba^{2+} + MnO_{4}^{2-}$	$2.5 \cdot 10^{-10}$	9,60
BaMoO ₄	$Ba^{2+} + MoO_4^{2-}$	4 · 10-8	7,40
BaPO ₃ F	$Ba^{2+} + PO_3F_{3-}^{2-}$	4 · 10 ⁻⁷	6,40
$Ba_3(PO_4)_2$	$3Ba^{2+} + 2PO_4^{3-}$	$6 \cdot 10^{-39}$	38,22
$Ba_2P_2O_7$	$2Ba^{2+} + P_2O_7^{4-}$	$3 \cdot 10^{-11}$	10,52
BaSO ₃	$Ba^{2+} + SO_{2}^{2-}$	8 · 10 ⁻⁷	6,1
BaSO ₄	$Ba^{2+} + SO_4^{2-}$	$1,1 \cdot 10^{-10}$	9,97
BaS ₂ O ₃	$Ba^{2+} + S_2O_2^{2-}$	$1,6 \cdot 10^{-5}$	4,79
BaSeO ₄	$Ba^{2+} + SeO_4^{2-}$	$5 \cdot 10^{-8}$	7,30
Be(OH) ₂	$Be^{2+} + 2OH^{-}$	$6.3 \cdot 10^{-22}$	21,2
Be(OH) ₂	$BeOH^+ + OH^-$	$2 \cdot 10^{-14}$	13,7
BiAsO ₄	$Bi^{3+} + AsO_4^{3-}$	$2.8 \cdot 10^{-10}$	9,36
$\operatorname{Bi}_{2}(C_{2}O_{4})_{3}$	$2Bi^{3+} + 3C_2O_4^{2-}$	$4 \cdot 10^{-36}$	35,4
Bil ₃	Bi ³⁺ + 3I ⁻	$8,1 \cdot 10^{-19}$	18,09
BiOCl BiOCl(+H ₂ O)	BiO+ + Cl- Bi3+ + 2OH- + Cl-	$7 \cdot 10^{-9}$ $1.8 \cdot 10^{-31}$	8,85 30,75
BiOOH 1120)	BiO++OH-	4 · 10-10	9,4
BiPO ₄	$Bi^{3+} + PO_A^{3-}$	$1,3 \cdot 10^{-23}$	29,90
Bi_2S_3	$2Bi^{3+} + 3S^{2-}$	1 · 10-97	97,00
Ca ₃ (AsO ₄) ₂	$3Ca^{2+} + 2AsO_4^{3-}$	$6.8 \cdot 10^{-19}$	18,17
$CaC_4H_4O_6$ (тартрат)	$Ca^{2+} + C_4H_4O_6^{2-}$	$7,7 \cdot 10^{-7}$	6,11
CaCO ₃	$Ca^{2+} + CO_3^{2-}$	$3.8 \cdot 10^{-9}$	8,42
CaC ₂ O ₄	$Ca^{2+} + CO_3^{2-}$ $Ca^{2+} + C_2O_4^{2-}$	$2,3 \cdot 10^{-9}$	8,64
CaCrO ₄	Ca ²⁺ + CrO ₄ ²⁻	7,1 · 10 ⁻⁴	3,15
CaF ₂	$Ca^{2+} + 2F^{-1}$	$4,0 \cdot 10^{-11}$	10,40
CaHPO ₄	$Ca^{2+} + HPO_{A}^{2-}$	$2.7 \cdot 10^{-7}$	6,57

Формула вещества	Образующиеся ноны	Произведение раствори- мости (ПР)	Показа- тель про- изведения раствори- мости, рПР
Ca(IO ₃) ₂	$Ca^{2+} + 2IO_{3}^{-}$	7,0 · 10-7	6,15
$Ca(NH_4)_2[Fe(CN)_6]$	$Ca^{2+} + 2NH_{4}^{+} +$	4 · 10-8	7,4
A	$+ [Fe(CN)_6]^{4-}$		
Ca(OH) ₂	$(a^{2+} + 2OH^{-})$	5,5 · 10 ⁻⁶	5,26
Ca(OH) ₂	$CaOH^{+} + OH^{-}$	1,4 · 10-4	3,86
$Ca_3(PO_4)_2$	$3Ca^{2+} + 2PO_4^{3-}$	2,0 · 10 ⁻²⁹	28,70
CaSO ₃	$Ca^{2+} + SO_3^{2-}$	$3,2 \cdot 10^{-7}$	6,5
CaSO ₄	$Ca^{2+} + SO_4^{2-}$	$2,5 \cdot 10^{-5}$	4,6
CaSeO ₃	$Ca^{2+} + SeO_3^{2-}$	$4,7 \cdot 10^{-6}$	5,53
Ca[SiF ₆]	$Ca^{2+} + [SiF_6]^{2-}$	$8,1 \cdot 10^{-4}$	3,09
CaWO ₄	$Ca^{2+} + WO_4^{2-}$	$9.0 \cdot 10^{-9}$	8,06
Cd ₃ (AsO ₄) ₂	$3Cd^{2+} + 2AsO_4^{3-}$	$2,2 \cdot 10^{-33}$	32,66
Cd(CN) ₂	$Cd^{2+} + 2CN^{-}$	1,0 · 10-8	8,0
CdCO3	$Cd^{2+} + CO_3^{2-}$	$1.0 \cdot 10^{-12}$	12,0
CdC ₂ O ₄	$Cd^{2+} + C_2O_4^{2-}$	$1.5 \cdot 10^{-8}$	7,8
Cd ₂ [Fe(CN) ₆]	$2Cd^{2+} + [Fe(CN)_6]^{4-}$	4,2 · 10 ⁻¹⁸	17,38
Cd(OH) ₂ (свежеосаж-	$Cd^{2+} + 2OH^{-}$	$2,2 \cdot 10^{-14}$	13,66
денный) Cd(OH) ₂ (после старе-	$Cd^{2+} + 2OH^{-}$	$5.9 \cdot 10^{-15}$	14,23
ния)		$2 \cdot 10^{-19}$	18,7
CdS	$Cd^{2+} + S^{2-}$	$1,6 \cdot 10^{-28}$	27,8
CdSeO ₃	$Cd^{2+} + SeO_3^{2-}$	$5.0 \cdot 10^{-9}$	8,30
$Ce_2(C_2O_4)_3$	$2Ce^{3+} + 3C_2O_4^{2-}$	$2.5 \cdot 10^{-29}$	28,60
Ce(IO ₃) ₃	$Ce^{3+} + 3IO_3^-$	$3.2 \cdot 10^{-10}$	9, 50
Ce(IO ₈) ₄	$Ce^{4+} + 4IO_3^-$	5 · 10 ⁻¹⁷	16,3
Ce(OH) ₃	Ce ³⁺ + 3OH ⁻	$4 \cdot 10^{-25}$	24,40
CoCO ₃	$Co^{2+} + CO_3^{2-}$	$1,05 \cdot 10^{-10}$	9,98
CoC ₂ O ₄	$Co^{2+} + C_2O_4^{2-}$	$6.3 \cdot 10^{-8}$	7,2
Co ₂ [Fe(CN) ₆]	$2\text{Co}^{2+} + [\text{Fe}(\text{CN})_6]^{4-}$	$4.8 \cdot 10^{-28}$	37,32
Со(ОН), (голубая)	$Co^{2+} + 2OH^{-}$ $Co^{2+} + 2OH^{-}$	$6.3 \cdot 10^{-15}$	14,20
Со(ОН) ₂ (розовый, све-	$Co^{2+} + 2OH^{-}$	$1,6 \cdot 10^{-15}$	14,80
жеосажденный) Со(ОН) ₂ (розовый,	$Co^{2+} + 2OH^-$	2. 10-16	15,70
после старения) Со(ОН) _з	$Co^{3+} + 3OH^{-}$	4 · 10-45	44,4
CoS-α	$Co^{2+} + S^{2-}$	$4.0 \cdot 10^{-21}$	20,40
CoS-β	$Co^{2+} + S^{2-}$	$2.0 \cdot 10^{-25}$	24,70
CrAsO ₄	$Cr^{3+} + AsO_4^{3-}$	$7.8 \cdot 10^{-21}$	20,11
Cr(OH) ₂	Cr2+ + 2OH-	$1.0 \cdot 10^{-17}$	17,0

Формула вещества	Образующиеся ноны	Произведение раствори- мости (ПР)	Показа- тель про- изведения раствори- мости, рПР
Cr(OH) ₃	Cr ³⁺ + 3OH-	$6,3 \cdot 10^{-31}$	30,20
Cr(OH) ₃	$CrOH^{2+} + 2OH^{-}$	7,9 · 10-21	20,10
Cr(OH ₃)	$H^+ + H_2CrO_3^-$ $Cr^{3+} + PO_3^{3-}$	4,0 · 10 ⁻¹⁵	14,4
СтРО (фиолетовый)		1,0 · 10-17	17,00
СгРО4 (зеленый)	$Cr^{3+} + PO_4^{3-}$	2,4 · 10-23	22,62
Cs ₃ [Co(NO ₂) ₆]	$3Cs^{+} + [Co(NO_{2})_{6}]^{3-}$	5,8 · 10-16	15,24
CsMnO ₄	$Cs^+ + MnO_4^-$	9,1 · 10-5	4,08
Cs ₂ [PtCl ₆]	$2Cs^{+} + [PtCl_{6}]^{2-}$	3 · 10-8	7,5
$Cu_3(AsO_4)_2$	$3Cu^{2+} + 2AsO_4^{3-}$	7,6 · 10-36	35,12
CuBr CuCN	Cu ⁺ + Br ⁻ Cu ⁺ + CN ⁻	5,25 · 10-9	8,28
CuCO ₈	$Cu^{2+} + CO_3^{2-}$	3,2 · 10-20	19 ,49
_		2,5 · 10-10	9,6
CuC ₂ O ₄	$Cu^{2+} + C_2O_4^{2-}$	3 · 10-8	7,5
CuCl	$Cu^+ + Cl^-$	1,2 · 10-6	5,92
CuCrO ₄	$Cu^{2+} + CrO_4^{2-}$	$3,6 \cdot 10^{-6}$	5,44
Cu ₂ [Fe(CN) ₆] Cul	$2Cu^{2+} + [Fe(CN)_6]^{4-}$ $Cu^{+} + I^{-}$	$1,3 \cdot 10^{-16}$ $1,1 \cdot 10^{-12}$	15,8 9 11, 96
Cu(IO ₈) ₂	$Cu^{2+} + 2IO^{-}$	$7.4 \cdot 10^{-8}$	7,13
CuN _s	$Cu^+ + N_3^-$	5,0 · 10 ⁻⁹	8,3
$Cu_2O(+H_2O)$	2Cu+ + 2OH-	1 · 10-14	14,0
Cu(OH) ₂	$Cu^{2+} + 2OH^{-}$	$2,2 \cdot 10^{-20}$	19,6 6
Cu(OH) ₂	$OH^- + CuOH^+$	$2,2 \cdot 10^{-13}$	12.66
Cu(OH) ₂	$H^+ + HCuO_2^-$	1 · 10 ⁻¹⁹	19,0
$Cu_2(OH)_2CO_3$	$2Cu^{2+} + 2OH^{-} + CO^{2-}$	$1,7 \cdot 10^{-34}$	33,76
$Cu_3(OH)_2(CO_3)_2$	$3Cu^{2+} + 2OH^{-} + 2CO_3^{2-}$	1,1 · 10-46	45,96
Cu ₂ P ₂ O ₇	$2Cu^{2+} + P_2O_7^{4-}$	$8,3 \cdot 10^{-16}$	15,08
CuS	$Cu^{2+} + S^{2-}$	6,3 · 10-36	35,20
Cu ₂ S	$2Cu^{+} + S^{2-}$	$2.5 \cdot 10^{-48}$	47,60
CuSCN CuSe	$Cu^{+} + SCN^{-}$ $Cu^{2+} + Se^{2-}$	4,8 10-15	14,32
CuSe CuSeO ₃	$Cu^{2+} + Se^{2-}$ $Cu^{2+} + SeO_3^{2-}$	1 · 10-49	49
FeAsO ₄	$Fe^{3+} + AsO_4^{3-}$	1,7 · 10-8	7,78
FeCO ₃	$Fe^{2+} + CO_3^{2-}$	5,8 · 10 ⁻²¹	20,24
	. •	3,5 · 10-11	10,46
FeC ₂ O ₄	$Fe^{2+} + C_2O_4^{2-}$	2 · 10-7	6,7
$Fe_4[Fe(CN)_6]_3$	$4Fe^{3+} + [Fe(CN)_6]^{4-}$ $Fe^{2+} + 2OH^{-}$	$3.0 \cdot 10^{-41}$	40,52
Fe(OH) ₂ Fe(OH) ₂	FeOH+ + OH-	8 · 10 ⁻¹⁶ 3 · 10 ⁻¹⁰	15,1 9,5
Fe(OH) ₂	$H^+ + HFeO_2^-$	8 · 10-20	9,5 19,1

Формула вещества	Образующиеся ионы	Произведение раствори- мости (ПР)	Показа- тель про- изведения раствори- мости, рПР
Fe(OH) ₃ (свежеосаж- денный)	Fe ³⁺ + 3OH ⁻	6,3 · 10-38	37,2
Fe(OH) ₃ (после старе- ния)	•	6,3 · 10-39	38,2
FePO ₄	$Fe^{3+} + PO_4^{3-}$	$1,3 \cdot 10^{-22}$	21,89
FeS	$Fe^{2+} + S^{2-}$	5 · 10 ⁻¹⁸	17,3
FeS ₂	$Fe^{2+} + S_2^{2-}$	$6.3 \cdot 10^{-31}$	30,2
FeSe	$Fe^{2+} + Se^{2-}$	$1 \cdot 10^{-26}$	26
$Fe_2(SeO_3)_3$	$2\text{Fe}^{3+} + 3\text{SeO}_{3}^{2-}$	$2 \cdot 10^{-31}$	30,7
$Ga_4[Fe(CN)_6]_3$	$4Ga^{3+} + 3 [Fe(CN)_6]^{4-}$	$1.5 \cdot 10^{-34}$	33,82
Ga(OH) ₃	Ga¾+ + 3OH-	$1.6 \cdot 10^{-37}$	36,8
Ga(OH) ₃	$H^+ + H_2GaO_3^-$ $Ge^{4+} + 4OH^-$	2,5 · 10-11	10,6
$GeO_2(+2H_2O)$ GeS	$Ge^{2+} + S^{2-}$	$1 \cdot 10^{-57}$ $3 \cdot 10^{-35}$	57 34, 5
Hg ₂ Br ₂	$Hg^{2+} + 2Br^{-}$	$5.8 \cdot 10^{-23}$	22,24
Hg ₂ CO ₃		8,9 · 10-17	16,05
Hg ₂ C ₂ O ₄	$Hg_{\alpha}^{2+} + C_{\alpha}Q_{\alpha}^{2-}$	1 - 10-13	13
Hg ₂ Cl ₂	$Hg_{2}^{2+} + 2Cl^{-}$	$1.3 \cdot 10^{-18}$	17,88
Hg ₂ CrO ₄	$Hg_{a}^{2+} + CrO_{4}^{2-}$	5,0 · 10 ⁻⁹	8,70
Hg_2I_2	$Hg_{a}^{2+} + 2I^{-}$	$4,5 \cdot 10^{-29}$	28,35
$Hg_2(IO_3)_2$	$Hg_{2}^{2+} + 2I^{-}$ $Hg_{2}^{2+} + 2IO_{3}^{-}$ $Hg_{2}^{2+} + 2OH^{-}$ $Hg_{2}^{2+} + 2OH^{-}$	$2,45 \cdot 10^{-14}$	13,71
$Hg_2O(+H_2O)$	$Hg_{a}^{2+} + 2OH^{-}$	$1,6 \cdot 10^{-23}$	22,8
HgO(+H ₂ O)	$Hg^{2} + 2OH^{-}$	$3.0 \cdot 10^{-26}$	25,52
HgS (черный)	$Hg^{2+} + S^{2-}$	$1,6 \cdot 10^{-52}$	51.8
HgS (красный)	$Hg^{2+} + S^{2-}$	4,0 · 10-53	52,40
Hg ₂ S	$Hg_2^{2+} + S^{2-}$	1 · 10-47	47
Hg ₂ (SCN) ₂	$Hg_{2}^{2+} + S^{2-}$ $Hg_{2}^{2+} + 2SCN^{-}$ $Hg_{2}^{2+} + SO_{3}^{2-}$ $Hg_{2}^{2+} + SO_{4}^{2-}$ $Hg_{2}^{2+} + SO_{4}^{2-}$ $Hg_{3}^{2+} + SO_{4}^{2-}$	$3,0 \cdot 10^{-20}$	19,52
Hg ₂ SO ₃	$Hg_{2}^{2} + SO_{3}^{2}$	$1 \cdot 10^{-27}$	27
Hg ₂ SO ₄	$Hg_2^{2+} + SO_4^{2-}$	6,8 · 10 ⁻⁷	6,17
HgSe	$Hg^{2+} + Se^{2-}$	$1 \cdot 10^{-59}$	59
$In_4[Fe(CN)_6]_3$ $In(OH)_3$	$4In^{3+} + 3[Fe(CN)_{6}]^{4-}$ $In^{3+} + 3OH^{-}$	$1,9 \cdot 10^{-44}$ $5 \cdot 10^{-34}$	43,72 33,3
In ₂ S ₃	$2In^{3+} + 3S^{2-}$	5.10^{-74}	73,24
$IrO_{\bullet}(+2H_{\bullet}O)$	$Ir^{4+} + 4OH^-$ $Ir^{3+} + 3OH^-$	$1.6 \cdot 10^{-72}$	71,8
$Ir_2\mathring{\mathbf{O}}_3(+3\mathring{\mathbf{H}}_2\acute{\mathbf{O}})$ $Ir\mathring{\mathbf{S}}_2$	$1r^{3+} + 3OH^{-}$ $1r^{4+} + 2S^{2-}$	$2 \cdot 10^{-48}$ $1 \cdot 10^{-75}$	47,7 75
$K_3[Co(NO_2)_6]$	$3K^{+} + [Co(NO_{2})_{6}]^{3-}$	4,3 · 10-10	9,37
KIO4	$K^+ + IO_4^-$	8.3 · 10 ⁻⁴	3,08
$K_2Na[Co(NO_2)_6]$	$2K^{+}+Na^{+}+[Co(NO_{2})_{6}]^{3-}$	2.2 · 10-11	10,66

Формула вещества	Образующиеся ионы	Произведение раствори- мости (ПР)	Показа- тель про- изведения раствори- мости, рПР
K ₂ [PdCl ₄]	2K++[PdCl ₄] ²⁻	1,6 · 10-5	4,9
K ₂ [PdCl ₆]	$2K^{+} + [PdCl_{6}]^{2-}$	$6,0 \cdot 10^{-6}$	5,2
K ₂ [PtCl ₆]	$2K^{+} + [PtCl_{6}]^{2-}$	$1,1 \cdot 10^{-5}$	4,96
$K_2[PtF_6]$ $K_2[SiF_6]$	$2K^{+} + [PtF_{6}]^{2-}$ $2K^{+} + [SiF_{6}]^{2-}$	$2.9 \cdot 10^{-5}$ $8.7 \cdot 10^{-7}$	4,54 6,06
$La_2(CO_3)_3$	$2La^{3+} + 3CO_3^{2-}$	4 · 10-34	33,4
$La_2(C_2O_4)_3$	$2La^{3+} + 3C_2O_4^{2-}$	$1 \cdot 10^{-25}$	25,0
$La(IO_3)_3$	$La^{3+} + 3IO_3$	$6,2 \cdot 10^{-12}$	11,21
$La_2(MoO_4)_3$	$2La^{3+} + 3MoO_4^{2-}$	$2,2 \cdot 10^{-21}$	20,66
$La_2(MOO_4)_3$ $La(OH)_3$	$La^{2+} + 3OH^{-}$	$6.5 \cdot 10^{-20}$	19,19
$La(OH)_3$ (после старе-		$1,3 \cdot 10^{-21}$	20,89
ния) La ₂ S ₃	$2La^{3+} + 3S^{2-}$	$2,0 \cdot 10^{-13}$	12,70
$Mg_3(AsO_4)_2$	$3Mg^{2+} + 2AsO_4^{3-}$	$2,1 \cdot 10^{-20}$	19,68
MgCO ₃	$Mg^{2+} + CO_3^{2-}$	$2,1 \cdot 10^{-5}$	4,68
MgC ₂ O ₄	$Mg^{2+} + C_2O_4^{2-}$	$8.5 \cdot 10^{-5}$	4,07
MgF ₂	$Mg^{2+} + 2F^{-}$	$6.5 \cdot 10^{-9}$	8,19
MgNH ₄ PO ₄	$Mg^{2+} + NH_4^+ + PO_4^{3-}$	$2.5 \cdot 10^{-13}$	12,6
Mg(OH) ₂ (свежеосаж- денный)		$6,0 \cdot 10^{-10}$	9,22
Mg(OH) ₂ (после старения)	$Mg^{2+} + 2OH^{-}$	$7,1 \cdot 10^{-12}$	11,15
$Mg_3(PO_4)_2$	$3Mg^{2+} + 2PO_4^{3-}$	1 . 10-13	13,0
$Mn_3(AsO_4)_2$	$3Mn^{2+} + 2AsO_4^{3-}$	$1,9 \cdot 10^{-29}$	28,72
MnCO ₃	$Mn^{2+} + CO_3^{2-}$	$1.8 \cdot 10^{-11}$	10,74
MnC ₂ O ₄	$Mn^{2+} + C_2O_4^{2-}$	5 · 10 ⁻⁶	5,3
$Mn_2[Fe(CN)_6]$	$2Mn^{2+} + [Fe(CN)_{6}]^{4-}$	$7.9 \cdot 10^{-13}$	12,10
Mn(OH) ₂	Mn ²⁺ - 1 2OH -	$1,9 \cdot 10^{-13}$	12,72
Mn(OH) ₃ Mn(OH) ₄	$Mn^{3+} + 3OH^-$ $Mn^{4+} + 4OH^-$	$1 \cdot 10^{-36}$ $1 \cdot 10^{-56}$	36 56
MnS (телесного цвета)	$Mn^{2+} + S^{2-}$	$2.5 \cdot 10^{-10}$	9,60
MnS (зеленый)	$Mn^{2+} + S^{2-}$.	$2.5 \cdot 10^{-13}$	12,60
Mo(OH) ₄	$Mo^{4+} + 4OH^{-}$	1 . 10-50	50
$(NH_4)_3[Co(NO_2)_6]$	$3NH_{\frac{4}{5}}^{+} + [Co(NO_2)_6]^{3-}$	$7.6 \cdot 10^{-6}$	5,12
(NH ₄) ₂ [IrCl ₆]	$2NH_{\frac{4}{4}}^{\frac{7}{4}} + [IrCl_{6}]^{2-}$	$3 \cdot 10^{-5}$	4,5
$(NH_4)_2[PtCl_6]$	$2NH_{4}^{+} + [PtCl_{6}]^{2-}$	$9 \cdot 10^{-6}$	5,05
Na ₃ [AlF ₆]	$3Na^+ + [AIF_6]^{3-}$	$4,1 \cdot 10^{-10}$	9,39
$Na[Sb(OH)_6]$ $Na_2[SiF_6]$	$Na^{+} + [Sb(OH)_{6}]^{-}$ $2Na^{+} + [SiF_{6}]^{2-}$	$4 \cdot 10^{-8}$ $2.8 \cdot 10^{-4}$	7,4 3,56

Формула вещества	Образующиеся ионы	Произведение раствори- мости (ПР)	Показа- тель про- изведения раствори- мости, рПР
$Ni_3(AsO_4)_2$	$3Ni^{2+} + 2AsO_4^{3-}$	$3,1 \cdot 10^{-26}$	25,51
$Ni(C_4H_7O_2N_2)_2$ (диме-		$2,3 \cdot 10^{-25}$	24,64
тилглиоксимат)		-2 10~23	00.5
Ni(CN) ₂	$Ni^{2+} + 2CN^{-}$	$3 \cdot 10^{-23}$ $1.3 \cdot 10^{-7}$	22,5
NiCO ₃	$Ni^{2+} + CO_3^{2-}$,	6,87
NiC ₂ O ₄	$Ni^{2+} + C_2O_4^{2-}$	4 · 10-10	9,4
Ni ₂ [Fe(CN) ₆]	$2Ni^{2+} + [Fe(CN)_8]^{4-}$	$1,3 \cdot 10^{-15}$ $2,0 \cdot 10^{-15}$	14,89 14,70
Ni(OH) ₂ (свежеосаж- денный)	$Ni^{2+} + 2OH^{-}$	2,0 • 10	14,70
Ni(OH) ₂ (после старе-	$Ni^{2+} + 2OH^{-}$	$6.3 \cdot 10^{-18}$	17,20
ния)	<u>.</u>		
$Ni_2P_2O_7$	$2Ni^{2+} + P_2O_7^{4-}$	1,7 · 10 ⁻¹³	12,77
α-NiS	$Ni^{2+} + S^{2-}$	$3,2 \cdot 10^{-19}$	12,50
β-NiS	$Ni^{2+} + S^{2-}$ $Ni^{2+} + S^{2-}$	$2.0 \cdot 10^{-26}$	24,0 25,70
γ-NiS	$3Pb^{2+} + 2AsO_4^{3-}$	4,1 · 10-36	35,39
Pb ₃ (AsO ₄) ₂ PbBr ₂	$Pb^{2+} + 2Br^{-}$	9,1 10-6	5,04
$Pb(BrO_3)_2$	$Pb^{2+} + 2BrO_3$	8.0 · 10 ⁻⁶	5,10
PbCO ₃	$Pb^{2+} + CO_3^{2-}$	$7.5 \cdot 10^{-14}$	13,13
-	_	4,8 · 10 ⁻¹⁰	9,32
PbC ₂ O ₄	$Pb^{2+} + C_2O_4^{2-}$ $Pb^{2+} + 2C1^{-}$	1.6 · 10 ⁻⁵	4.79
PbCl ₂ PbClF	Pb ²⁺ + Cl ⁻ + F ⁻	2,8 - 10-9	8,55
PbCrO ₄	$Pb^{2+} + CrO_4^{2-}$	$1.8 \cdot 10^{-14}$	13,75
PbF ₂	$Pb^{2+} + 2F^{-}$	$2,7 \cdot 10^{-8}$	7,57
Pb ₂ [Fe(CN) ₆]	$2Pb^{2+} + [Fe(CN)_6]^{4-}$	$3.55 \cdot 10^{-19}$	48,02
PbI ₂	$Pb^{2+} + 2I^{-}$	1,1 10-9	8,98
Pb(IO ₃) ₂	$Pb^{2+} + 2IO_3^-$	$2,6 \cdot 10^{-13}$	12,58
$Pb(N_3)_2$	$Pb^{2+} + 2N_3^-$	2,6 · 10 ⁻⁹	8,58
$PbO_2(+2H_2O)$	Pb4 + 4OH-	$3.0 \cdot 10^{-68}$	65,5
Pb ₃ O ₄	$2Pb^{2+} + PbO_4^{4-}$	$5,3 \cdot 10^{-51}$	50,28
PbO(+H ₂ O) (красный)	$Pb^{2+} + 2OH^{-}$	$5 \cdot 10^{-16}$	15,3
PbO(+H ₂ O) (желтый)	Pb ²⁺ + 2OH	$7.9 \cdot 10^{-16}$	15,1
$Pb_3(OH)_2(CO_3)_2$	$3Pb^{2+} + 2OH^{-} + 2CO_3^{2-}$	3,5 · 10 ⁻⁴⁶	45,46
РЬОНСІ	$Pb^{2+} + OH^{-} + CI^{-}$	$2 \cdot 10^{-14}$	13,7 42,10
$Pb_3(PO_4)_2$	$3Pb^{2+} + 2PO_4^{3-}$	$7.9 \cdot 10^{-43}$	
PbS	$Pb^{2+} + S^{2-}$	2,5 10 ⁻²⁷	7,20
PbSO ₄	$Pb^{2+} + SO_4^{2-}$	1,6 · 10 ⁻⁸	-
PbS_2O_3	$Pb^{2+} + S_2O_3^{2-}$	$4.0 \cdot 10^{-7}$	6,40
PbSe	$Pb^{2+} + Se^{2-}$	$1 \cdot 10^{-38}$	32

Формула вещества	Образующиеся ноны	Произведение раствори- мости (ПР)	Показа- тель про- изведения раствори- мости, рПР
Pd(OH) ₂	Pd ²⁺ + 2OH-	1 · 10-31	31
Pd(OH)4	Pd ⁴⁺ + 4OH ⁻	6,5 · 10-71	70,2
PtBr ₄	$Pt^{4+} + 4Br^{-}$	3 · 10-41	40,5
PtCl ₄ PtO ₂ (+2H ₂ O)	Pt ⁴⁺ + 4Cl ⁻ Pt ⁴⁺ + 4OH ⁻	$8.0 \cdot 10^{-29}$ $1.6 \cdot 10^{-73}$	28,1 71,8
$\mathbf{P}_{t}(OH)_{2}$	$Pt^{2+} + 2OH^{-}$	1 . 10-35	35
PiŠ	$Pt^{2+} + S^{2-}$	8 · 10-73	72,1
$Ra(IO_3)_2$	$Ra^{n+} + 2IO_n^-$	8,8 · 10 ⁻¹⁰	9,06
RbClO ₄	$Rb^+ + ClO_{\bullet}$	$2,5 \cdot 10^{-3}$	2,6
$Rb_3[Co(NO_2)_6]$	$3Rh^+ + [Co(NO_2)_6]^{8-}$	$1,48 \cdot 10^{-15}$	14,83
Rb,[PtCl,]	$^{\prime}$ 2Rb ⁺ + [PtCl ₆] ²⁻	$9 \cdot 10^{-8}$	7, 2
Rb ₂ [PtF ₆] Rb ₂ [SiF ₆]	$2Rb^{+} + [PtF_{6}]^{2-}$ $2Rb^{+} + [SiF_{6}]^{2-}$	$7.6 \cdot 10^{-7}$ $5 \cdot 10^{-7}$	6,12 6,3
$Rh_2\Theta_8(+3H_2O)$	$Rh^{3+} + 3OH^{-}$	2 · 10-48	47,7
$Ru_2O_3(+3H_2O)$	Ru ³⁺ + 3OH ⁻	1 · 10-38	38
Ru(OH) ₄	$Ru^{4+} + 4OH^{-}$	1 · 10-49	49
$\begin{array}{l} \operatorname{Sb_2O_3}(+3\operatorname{H_2O})- \\ \operatorname{Sb_2O_3}(+\operatorname{H_2O}) \end{array}$	Sb ³⁺ + 3OH ⁻ SbO ⁺ + OH ⁻	$4 \cdot 10^{-42}$ $7.9 \cdot 10^{-18}$	41,4 17,1
$Sb_2O_3(+11_2O)$ $Sb_2O_3(+3H_2O)$	$H^+ + H_2SbO_3$	1.3 · 10 ⁻¹²	11,9
Sc(OH) ₃	$Sc^{3+} + 3OH^{-}$	2 · 10-30	29.7
SnI ₂	$Sn^{2+} + 2I^{-}$	8,3 · 10-6	5,08
Sn(OH) ₂	$Sn^{2+} + 2OH^{-}$	$6,3 \cdot 10^{-27}$	26,20
Sn(OH ₂)	SnOH+ + OH- Sn2+ + 2OH-	$4.6 \cdot 10^{-15}$ $1.3 \cdot 10^{-15}$	14 34 14,9
Sn(OH)₂ Sn(OH)₄	Sn ⁴⁺ + 4OH	1 · 10-57	57
SnS	$Sn^{2+} + S^{2-}$	$2,5 \cdot 10^{-27}$	26,6
$Sr_3(AsO_4)_2$	$3Sr^{2+} + 2AsO_4^{3-}$	$1,3 \cdot 10^{-18}$	17,1
SrCO ₃	$Sr^{2+} + CO_3^{2-}$	1,1 · 10-10	9,93
SrC ₂ O ₄	$Sr^{2+} + C_2O_4^{2-}$	$1,6 \cdot 10^{-7}$	6,80
SrCrO ₄	$Sr^{2+} + CrO_4^{2-}$	$3,6 \cdot 10^{-5}$	4,44
SrF ₂	$Sr^{2+} + 2F^{-}$	$2.5 \cdot 10^{-9}$	8,61
$Sr(IO_3)_2$	$Sr^{2+} + 2IO_3^-$	3,3 · 10 ⁻⁷	6,48
$\operatorname{Sr_8(PO_4)_2}$	$3Sr^{2+} + 2PO_4^{3-}$	1 · 10-81	31
SrSO ₄	$Sr^{2+} + SO_4^{2-}$	$3.2 \cdot 10^{-7}$	6,49
Te(OH)4	$Te^{4+} + 4OH^{-}$	2 · 10-58	57,7
$Th(C_2O_4)_2$	$Th^{4+} + 2C_2O_4^{2-}$	$1.1 \cdot 10^{-25}$	24,96
Th(IO ₃) ₄	$Th^{4+} + 4IO_3^-$	$2,5 \cdot 10^{-15}$	14,6
Th(OH)	Th ⁴⁺ + 4OH ⁻	$3.2 \cdot 10^{-45}$	44,5
$Th_8(PO_4)_4$	$3Th^{4+} + 4PO_4^{8-}$	$2,6 \cdot 10^{-79}$	78 ,59
Ti(OH)	$Ti^{4+} + 4OH^{-}$	8 · 10-54	53,10

Формула вещества	Образующиеся ноны	Произведение раствори- мости (ПР)	Показа- тель про- изведения раствори- мости, рПР
Ti(OH) ₄ (—H ₂ O)	TiO2+ + 2OH-	1 · 10-29	29
TiBr	Tl+ + Br-	3,9 · 10-6	5,41
TiBrO ₃	$Tl^+ + BrO_3^-$	$1,7 \cdot 10^{-4}$	3,76
$Tl_3[Co(NO_2)_6]$	$3Tl^{+} + [Co(NO_{2})_{6}]^{3-}$	$1.0 \cdot 10^{-16}$	16,0
Tl ₂ CrO ₄	$2\text{Tl}^+ + \text{CrO}_4^{2-}$	$9,8 \cdot 10^{-13}$	12,0
Tl4[Fe(CN)6]	$4Tl^+ + [Fe(CN)_6]^{4}$	$5 \cdot 10^{-10}$	9,3
TII	$Tl^+ + I^-$	5,75 · 10-8	7,24
TIIO3	$Tl^+ + IO_3^-$	$3,1 \cdot 10^{-6}$	5,51
TIN ₃	$Tl^+ + N_3^-$	$2,2 \cdot 10^{-4}$	3,66
Tl(OH) ₃	$T^{13+} + 3OH^{-}$	6,3 · 10 ⁻⁴⁶	45,20
Tl ₃ PO ₄	$3Tl^{+} + PO_{4}^{3-}$	$6,7 \cdot 10^{-8}$	7,18
Tl ₂ [PtCl ₆]	2Tl++[PtCl ₆] ²⁻ 2Tl++S ²⁻	$\begin{array}{c} 4 \cdot 10^{-12} \\ 5.0 \cdot 10^{-21} \end{array}$	11,4 20.30
TI ₂ S TISCN	$Tl^+ + SCN^-$	1.7 · 10 ⁻⁴	3,77
Tl ₂ S ₂ O ₃	$2T1^{+} + S_{2}O_{3}^{2}$	$2.0 \cdot 10^{-7}$	6,70
UO ₂ CO ₃	$UO_2^{2+} + CO_3^{2-}$	1,9 · 10-12	11,73
$(UO2)2{Fe(CN)6}$	$2UO_{2}^{2+} + [Fe(CN_{6}]^{47}]$	7,1 · 10-14	13,15 >
Ù(OH),	U3+ -1- 3OH-	1 · 10-19	19,0
U(OH) ₄	U4+ + 4OH-	$1 \cdot 10^{-45}$	45, 0
UO ₂ (OH) ₂	$UO_{2}^{2+} + 2OH^{-}$	$1 \cdot 10^{-22}$	22,0
VO(OH) ₂	$VO^{2+} + 2OH^{-}$	$7,4 \cdot 10^{-23}$	22,13
$V_2O_5(+H_2O)$	$VO_2^+ + OH^-$	$1,6 \cdot 10^{-15}$	14,8
$(VO)_3(PO_4)_2$	$3VO^{2+} + 2PO_4^{3-}$	8 • 10-25	24,1
W(OH) ₄	$W^{4+} + 4OH^{-}$	1 · 10-50	50,0
Y(OH) ₃	Y ³⁺ + 3OH ⁻	$3.2 \cdot 10^{-25}$	24,5
$Zn_3(AsO_4)_2$	$3Zn^{2+} + 2AsO_4^{3-}$	$1,3 \cdot 10^{-27}$	27,89
Zn(CN) ₂	$Zn^{2+} + 2CN^{-}$ $Zn^{2+} + CO_3^{2-}$	$2,6 \cdot 10^{-13}$ $1,45 \cdot 10^{-11}$	12,59 10,84
ZnCO ₃		•	
ZnC ₂ O ₄	$Zn^{2+} + C_2O_4^{2-}$	$2,75 \cdot 10^{-8}$	7,56
Zn ₂ [Fe(CN) ₆]	$2Zn^2 + [Fe(CN)_6]^{4-}$	$2,1 \cdot 10^{-16}$	15,68
$Z_{\rm n}({\rm IO_3})_2$	$Zn^{2+} + 2IO_3$	$2.0 \cdot 10^{-8}$	7,7
Zn(OH) ₂	$Zn^{2+} + 2OH^{-}$	$1,2 \cdot 10^{-17}$	16,92
$Zn_3(PO_4)_2$ α - ZnS (сфалерит)	$3Zn^{2+} + 2PO_4^{3-}$ $Zn^{2+} + S^{2-}$	$9,1 \cdot 10^{-33}$ $1,6 \cdot 10^{-24}$	32,04
β-ZnS (вюрцит)	$Zn^{2+} + S^{2-}$ $Zn^{2+} + S^{2-}$	$2,5 \cdot 10^{-22}$	23,80 21,6
ZnSe	$Zn^{2+} + Se^{2-}$	1 · 10-31	31,0
ZnSeO ₃	$Zn^{2+} + SeO_3^{2-}$	$1,9 \cdot 10^{-8}$	7,72
Zr(OH) ₄	Zr4+ + 4OH-	1 • 10-52	52,0
$Zr_3(PO_4)_4$	$3Zr^{4+} + 4PO_4^{3-}$	$1 \cdot 10^{-132}$	132,0

3.12. PH ОСАЖДЕНИЯ ГИДРОКСИДОВ МЕТАЛЛОВ (ОРИЕНТИРОВОЧНЫЕ ЗНАЧЕНИЯ С УЧЕТОМ ОБРАЗОВАНИЯ ГИДРОКОМПЛЕКСОВ)

При добавлении к раствору соли раствора щелочи в местах, куда попадают капли раствора щелочи, может образоваться осадок гидровсида металла, который при перемешивании раствора не растворится.

		Значен	ния рН	•	
Гидроксид (оксид)	исходной к	ждения при онцентрации иона, равной	полного осаждения (остаточная	начала раст- ворения Осадка	полного растворе- ния вы-
	1 моль/дм ⁸	0,01 моль/дм ³	концентрация 10 ⁻⁵ моль/дм ³)	(осаждение перестает быть полным)	оса дка оса дка
Sn(OH) ₄ TiO(OH) ₂ Sn(OH) ₂ ZrO(OH) ₂ HgO Fe(OH) ₃ Al(OH) ₃ Cr(OH) ₃ Be(OH) ₂ Zn(OH) ₂ Ag ₂ O Fe(OH) ₂ Co(OH) ₂ Ni(OH) ₂ Cd(OH) ₂ Mn(OH) ₂ Mg(OH) ₂	0 0,9 1,3 1,3 1,5 3,3 4,0 5,2 5,4 6,2 6,5 6,6 6,7 7,2 7,8 9,4	0,5 0,5 2,1 2,25 2,4 2,3 4,0 4,9 6,2 6,4 8,2 7,5 7,6 7,7 8,2 8,8 10,4	1 2,0 4,7 3,75 5,0 4,1 5,2 6,8 8,8 8,0 11,2 9,7 9,5 9,5 9,7 10,4 12,4	13 10 11,5 14 7,8 12 10,5 12,7 13,5 14,1 —	15 13,5 — 10,8 15 — 12—13 — — —

3.13. БУФЕРНЫЕ РАСТВОРЫ

Для приготовления буферных растворов используются чистые реактивы.

1. Вода дважды дистиллируется. Для работы при рН > 7 необкодимо принять меры предосторожности против попадания углекислого газа из воздуха.

2. Соляная кислота и гидроксид натрия берутся квалификации «х. ч.» («химически чистый»). •

3. Хлорид натрия «х. ч.» дважды перекристаллизовывается и высушивается при температуре 120 °C.

4. Борная кислота (H₃BO₃) «х. ч.» дважды перекристаллизовывается из кипящей воды и высушивается при температуре не выше 80 °C.

5. Дигидрофосфат калия (КН₂PO₄) «х. ч.» дважды перекристаллизовывается и высушивается при 110—120 °C.

6. Гидрофосфат натрия (Na₂HPO₄ · H₂O) «х. ч.» дважды перекристаллизовывается при температуре не выше 90 °C, увлажняется водой и высушивается в термостате при 36 °С в течение двух суток.

7. Лимонная кислота ($H_3C_6H_5O_7\cdot H_2O$) дважды перекристаллизовывается при температуре не выше 60 °C.

8: Гидрофталат калия (КНС₈Н₄О₄) дважды перекристаллизовы-

вается и высушивается при температуре 110-120 °C.

9. Тетраборат натрия (Na₂B₄O₇ · 10H₂O) «х. ч.» дважды перекристаллизовывается из раствора, нагретого до температуры не выше 55 °C, охлаждается льдом и высушивается до постоянной массы в эксикаторе над влажной смесью хлорида натрия и сахара.

10. Аминоуксусная кислота (NH2CH2COOH) «х. ч.» дважды пере-

кристаллизовывается и высушивается при температуре 110 °C.

3.13.1. Буферные растворы с $pH = 1.10 \div 3.50$ (NH,CH,ĆOOH—HCI) ·

Каждый из указанных в таблице объемов раствора аминоуксусной кислоты концентрацией 0,1 моль/дм3 (7,507 г NH₂CH₂COOH и 5,85 г NaCl в 1 дм³ раствора) доводят раствором НСl концентрацией 0,1 моль/дм³ до 1 дм³.

7										
				11	Объем,	СМ ³	47.5			**
pН	0,00	0,01	0,02	0,03	0.04	0,05	0,06	0,07	0 ,0 8	0,09
			·		•			400	400	
1,1	57	66	75	84	93	102	111	120	128	137
1,2	146	154	162	170	178	186	194	202	210	218
1,3	226	232	239	245	252	258	264	270	277	283
1,4	289	294	300	305	311	316	320	325	329	334
1,5	338	342	346	350	354	358	362	367	371	376
1,6	380	384	387	391	394	398	402	406	409	413
1,7	417	421	424	428	431	435	439	442	446	449
- 1,8	453	456	460	463	467	470	474	478	481	485
1,9	489	492	495	498	501	504	507	510	513	516
2,0	-519	522	525	528	531	534	537	540	543	546
2,1	549	552	554	557	559	562	565	567	570	57 3
2,2	576	579	582	584	587	590	593	595	598	600
2,3	603	606	610	613	617	620	623	626	630	633
2,4	636	639	642	645	648	651	654	657	660	663
2,5	666	669	672	675	678	681	684	687	690	693
2,6	696	699	702	705	708	711	714	718	721	725
2,7	728	731	734	738	741	744	747	750	754	757
2,8	760	763	766	770	. 773	776	779	782	786	789
2,9	792	795	798	801	804	807	810	813	815	818
3,0	821	824	827	829	832	835	838	840	843	845
3,1	848	850	853	855	858	860	862	864	867	869
3,2	871	873	875	878	880	882	884	886	888	890
3 ,3	892	894	896	897	899	901	903-	905	906	908
3,4	910	912	913	915	916	918	919	921	922	924
3,5	925							•		

3.13.2. Буферные растворы с $pH = 1,10 \div 4,96$ (Na₀HC₆H₅O₂—HCl)

Каждый из указанных в таблице объемов раствора гидроцитрата натрия концентрацией 0,1 моль/дм³ (21,015 г лимонной кислоты H₃C₆H₅O₇ · H₂O и 200 см³ раствора NaOH концентрацией 1 моль/дм³ в 1 дм³) доводят раствором НС1 концентрацией 0,1 моль/дм³ до 1 дм³.

				(Объем, с	:м ³				
рН	0,00	0,01	0,02	0,03	0.04	0,05	0,06	0,07	0,08	0,09
		-					ar Gara		9 5	
1,1	48	56	64	71	78	84	90	96	101	106
1,2	111	116	121	125	130	135	140	145	149	154
1.3	159	162	166	169	173	176	179	183	186	190
1,4 1,5	193	196	199	202	205	208	211	214	216	219
1,5	222	224	227	229	232	234	236	239	241	244
1,6 1,7	246	248	250	252	254	256	258	260	261	263
1,7	265	267	269	270	272	274	276	277	279	280
1,8 1,9	282	283	285	286	288	289	290	291	293	294
1,9	295	296	297	299	300	301	302	303	304	305
2,0	306	307	308	310	311	312	313	314	315	316
2,1 2,2	317	318	319	319	320	321	322	323	324	325 335
2,2	326	327	328	329	330	331	332	333 342	334 343	344
2,3	336	337	338	338	339	340	341	352	352	353
2,4	345 3 54	346 35 5	347 356	348 357	349 358	350 · 359	351 360	361	362	363
2,5 2,6	364	365	366	367	368	369	370	371	371	372
2,7	373	374	375	376	377	378	379	380	381	382
2 ,8	383	384	385	386	387	388	389	390	391	392
2,9	393	394	395	396	397	398	399	400	401	402
3,0	403	404	405	407	408	409	410	411	413	414
3,1	415	416	417	418	419	420	421	423	424	426
3.2	427	428	429	431	432	433	434	436	437	439
3,2 3,3	440	441	443	444	446	447	448	450	451	453
3,4	454	455	457	458	460	461	462	464	465	467
3,5	46 8	470	471	473	474	476	478	479	481	482
3,6	484	486	488	489	491	493	495	496	498	499
3,7	501	503	505	506	508	510	512	514	515	517
3,8	519	521	523	525	527	529	531	533	534	536
3,9	538	540	542	545	547	549	551	553	556	558
4,0	560	563	565	568	570	573	575	578	580	583
4,1	585	587	590	592	595	597	600	603	605	608
4,2	611	614	617	620	623	626	629	633	636	640
4,3	643	647	651	654	.657	660		668	671	675
4,4	679	683	687	690	694	698	702	706	711	715 764
4,5	719	724	729	734	739	744	. 749	754	759 812	817
4,6	769 822	774	780 833	785 839	791	796 850	. 801 856	806 862	866	874
4,7	822	828	633	039	844	600	600	002	000	0/4

880

956

887

963

900

978

894

871

914

993

907.

985

922

1000

931

939

3.13.3. Буферные растворы с $pH = 2,20 \div 3,80$ (КНС₈H₄O₄—НСі)

К каждому из указанных в таблице объемов раствора HCl концентрацией 0,1 моль/дм³ прибавляют 250 см³ раствора бифталата калия концентрацией 0,2 моль/дм³ (40,846 г ${\rm KHC_8H_4O_4}$ в 1 дм³ раствора) и доводят объем смеси водой до 1 дм³.

	Объем, см ³										
рН	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09	
2,2 2,3 2,4 2,5 2,7 2,8 2,9 3,1 3,3 3,5 6,7 3,8 3,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8	466,0 431,0 396,0 363,0 330,0 297,0 234,0 204,0 175,0 148,0 99,5 78,5 60,0 26,5	462,5 427,5 392,7 359,7 359,7 326,7 293,8 261,9 231,0 201,1 172,2 145,4 120,6 97,3 76,5 58,3 41,3	459,0 424,0 389,4 356,4 323,4 290,6 258,8 228,0 198,2 169,4 1142,8 118,2 95,1 74,5 56,6 39,6	455,5 420,5 386,1 353,1 287,4 255,7 225,0 195,3 166,6 140,2 115,8 92,9 72,6 54,9 37,9	452,0 417,0 382,8 349,8 316,8 284,2 252,6 222,0 192,4 163,9 137,7 113,4 90,8 70,8 53,2 36,2	448,5 413,5 379,5 386,5 313,5 281,0 249,5 219,0 189,5 161,2 135,2 111,0 88,7 69,0 51,5 34,5	445,0 410,0 376,2 343,2 310,2 277,8 246,4 216,0 186,6 158,5 132,7 108,6 67,2 49,8 32,9	441,5 406,5 372,9 339,9 274,6 243,3 213,0 183,7 155,8 130,2 106,3 84,5 65,4 48,1 31,3	438,0 403,0 369,6 336,6 303,6 271,4 240,2 210,0 180,8 153,2 127,8 104,0 82,5 63,6 46,4 29,7	434,5 399,5 366,3 333,3 300,3 268,2 237,1 207,0 177,9 150,6 125,4 101,7 80,5 61,8 44,7 28,1	

3.13.4. Буферные растворы с $pH = 4,00 \div 6,20$ (КНС $_8$ Н $_4$ О $_4$ —NaOH)

K 250 см³ раствора бифталата калия концентрацией 0,2 моль/дм³ (40,846 г ${\rm KHC_8H_4O_4}$ в 1 дм³ раствора) прибавляют указанный в таблице объем (см³) раствора NaOH концентрацией 0,1 моль/дм³ и доводят объем смеси водой до 1 дм³.

Объем, см ³										
pН	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7	4,0 20,5 37,0 55,0 75,0 96,5 121,5 148,5	5,7 22,2 38,7 56,9 77,1 98,8 124,2 151,3	7,3 23,8 40,4 58,8 79,2 101,2 126,9 154,1	9,0 25,5 42,1 60,7 81,3 103,6 129,6 156,9	10,6 27,1 43,9 62,7 83,4 106,1 132,3 159,7	12,3 28,8 45,7 64,7 85,5 108,6 135,0 162,5	13,9 30,4 47,5 66,7 87,7 111,1 137,7 165,4	15,6 32,1 49,3 68,7 89,9 113,7 140,4 168,3	17,4 33,7 51,2 70,8 92,1 116,3 143,1 171,2	18,9 35,4 53,1 72,9 94,3 118,9 145,8 174,1

Объем, см ³										
pН	0,00	0,01 0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09	
4,8 4,9 5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9 6,1	415,5 41 430,0 43 443,0 44	0,2 213,4 1,6 244,7 2,5 275,5 2,5 305,5 1,2 333,9 6,9 359,3 0,2 382,3 0,4 402,2 7,0 418,5 1,4 432,8 4,2 445,4 5,5 456,5	185,7 216,6 247,8 278,5 308,5 336,6 361,7 384,4 404.0 420,0 434,2 446,6 457,5 466,2	188,7 219,8 250,9 281,5 311,4 339,2 364,1 386,5 405,7 421,5 435,5 447,8 458,5 466,8	191,7 223,0 254,0 284,5 314,3 366,5 388,6 407,4 423,0 459,5 467,4	194,7 226,1 257,1 287,5 317,2 344,4 368,8 390,6 409,1 424,4 438,1 450,1 460,4 468,0	197,7 229,2 260,2 290,5 320,1 347,0 371,1 392,6 410,7 425,8 439,4 451,2 461,3 468,5	200,8 232,3 263,3 293,5 322,9 349,5 373,4 394,6 412,3 427,2 440,6 452,3 462,2 469,0	2 03,9 235,4 266,6 296,5 325,7 352,0 375,7 396,6 413,9 424,8 453,4 463,1 469,5	
6,2	470,0	• • • • • • • • • • • • • • • • • • • •	• • •	• • •	•••	• • •	• • •	•••	•••	

3.13.5. Буферные растворы с $pH=4,96\div6,69$ ($Na_2HC_6H_5O_7$ —NaOH)

Қаждый из указанных в таблице объемов (см³) раствора NaOH концентрацией 0,1 моль/дм³ доводят до 1 дм³ раствором гидроцитрата натрия концентрацией 0,1 моль/дм³ (21,015 г лимонной кислоты $H_3C_6H_5O_7 \cdot H_2O$ и 200 см³ раствора NaOH концентрацией 1 моль/дм³ в 1 дм³).

Объем, см ³										
pH	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
4.9 5.5 5.5 5.5 5.6 5.7 5.5 5.5 6.7 6.2 6.3	36 97 149 196 237 277 310 340 364 385 404 420 434	-43 102 154 200 241 280 313 343 366 387 406 421 435	50 108 159 204 245 284 316 345 368 389 408 423 436	56 113 165 208 249 287 319 348 371 391 410 424 438		70 124 175 216 257 294 325 353 375 395 414 427 441	0 75 129 179 220 261 297 328 355 377 397 415 428 442	9 81 134 183 224 265 300 331 358 379 399 416 430 443	18 86 139 188 229 269 304 334 360 381 400 417 431 444	27 92 144 192 233 273 307 362 383 402 419 433 445
6,3 6,4 6,5 6,6	446 455 453 470	447 456 464 471	448 457 465 471	449 457 465 472	450 458 466 472	451 459 467 473	452 460 468 473	453 461 468 474	453 461 469 474	454 462 469 475

3.13.6. Буферные растворы с $pH = 4.80 \div 8.00$, (KH $_2$ PO $_4$ —Na $_2$ HPO $_4$)

Каждый из указанных в таблице объемов (см³) раствора гидрофосфата натрия концентрацией 1/15 моль/дм³ (11.866 г Na_2HPO_4 · $2H_2O$ в 1 дм³) доводят до 1 дм³ раствором дигидрофосфата калия концентрацией 1/15 моль/дм³ (9.073 г KH_2PO_4 в 1 дм³).

4,8 3,5 3,7 3,9 4,1 4,3 4,5 4,8 5,1 5,4 5,4 9,60 6,3 6,6 6,9 7,2 7,5 7,9 8,3 8,7 9,9 5,0 9,5 9,9 10,3 10,7 11,1 11,5 11,9 12,3 12,7 13,5 5,1 13,5 13,9 14,3 14,7 15,1 15,5 16,0 16,5 17,0 17,5 5,2 18,0 18,5 19,0 19,5 20,0 20,5 21,0 21,5 22,0 22,5 23,2 23,0 23,7 24,4 25,1 25,8 26,5 27,2 27,9 28,6 29,0 20,5 32,7 23,6 29,2 24,4 25,1 25,8 26,5 27,2 27,9 28,6 29,0 22,5 33,0 30,9 31,8 32,7 33,6 34,5 35,4 36,3 37,2 38,5 5,5 39,0 39,9 40,8 41,7 42,6 43,5 44,6 45,7 46,8 47,5 56,6 49,0 50,2 5						Объем,	СМЗ				· · · · ·
4,9 6,0 6,3 6,6 6,9 7,2 7,5 7,9 8,3 8,7 9,5,0 9,5 9,9 10,3 10,7 11,1 11,5 11,9 12,3 12,7 13,5,1 13,5 13,9 14,3 14,7 15,1 15,5 16,0 16,5 17,0 17,5,2 18,0 18,5 19,0 19,5 20,0 20,5 21,0 21,5 22,0 22,5,3 23,0 23,7 24,4 25,1 25,8 26,5 27,2 27,9 28,6 29,5,4 30,0 30,9 31,8 32,7 33,6 34,5 35,4 36,3 37,2 38,5,5 39,0 39,9 40,8 41,7 42,6 43,5 ,44,6 45,7 46,8 47,5,6 49,0 50,2 51,4 52,6 53,8 55,0 56,2 57,5 59,0 60,5,7 62,0 63,5 65,0 67,0 68,5 70,0 72,0 73,5 75,5 77,5,8 79,0 81,0 82,5 84,5 86,0 88,0 90,0 92,0 94,0 96,5,9 98,0 100 102 104 106 108 111 113 116 118 6,0 121 124 127 129 132 135 138 141 144 147 6,1 150 153 157 160 164 167 170 174 177 181 6,2 184 187 191 194 198 201 205 209 213 217 6,3 221 225 229 234 238 242 246 251 255 260 6,4 264 269 273 278 282 287 292 297 303 308 6,5 313 319 324 330 335 341 347 353 359 365 6,6 371 377 383 389 394 400 406 412 418 424 6,7 430 436 442 448 454 460 466 473 479 486 6,8 492 498 504 510 516 522 528 534 540 546 6,9 552 558 564 570 576 582 588 594 600 606 7,0 612 618 624 630 636 642 648 654 659 665 7,1 670 676 681 687 692 698 704 709 715 720 7,2 726 732 737 743 743 748 754 759 763 768 772 7,3 777 781 786 790 795 799 803 807 810 814 7,4 818 821 825 828 832 835 838 842 845 849	pН	0.00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
7,6 885 888 891 893 896 899 902 904 907 909 7,7 912 914 917 919 922 924 926 929 931 934	4,901,123,45,55,55,55,55,55,66,65,66,67,77,77,77,77,77,77,77,77,77,77,77,	6,0 9,5 13,5 23,0,0 39,0 62,0 79,0 121 150 184 221 430 492 552 670 726 777 818 852 885 912	6,3 9,9 13,9 18,5 23,7 30,9 39,9 50,2 63,5 81,0 100 124 153 187 225 269 319 377 436 498 558 618 676 732 781 821 855 888 914	6,6 10,3 14,3 19,0 24,4 31,8 40,8 51,4 65,0 82,5 102 127 157 191 229 273 324 383 442 504 681 737 786 825 825 829 829 829 829 829 829 829 829 829 829	6,9 10,7 14,7 19,5 25,1 32,7 41,7 52,6 67,0 84,5 104 129 160 194 234 278 330 389 448 510 630 687 743 790 828 862 893 919	7,2 11,1 15,1 20,0 25,8 33,6 42,6 53,8 68,5 106 132 164 198 238 238 245 454 516 636 692 748 795 832 866 896 922	7,5 11,5 15,5 26,5 26,5 34,5 55,0 70,0 88,0 108 135 167 201 242 287 341 400 460 522 582 642 698 754 799 835 869 899	7,9 11,9 16,0 21,0 27,2 35,4 44,6 56,2 72,0 90,0 11,1 138 170 205 246 466 528 588 648 704 759 803 838 872 902 926	8,3 12,3 16,5 21,5 26,3 45,7 57,5 73,5 92,0 113 141 174 209 251 297 353 412 473 534 654 709 763 807 807 842 875 904 929	8,7 12,7 17,0 22,6 37,2 46,8 59,0 75,5 91,6 114 177 213 303 359 418 479 600 659 715 768 810 845 879 907 931	9,1 13,1 17,5 22,3 38,1 47,9 60,5 77,0 118 147 181 217 260 308 365 424 486 606 665 720 772 814 849 882 909

3.13.7. Буферные растворы с $pH = 7,71 \div 9,23$ (Na,B4O2—HCI)

Каждый из указанных в таблице объемов (см³) раствора тетрабората натрия концентрацией 0,05 моль/дм³ (19,069 г $\mathrm{Na_2B_4O_7 \cdot 10H_2O}$ или 12,368 г $\mathrm{H_3BO_3}$ и 100 см³ раствора NaOH концентрацией 1 моль/дм³ в 1 дм³) доводят раствором HCl концентрацией 1 моль/дм³ до 1 дм³.

	Объем, см ³											
pН	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09		
7,7 7,8 7,9 8,0 8,1 8,2 8,3 8,5 8,6 8,7 8,8 9,0 9,0	534 546,5 558.5 571,5 586,5 607 652,5 680 712 755 805 856 919 981	560 572,5 588 609,5	526 536 548,5 561 574 590 611,5 634,5 657,5 685,5 720 765 815 869 931 994	527 537 550 562,5 575 592 614 636,5 660,5 688 724 770 820 875 937,5 1000	528 538,5 551 563,5 576,5 594 616 639 663 691 728 775 825 881 944	529 539,5 552,5 565 578 596 618,5 641 666 694 732 780 830 887,5 950	530 541 553,5 566 579,5 598 620,5 643,5 669 736 785 835 894 956	531 542,5 555 567,5 581 600 625 645,5 672 700 740 790 840 900 962,5	532 544 556 569 583 602 625 648 675 704 745 795 845 906 969	533 545,5 557,5 570,5 584,5 604,5 627 650 677,5 708 750 850 912,5 975		

3.13.8. Буферные растворы с $pH = 9.24 \div 11.02$ ($Na_2B_4O_7$ —NaOH)

Каждый из указанных в таблице объемов (см³) раствора концентрацией 0,1 моль/дм³ доводят до 1 дм³ раствором тетрабората натрия концентрацией 0,05 моль/дм³ (19,069 г ${\rm Na_2B_4O_7\cdot 10~H_2O}$ или 12,368 г ${\rm H_3BO_3}$ и 100 см³ раствора концентрацией 1 моль/дм³ в 1 дм³).

Объем, см ³										
рН	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
9,2	<u>'</u>	<u> </u>	<u></u>		21,6	36,0	49,0	60,5	71,0	80,5
9,3	89,0	96,0	103	110	117	124	130	136	142	148
9,4	154	160	166	172	177	182	188	194	200	205
9,5	210	216	222	228	234	239	245	251	257	263
9,6	268	274	280	286	292	298	303	308	313	318
9,7	323	328	333	337	341	345	34 9	353	357	360
9,8	363	366	369	372	375	377	380	383	386	388
9,9	390	393	396	398	400	402	404	406	408	409
10,0	410	412	414	416	418	419	421	423	425	426
10,1	427 ⁻	429	431	432	433	434	436	437	438	439
10,2	440	442	443	444	445	446	448	449	450	451

Объем, см ³										
pН	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
10,3 10,4 10,5 10,6 10,7 10,8 10,9 11,0	452 463 472 480 486 491 495 499	454 464 473 480,5 486,5 491,5 495,5 499,5	455 465 473,5 481 487 492 496 500	456 466 474,5 482 487,5 492 496	457 467 475 482,5 488 492,5 496,5	458 468 476 483 488,5 493 497	459 469 477 483,5 489 493,5 497,5	460 469,5 477,5 484 489,5 494 498	461 470,5 478,5 485 490 494 498	462 . 471 479 485,5 490,5 494,5 498,5

3.13.9. Буферные растворы с $pH = 8,53 \div 12,90$ ($NH_2CH_2COOH-NaOH$)

Каждый из указанных в таблице объемов (см³) раствора NaOH концентрацией 0,1 моль/дм³ доводят до 1 дм³ раствором аминоуксусной кислоты концентрацией 0,1 моль/дм³ (7,507 г $\mathrm{NH_2CH_2COOH}$ и 5,85 г NaCl в 1 дм³ раствора).

			Объем,	сма				
pH 0,00	0,01 0,0	2 0,03	0,04	0,05	0,06	0,07	0,08	0,09
8,5		50,0	51,1	52,2	53,3	54,4	55,6	56,8
8,6 58,0	59,2 60,	4 61,6	62,8	64,1	65,4	66,8	68,2	69,6
8,7 71,0	72,4 73	3 75.2	76,6	78.1	79,6	81,2	82,8	84,4
8,8 860	87,7 89,4	91,2	93,0	94,8	96,6	98,4	100,2	102,1
	106 108	110	112	114	116	118	120	122
	126 128	130	132	134	136	138	140	143
	148 151	153	156	158 -	160	163	165	168
9,2 170	172 174	176	179	182	185	188	191	194
	199 201	203	205	208	211	214	217	220
	225 228	231	234	237	240	243	246	249
9,5 252	254 256	259	262	265	268	271	274	277
	283 286	289	292	295	298	301	304	307
9,7 310	313 316	319	322	325	328	331	334	336
9,8 338	341 344	347	350	352	354	356	358	360
9,9 362 3	365 367	369	371	373	375	377	379	381
10,0 383	385 387	389	391	393	395	397	399	400,5
	404 405,5		409	410,5	412	414	415,5	417,5
	420,5 422	424	425,5	427	428,5	430	432	433,5
10,3 435	136,5 437,5	439	440	441,5	443	444	445,5	447
	449 450	451	452	453	454	455	456	457
10,5 458	460	460,5	461,5	462,5	463,5	464,5	465	466
10,6 467	467,5 468,5	469	470	470,5	471	472	472,5	473 ,5
10,7 474	474,5 475	476	476,5	477	477,5	478	479	479,5
10,8 480 4	180,5 481	481,5	482	482,5	483	483,5	484	484,5
10,9 485	485,5 486	486	486,5	487	487,5	488	488	488, 5
11,0 489	489,5 490	490,5	491	491,5	491,5	492	492,5	493
11,1 493,5	494 494,5	495	495,5	496	496	496,5	497	497 ,5

							II pool	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ec meno.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
					Эбъем, с	CM ³				
pН	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
11,2	498	498,5	499	499	499,5	500	500,5	501	501	501,5
11,3	502	502,5	503	503	503.5	504	504,5	505	505	505,5
11,4	506	506.5	507	507	507.5	508	508,5	509	509	509,5
11,5	510	510,5	511	511	511.5	512	512,5	513	513	513,5
11,6	514	514,5		515,5	516	516,5	517.5	518	518,5	519
11,7	519,5		521	521,5	522	522,5	523,5	524	524,5	525,5
11,8	526	527	527.5	528,5	529	530	531	531,5	532,5	533
11,9	534	535	536	537	538	539	540	541	542	543
12,0	544,5		547.5	548.5	550	551.5	552,5	554	555,5	556,5
12,1	558	559,5		563	564.5	566	567,5	569	571	572,5
12,2	574	576	578	580	582	584	586	588	590	592
12,3	594	596,5		601	603.5	606	608,5	611	613	615,5
12,4	618	622	625	629	632	636	640	643	647	650
12,5	654	659	663	668	672	677	682	686	691	695
12,6	700	705	710	715	720	725	730	735	740	745
12,7	750	756	762	768	774	780	786	792	79 8	804
12,8	810	816	823	831	840	849	.858	867	877	888
12,9	900	• • •	• • •	•••		•••	•••	• • • •	•••	

3.13.10. Значения рН стандартных буферных растворов [в диапазоне температур 5—95 °C]

Приведены данные по проекту стандарта рН на буферные растворы ИЮПАК 1980 г.

×	рН для растворов										
_				pH	для раст						
	Температура, °С	тетраоксалата калия КН ₈ (С ₆ О ₄), (тригид- родиоксалата калия) 0,05 моль/кг	дигидроцитрата калия КН ₂ С ₆ Н ₆ О, 0,05 моль/кг	гидротартрата калия (СНОН),(СООК)× ×(СООН), насыщен- ный при 25°C	гидрофтвлата калия С ₆ Н ₄ (СООК)(СООН) 0,05 моль/кг	дигидроортофосфата калия 0.025 моль/кг, гидроортофосфата натрия 0.025 моль/кг	дигидроортофосфата калия 0,08695 моль/кг, гидроорто- фосфата натрия 0,03043 моль/кг	тетрабората натрия (бура) 0,01 моль/кг	гидрокарбоната натрия 0,025 моль/кг и карбоната натрия 0,025 моль/кг		
	0 5 10 15 20 25 30 35 38 40 45 50 55 60 70 80	1,666 1,668 1,670 1,672 1,675 1,679 1,683 1,688 1,691 1,700 1,707 1,715 1,723 1,743 1,766	3,863 3,840 3,820 3,802 3,788 3,776 3,766 3,759 3,753 3,750 3,749 —	3,557 3,552 3,549 3,548 3,547 3,547 3,549 3,554 3,560 3,580 3,609	4,003 3,999 3,998 3,999 4,002 4,008 4,015 4,024 4,030 4,035 4,047 4,060 4,075 4,091 4,126 4,164	6,984 6,951 6,923 6,900 6,881 6,865 6,853 6,844 6,838 6,838 6,833 6,833 6,834 6,836 6,845 6,845	7,531 7,500 7,472 7,448 7,429 7,413 7,400 7,384 7,380 7,373 7,367 — — —	9,464 9,395 9,332 9,276 9,225 9,139 9,102 0,081 9,068 9,038 9,011 8,985 8,962 8,921 8,885	10,423 10,245 10,179 10,118 10,062 10,012 9,966 9,925 9,889 9,856 9,828 —		
	90 95	1,792 1,806	_	3,650 3,674	4,205 4,227	6,877 6,886		8,850 8,833			

3.14. НОРМАЛЬНЫЕ ОКИСЛИТЕЛЬНЫЕ ПОТЕНЦИАЛЫ

В таблице приведены значения стандартных электродных потенциалов (E^0) при 25 °C и нормальном атмосферном давлении (760 мм рт. ст. = 101,325 кПа). Все величины E^0 даны по отношению к потенциалу стандартного водородного электрода. Принятые обозначения: \downarrow — насыщенный раствор в присутствии нерастворившегося твердого или жидкого вещества; \uparrow — насыщенный газом раствор при нормальном атмосферном давлении (760 мм рт. ст. — 101,325 кПа)

=101,325 кПа).

Высшая степень окисления	Число электронов	Низшая степень окисления	<i>E</i> •, B
Ag. Восстановл	ение сереб	рa	
Ag ²⁺		lg ⁺	+2,00
Ag (CN)		ig↓ ig↓+2CN-	+0,7994 -0,29
$Ag(CN)_3^{2-}$		ig↓+3CN-	— 0,51
Ag $(NH_3)_2^+$	+e- A	$g \downarrow + 2NH_3$	+0,373
Ag $(SO_3)_2^{3-}$	_+e⁻ A	$g\downarrow + 2SO_3^{2-}$	+0,43
$Ag (S_2O_3)_2^{3-}$	$+e^-$ A	$g \downarrow + 2S_2O_3^2$	+0,01
Al. Восстановле	ние алюми	ния	
A10= + 011 0		1 ↓	0,66
$A1O_2^- + 2H_2O$ $A1F_6^{3-}$!↓+ 4OH- !↓+ 6F-	2,35
As. Восстановле			-2,07
$HAsO_2 + 3H^+$			1.0.004
$H_3AsO_4 + 2H^+$	+2e- H	$s \downarrow + 2H_2O$ $AsO_2 + 2H_2O$	+0,234 +0,56
$AsO_2^- + 2H_2O$ $AsO_3^{3-} + 2H_2O$	•	s ↓ + 40H ⁻	-0,68
•		$60_{2}^{-} + 40H^{-}$	0,71
А и. Восстановле	ние золота	a	
Au ³⁺ Au ³⁺	+2e- At		+1,41
Au+		u↓ u↓	+1,5 0 +1,68
Au (CN) ₂	+e⁻ Aı	u ↓ + 2CN⁻	-0,61
Au (Cl) ₂ AuCl ₄	$+e^-$ At $+2e^-$ At	$\begin{array}{c} \downarrow \downarrow + 2Cl^{-} \\ \downarrow Cl_{2}^{-} + 2Cl^{-} \end{array}$	$^{+1,15}_{+0,92}$
$\begin{array}{l} \text{AuCl}_{\overline{4}}^{\overline{2}} \\ \text{H}_{2}\text{AuO}_{\overline{3}}^{\overline{}} + \text{H}_{2}\text{O} \end{array}$	+3e- A1	u ↓ + 4Cl-	+1,00
	•	1 ↓ + 4OH¬	+0,7
В. Восстановлен	_		
$\frac{\text{H}_3 \text{BO}_3}{\text{H}_2 \text{BO}_3} + 3 \text{H}_2 \text{O}$		↓ + 3H ₂ O ↓ + 4OH	-0,87 -1,79
BF ₄		↓ + 4F	-1,79 -1,04
Ва. Восстановле	ние бария		-
Ba ²⁺	+2e- Ba	↓	-2,91

Высшая степень окисления	Число электроно	Низшая степень окисления	<i>E</i> ⁰, B
Ве. Восстановле	ние бери	іллия	
Be ²⁺	$+2e^-$	Be↓	-1,97
$Be_2O_3^{2-} + 3H_2O$	+4e-	2Be ↓ + 6OH¬	-2,62
Ві. Восстановле	ние вис	иута	
3iO+ + 2H+	+3e ⁻	Bi↓+ H₂O	+0,32
BiCl ₄	$+3e^{-}$	Bi ↓ + 4Cl ⁻	+0,16
Вг. Восстановле	ние брог	ı a	
Br _a	$+2e^{-}$	2Br	+1,087
⁵ Г ₃	$+2e^{-}$	3Br-	$^{+1,05}_{+1,6}$
$HBrO + 2H^+$ $BrO^- + 2H_2O$	$^{+2e^{-}}_{+2e^{-}}$	$Br_2 + 2H_2O$ $Br_2 + 4OH^-$	+0.45
HBrO + H+	$+2e^{-}$	Br ² + H ₂ O	+1,34
$H_2O - + H_2O$	+2e-	Br ² + H ₂ O Br ² + 2OH	+0.76
$3rO_3^- + 5H^+$	- -4 e-	$HBrO + 2H_2O$	+1,45
$3rO_3^- + 2H_2O$	$+4e^-$	$BrO^- + 4OH^-$	+0.54
$BrO_3^- + 12H^+$	+10e ⁻	$Br_2 + 6H_2O$	+1,52
$BrO_3^- + 6H^+$	$+6e^-$	$Br^- + 6H_2O$	+1,45
С. Восстановле	ние угле	рода	
HCNO + 2H+	$+2e^{-}$	$(CN)_2 \uparrow + 2H_2O$ $HCN + H_2O$	+0.33
HCNO + 2H+	$+2e^{-}$	HCN + H ₂ O	+0.35
CNO- + H ₂ O	$+2e^{-}$	CN- + 2OH-	0,76
Са. Восстановле	ние калі	. ция	*
Ca 2+	$+2e^{-}$	Ca↓	2,79
Cd. Восстановле			
Cd ²⁺	+-2e-		-0,403
Cd (CN)4—	$+2e^-$	$Cd \downarrow + 4CN^-$	1,09
$Cd (NH_3)_4^{2+}$	+2e-	$\mathrm{Cd}\downarrow+4\mathrm{NH_3}$	-0,61
Се. Восстановле	ние цери	я.	
Ce4+	+e ⁻	Ce ³⁺	$^{+1,74}_{-2,48}$
Ce ³⁺	+3e ⁻	Ce ↓ Ce ³⁺ + 6Cl ⁻	$\frac{-2,48}{+1,28}$
CeCl ^{2—}	+e ⁻		*
$Ce (ClO_4)_6^{2-}$		$Ce^{3+} + 6ClO_{4}^{-}$	+1,70
Ce (NO ₃) ₆ ² →	+e-	$Ce^{3+} + 6NO_3^-$	+1,61
Ce (SO ₄) ₃ -	$+e^{-}$	$Ce^{3+} + 3SO_4^{2-}$	+1,44
CeOH3+ + H+	+e ⁻	$Ce^{3+} + H_2O$	+1,70

Высшая степень окисления	Число электроно	Низшая степень окисления	E°, B				
СІ. Восстановлен	ие хлор	a					
Cl ₂ 2HOCl + 2H ⁺ 2ClO ⁺ + 2H ₂ O HClO + H ⁺ ClO ⁻ + H ₂ O 2HClO ₂ + 2H ⁺ 2HClO ₂ + 6H + HClO ₂ + 3H ⁺ ClO ₂ + H ₂ O ClO ₃ + 2H ₂ O ClO ₃ + 3H ⁺ ClO ₃ + H ₂ O ClO ₃ + 6H ⁺ 2ClO ₃ + 12H ⁺ ClO ₃ + 3H ₂ O ClO ₄ + 2H ⁺ ClO ₄ + H ₂ O	$+10e^{-}$ $+6e^{-}$ $+2e^{-}$	2CI- $CI_2 \uparrow + H_2O$ $CI_2 \uparrow + 4OH^ CI^- + H_2O$ $CI^- + 2OH^ HCIO + H_2O$ $CI_2 \uparrow + 4H_2O$ $CI^- + 2H_2O$ $CIO^- + 2OH^ CI^- + 4OH^ HCIO_2 + H_2O$ $CIO^- + 2OH^ CI^- + 3H_2O$ $CI_2 \uparrow + 6H_2O$ $CI_2 \uparrow + 6H_2O$ $CI^- + 6OH^ CIO_3^- + H_2O$	+1,359 +1,63 +0,40 +1,50 +0,88 +1,64 +1,63 +1,56 +0,77 +1,21 +0,33 +1,45 +1,47 +0,63 +1,19				
$2CIO_{4}^{-} + 16H^{+}$	+2e ⁻ +14e ⁻	$ClO_3^- + 2OH^-$ $Cl_2 \uparrow + 8H_2O$	+0,36 +1,39				
ClO ₄ + 8H+	+8e-	$Cl^- + 4H_2O$	+1,38				
$ClO_4^2 + 4H_2O$	+8e ⁻	CI-+80H-	-+0,56				
Со. Восстановлен	ие коба	льта					
Cos+ Cos+	+e ⁻ +3e ⁻ +2e ⁻	Co ²⁺ Co↓ Co↓	+1,95 +0,46 -0,29				
Ст. Восстановлен	ие хром	· a .	* *				
$\begin{array}{c} \text{Cr}^{3+} \\ \text{Cr}^{3+} \\ \text{Cr}^{2+} \\ \text{Cr}^{-2} + 2\text{H}_2\text{O} \\ \text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ \end{array}$	$+6e^{-}$	Cr^{2+} $Cr \downarrow$ $Cr \downarrow$ $Cr \downarrow + 4OH^ 2Cr^{3+} + 7H_2O$	-0,41 $-0,74$ $-0,91$ $-1,2$ $+1,33$				
$CrO_4^{2-} + 4H_2O$	+3e-	Cr (OH) ₃ \downarrow +5OH ⁻	0,13				
Cs. Восстановление цезия							
Cs+	+e ⁻	Cs ↓	-2,923				

Высшая степень окисления	Число электронов	Низшая степень окисления	E°, B
Си. Восстановле	ние меди		
Cu^{2+} Cu^{2+} Cu^{2+} Cu^{2+} Cu^{2+} + Ci^{-} Cu^{2+} + Br^{-} Cu^{2+} + I^{-}	$^{+2e^{-}}_{-e^{-}}_{+e^{-}}_{+e^{-}}$	Cu+ Cu↓ CuCl↓ CuBr↓ CuBr↓	+0,159 $+0,345$ $+0,531$ $+0,54$ $+0,64$ $+0,86$
F. Восстановле	ние фтора		
$F_2 \uparrow$	$+2e^{-}$	2F-	+2,77
Fe. Восстановле	ние желе:	3 à	
Fe^{3+} Fe^{3+} Fe^{2+} $FeO_4^{2-} + 8H^+$		Fe^{2+} $Fe \downarrow$ $Fe \downarrow$ $Fe^{3+} + 4H_2O$	+0,771 -0,058 -0,473 +1,9
Ga. Восстановле	ние галли	я я	•
$G_{a^{3+}}$ $H_2G_aO_3^- + H_2O$	+3e ⁻ +3e ⁻	Ga↓ Ga↓+ 4OH→	-0,56 -1,22
G e. Восстановле	ние герма	ания	🌡 i i i i i i i i i i i i i i i i i i i
$_{ m Ge^{2+}}^{ m Ge^{2+}}_{ m H_2GeO_3} + 4{ m H^+}_{ m 2O}$	$^{+2e^{-}}_{+4e^{-}}$	Ge ↓ $+3H_2O$ Ge ↓ $+5OH^{-}$	0,0 0,13 1,0
Н. Восстановле	ние водор	ода	
2H+ 2H ₂ O	$^{+2e^{-}}_{+2e^{-}}$	$ \begin{array}{c} H_2 \uparrow \\ H_2 \uparrow + 2OH^{-1} \end{array} $	0,0000 0,828
Hf. Восстановле	ение гафн	ия	•
$HfO^{2+} + 2H^{+}$	- -4 <i>e</i> -	$Hf\downarrow + H_2O$	1,70
Hg. Восстановл	ение ртуп	ŗи	
2 Hg $^{2+}$ Hg $^{2+}$ Hg $^{2+}$	+2e ⁻ +2e ⁻ +2e ⁻	Hg_2^{2+} $Hg \downarrow$ $2Hg \downarrow$	+0,907 +0,850 +0,792

Высшая степень окисления	Число электронов	Низшая степень окисления	<i>E</i> ⁰, B
I. Восстановлен	ие иода		
I _g	$+2e^{-}$ 21	-	+0,621
I_3^{-}	+2e- 3I	-	_i ∩ 546
2ÏBr		↓ + 2Br-	+1,02
2IBr ₂	$+2e^{-1}$	↓ + 4Br-	+0,87
ICN	$+2e^{-}$ I ⁻	+ CN-	+0,30
2ICN:+ 2H+ 2ICl	+2e- I ₂	↓ + 2HCN	+0,63
2ICI		1 + 2Cl-	+1,19
21C1 ₂		↓ + 4Cl ⁻	+1,06
2HIO.+ 2H+	$+6e^{-}$ I_{2} $+2e^{-}$ I_{3}	↓ + 6Cl-	+1,28
2IO- + 2H ₀ O	$+2e^{-}$ I_{2}	↓ + 2H₂O ↓ + 4OH−	$+1,45 \\ +0,45$
210 ⁻ + 2H ₂ O HIO + H+	$+2e^ I^2$	+ H ₂ O	-10,99
$10^- + H_2O$	+2e- I-	+ 2OH−	0,49
$10_3^- + 5H^+$	+4e- HI	$10 + 2H_2O$	+1,14
$10_3^- + 2H_2O$	+4e- IO	-+ 40H-	+0,14
$2IO_3^- + 12H^+$	$+10e^{-}$ I ₂	+6H2O	+1,19
$210_{3}^{-} + 6H_{2}O$	$+10e^{-}$ I ₂	+ 120H ⁻	- +0,21
$10^{-3} + 6H^{+}$	- -6e ⁻ I ⁻	+3H ₂ O	+1,08
$10_3^- + 3H_2O$		+ 60H-	+0.26
$H_{\mathfrak{s}}IO_{\mathfrak{s}}+H^{+}$	+2e- IO	$\overline{3} + 3H_2O$	+1.6
H ₃ IO ₆ 2—		$\frac{1}{3} + 30H^{-}$	+0,7
$H_5IO_6 + 7H^+$		+ 6H ₂ O	+1,24
$H_{5}IO_{6}^{2} + 7H^{+}$ $H_{3}IO_{6}^{2-} + 3H_{2}O$	+8e- I-		+0,37
In. Восстановлен	ие индия		
[n\$+	+2e- In+		-0,45
n ³⁺	$+3e^-$ In		-0,34
in+	+e⁻ In	ļ	-0,12
г. Восстановлен	ие иридия		
[r³+	+3e- Ir↓		+1,15
К. Восстановлен	не калия		•
ζ+	+e- K↓		-2,923
.а. Восстановле	ние лантан	a	
_a ³⁺ `	+3e- La	.	-2,52
і. Восстановле	ние лития		
Li+	+e⁻ Li	ı.	-3,04
-,	, , , , , , ,	₹	٠,٠.

Высшая степень окисления	Число электронов	Низшая степень окисления	E°, B
Mg. Восстановл	ение магн	я	
Mg2+	+2e-	Mg↓	-2,37
Mn. Восстановл	ение марга	анца	
Mn3+	1 -	Mn²+ Mn↓	+1,51 -1,17
Mn ²⁺ MnO ₄ ^{2—} + 4H+		$MnO_2 \downarrow + 2H_2O$	+2,26
$MnO_4^{2-} + 2H_2O$		$MnO_2 \downarrow + 4OH^-$	+0,6
MnO ₄		MnO₄ ² —	-+0,588
$MnO_{4}^{-} + 4H^{+}$		$MnO_2 \downarrow + 2H_2O$	+1,69
$MnO_4^- + 8H^+$		$Mn^{2+} + 4H_2O$	+1,51
•		5 x 0 y 0	(
Мо. Восстановл		одена	
Mo ⁸⁺	$+3e^{-}$	Mo↓	-0,2
$M_0O_2^+ + 4H^+$		$Mo^{3+} + 2H_2O$,	0,0
$M_0O_2^{2+}$		$M_0O_2^+$	+0.48 0,0
$H_2M_0O_4 + 6H^+$ $M_0O_4^{2-} + 4H_2O$		$Mo \downarrow + 4H_2O$ $Mo \downarrow + 8OH^{-1}$	—1.05
111004 11190	,		
N. Восстановле	ние азота	*	
$HN_s + 11H^+$	+8e-	3NH ₄ ⁺	+0,69
$N_3 - 7H_2O$	$+6e^{-}$	$N_2H_4 + NH_3 + 70H^{-1}$	-0,62
$3N_2 \uparrow + 2H^+$	$+2e^-$	2HN ₃	3,1
3N ₂ †	$+2e^{-}$	$2N_3$	-3,4
$N_2 \uparrow + 8H^+$	+6e-	2NH ₄	+0,26
$H_2N_2O_2 + 2H^*$	$+2e^{-}$	$N_2 \uparrow + 2H_2O$	+2,65 +0,83
$2HNO_2 + 4H^+$ $HNO_2 + H^+$	+4e ⁻ +e ⁻	$H_2N_2O_2 + 2H_2O$ $NO \uparrow + H_2O$	+0,98
$NO_2 + H_2O$	$+e^{-}$	NO↑+2OH-	0,46
$2HNO_{2} + 4H^{+}$	-+ 4e ⁻	N ₂ O ↑ + 3H ₂ O	+1,29
$2HNO_2 + 6H^+$	+6e-	$N_2 \uparrow + 4H_2O$	1,44
$2NO_2 + 4H_2O$	$+6e^-$	$N_2 \uparrow + 8OH^-$	+0,41
$HNO_2 + 7H^+$	+6e-	$NH_4^+ + 2H_2O$	+0,8 6
$NO_2^- + 6H_2O$	+6e-	$NH_4OH + 7OH^4$	-0,15 +1,77
$N_2O \uparrow + 2H^+$	+2e ⁻ +2e ⁻	$N_2 \uparrow + H_2O$ $N_2 \uparrow + 2OH^-$	+0,94
$N_2O \uparrow + H_2O$ $2NO \uparrow + 4H^+$	-14e-	$N_2 \uparrow + 2H_2O$	+1,68
$2NO \uparrow + 2H_2O N_2O_4 \uparrow + 2H^+$	- <u></u> 4e−	$N_2 \uparrow + 4OH^-$	$+0.85 \\ +1.07$
$N_2O_4\uparrow + 2H^{\dagger}$	+2e-	2HNO ₂	7-1,01

Высшая степень окисления	Число электроно	Низшая степень окисления	<i>E</i> [⊕] , B
N ₂ O ₄ ↑	$+2e^{-}$	2NO-2	+0,88
$N_2O_4\uparrow + 8H^+$	$+8e^{-}$	$N_2 \uparrow + 4H_2O$	+1,35
$N_2O_4 \uparrow + 4H_2O$ $NO_3 + 3H^+$	+8e ⁻ +2e ⁻	$N_2 \uparrow + 80H - HNO_2 + H_2O$	+0,53
$NO_3 + H_2O$	+2e-	$NO_{2}^{-} + 2OH^{-}$	+0,94
$NO_3 + 2H^+$	+e ⁻	_	+0,01
$NO_3 + H_2O$	+e-	$NO_2 \uparrow + 11_2O$ $NO_2 \uparrow + 2OH$	+0,80 0,86
$NO_3^3 + 4H^+$	+3e ⁻	$NO_2 \uparrow + 2OH$ $NO \uparrow + 2H_2O$	0,86 -+0,96
$NO_3^2 + 2H_2O$	+3e-	NO ↑ + 4OH¬	-0,14
$2NO_{3}^{-} + 12H^{+}$	+10e-	$N_a \uparrow + 6H_aO$	-0,14 +0,73
$NO_3^- + 8H^+$	+6e-	$N_{2} + + 0N_{2}O$ $NH_{3}OH^{+} + 2H_{2}O$	+0,73
$2NO_{3}^{-}+17H^{+}$	+14e ⁻	$N_2H_5^+ + 6H_2O$	+0,73 +0,84
$NO_3^- + 10H^+$	+8e-	$N_{2}^{11}_{5} + 3H_{2}^{0}$ $NH_{4}^{+} + 3H_{2}^{0}$	+0,87
$NO_3 + 7H_2O$	+-8e-	$NH_4OH + 9OH^{-1}$	-0,12
Na. Восстановлен	ие нат	я	
Na+	+e-	Na ↓	-2,713
Nb. Восстановлен	ие нио(5 и я	
Nb ³⁺ NbO ³⁺ + 2H ⁺	+3e ⁻ +2e ⁻	$\begin{array}{c} \text{Nb} \downarrow \\ \text{Nb}^{3+} + \text{H}_2\text{O} \end{array}$	-1,1 -0,34
Ni. Восстановлен	ие ник	еля	•
Ni ²⁺	$+2e^{-}$	Ni ↓	0,228
О. Восстановлені	іе кисл	орода	
$ O_2 \uparrow + 4H^+ $ $ O_2 \uparrow + 2H_2O $ $ O_2 \uparrow + 2H^+ $	+4e ⁻ +4e ⁻ +2e ⁻	2H ₂ O 4OH ⁻ H ₂ O ₂	+1,229 $+0,401$ $+0,682$
$O_2 \uparrow + H_2O$	$+2e^{-}$	$HO_2^- + OH^-$	-0,076
$H_2O_2 + 2H^+$	$+2e^{-}$	2H ₂ O	+1,77
$HO_2^- + H_2O$ $O_3 \uparrow + 2H^+$	+2e- +2e-	30H-	+0,88
$O_3 \uparrow + H_2O$	$^{+2e}_{+2e^-}$	$O_2 \uparrow + H_2O$ $O_2 \uparrow + 2OH$	$^{+2,07}_{+1,24}$
Os. Восстановлен	ие осми	я	•
Os ²⁺	+2e-	Os ↓	+0,85
$HOsO_5^- + 4H_2O$	+8e-	Os ↓ + 9OH →	+0,02

Высшая степень окисления	Число электронов	Низшая степень окисления	E, B
Р. Восстановлени	ефосфо	ра	
$H_3PO_2 + H^+$	+e ⁻	$P \downarrow + 2H_2O$	0,51
H_2PO_2	$+e^{-}$	$P \downarrow + 2OH^-$	- -2 , 05
$H_3PO_3 + 3H^+$	$+3e^{-}$	$P \downarrow + 3H_2O$	0,50
$H_{3}^{*}PO_{3}^{*} + 2H^{+}$	+2e-	$H_4PO_2 + H_2O$	-0,50
$HPO_3^{2-} + 2H_2O$		$H_3PO_2^- + 3OH^-$	1,57 -+0,38
$H_4P_2O_6 + 2H^+$		$2H_3PO_3$ P \(+ 4H_2O\)	-0,41
$H_3PO_4 + 5H^+ H_3PO_4 + 4H^+$	A_o	H.PO. 4.7H.O	0,39
$2H_{3}PO_{4} + 2H^{+}$	$+2e^{-}$	$H_4P_2O_6 + 2H_2O$ $H_3PO_3 + H_2O$	-0,94 0,976
$H_3PO_4 + 2H^+$	$^{+2e^{-}}$ $^{+2e^{-}}$	$H_3PO_3 + H_2O$	-0,276 $-1,12$
$PO_4^{3-} + 2H_2O$	+2e	$HPO_3^{2-} + 3OH^{-}$	-1,12
Рь. Восстановлен	иесвин	ца	
Pb4+	+2e-	Pb2+	+1,66
Pb4+	- -4e ⁻	Pb↓	+0.77
Pb ²⁺		Pb↓	—1,26
$HPbO_2 + H_2O$		Pb ↓ + 3OH ⁻	-0,54
$PbO_3^{2\rightarrow} + H_2O$	$+2e^{-}$	$PbO_2^{2-} + 2OH^{-}$	+0,2
Pd. Восстановлен	иепалл	адия	
Pd2+	$+2e^{-}$	Pd↓	+0,915
Pt. Восстановлен	ие плат	гины	
Pt2+	+2e~	Pt↓	+1,2
Ри. Восстановлен	ие плут	пония по ни по ни о ни о ни о н	
Pu ⁴⁺	$^{+e^{-}}_{+3e^{-}}$	Pu ³⁺ .	$^{+0,970}_{-2.03}$
Pu ³⁺	- - 5e	ruy	2,00
Ra. Восстановлен	ие ради	Я	
Ra ²⁺	$+2e^{-}$	Ra↓	-2,92
Rb. Восстановле	ниеруб	идия	
Rb+	+e ⁻	Rb↓	-2,924
Re. Восстановлен	ие рени	я .	
Ŗe³+	+e-	Re ²⁺	-0,23
Re ³⁺	+3e ⁻ +e ⁻	Re↓ Re⁺	-0.18 +0.02
1/0-	T.		1 - 3

Высшая степень окисления	Число электронов	Низшая степень окисления	E°,
Re+	'+e-	Re↓	0.004
Re ⁺	$+2e^{-}$	Re-	0,324 0,23
$ReO_4^- + 8H^+$	+7e-	$Re \downarrow + 4H_2O$	+0.37
$ReO_4^- + 4H^+$	+3e-	$ReO_2 \downarrow + 2H_2O$	+0,51
$ReO_4^- + 2H^+$	+e ⁻	$ReO_3 \downarrow + H_2O$	+0,77
$ReO_4^- + 4H_2O$		Re ↓ + 8OH-	-0,584
$ReO_4^- + 2H_2O$	+3e-	$ReO_2 \downarrow + 4OH^-$	0,595
Rh. Восстановле	ние роди	Я	-
Rhs+	$+3e^{-}$	Rh↓	+0.8
RhO ²⁺ + 2H+	+e-	$Rh^{3+} + H_2O$	+1.40
$RhO_4^{2-} + 6H^+$		$RhO^{2+} + 3H_2O$	+1,46
Ru. Восстановле	ние руте		
Ru ^{s+} Ru ^{s+}	$^{+e^{-}}_{+3e^{-}}$	Ru ²⁺	+0,249
Ru ²⁺	+3e +2e	Ru↓ Ru↓	+0.38 -0.45
RuO ₄	+e ⁻	RuO ₄ ² —	-0.595
S. Восстановлен	иесеры		
$S_2O_3^{2-} + 6H^+$	$+4e^{-}$	2S ↓ + 3H ₂ O	+0,5
$2H_2SO_3 + 2H^+$	+4e ⁻	$S_2O_3^2 + 3H_2O$	+0,40
$2SO_3^{2-} + 3H_2O$	$+4e^{-}$	$S_2O_3^{2-} + 6OH^{-7}$	-0.58
$2H_2SO_3 + H^+$	- -2e ⁻	$HS_{2}O_{4} + 2H_{2}O$	-0,08
$2SO_3^{2-} + 2H_2O$	$+2e^{-}$		-1,12
$SO_4^{2-} + 4H^+$	+2e ⁻	$H_2SO_3 + H_2O$	+0,17
$50_4^{2-} + H_2O$		$SO_3^{2-} + 2OH^-$	-0,93
$2SO_4^{2-} + 10H^+$	+8e ⁻	$S_2O_3^{2+} + 5H_2O$	+0.29
$2SO_4^{2} + 5H_2O$	+8e-	$S_2O_3^{2-} + 10OH^{-}$	- 0,23
$SO_4^{2-} + 8H^+$		$S\downarrow + 4H_2O$	+0,36
SO ₄ + 4H ₂ O		$S\downarrow + 8OH^-$	
$SO_4^{2-} + 10H^+$		$H_2S \uparrow + 4H_2O$	-0,75
$SO_4^{2-} + 4H_2O$		$S^{2-} + 8OH^{-}$	+0,31
$S_2O_8^{2-}$	+2e ⁻	2SO ₄ ²	-0,68 +2,0
-2-8 Sb. Восстановле		3	, -,-
Sh ³⁺			1.0.00
SbO+ + 2H+	$+3e^{-} +3e^{-}$	Sb↓ Sb↓+H ₂ O	$^{+0,20}_{+0,212}$

		11 pooduos	
Высшая степень окисления	Число электронов	Низшая степень окисления	E°. B
$SbO_2 + 2H_2O$	+3e-	Sb ↓ + 4OH-	_0,675
$SbO_3 + H_2O$		$SbO_2^- + 2OH^-$	-0,43
Sc. Восстановле	ңие скан;	дия	
Sc³+	$+3e^{-}$	Sc ↓	-2,08
Se. Восстановле	ние селе	на	
H ₂ SeO ₃ + 4H+	+4e-	Se $\downarrow + 3H_2O$	+0,744
$SeO_3^{2-} + 3H_2O$	+4e-	Se ↓ + 6OH ⁻	0,366
$SeO_4^{2-} + 4H^+$	+2e-	$H_2SeO_3 + H_2O$	+1,15
$SeO_4^{2-} + H_2O$		$SeO_3^{2-} + 2OH^-$	+0, 0 5
Sn. Восстановле	ние олов	a	· · · · · · · · · · · · · · · · · · ·
Sn4+	$+2e^{-}$	Sn ²⁺	+0,15
Sn4+	+4e-	Sn J	+0,01
Sn ²⁺			-0,140 -0.91
$HSnO_2^- + H_2O$	$+2e^{-}$	Sn ↓ + 3OH-	0,91
Sr. Восстановле	ние стро	нция	₹ .v ***
Sr ²⁺	+2e ⁻	Sr↓	-2,89
Те. Восстановл	ение телл	ı y p.a	
$TeO_3^{2-} + 3H_2O$	+4e-	Te ↓ + 6OH-	0,57
$TeO_4^{2-} + H_2O$	$+2e^{-}$	$TeO_3^{2-} + 2OH^-$	+0,4
Th. Восстановл	ение тор	ня	
Th4+	+e-	Th ³⁺	-2,4
Th4+	+4e ⁻	Th ↓	-1,90 $-1,73$
Th ³⁺	- - 3e-		-1,70
Ті. Восстановл		*	. 0.000
Ti ⁴⁺	$^{+e^{-}}_{+4e^{-}}$	Ti³+ Ti↓	$^{+0,092}_{-0,88}$
Ti4+ Ti3+	$+e^{-}$	Tiat	-0,37
Ti2+	+2e ⁻	Ti↓	-1,63
$TiO^{2+} + 2H^+$	+4e-	Ti↓+ H ₂ O	0,88
Tl. Восстановл	ение тал	пия	
T/3+	$+2e^{-}$	TI+	+1,28
1			•

+3e ⁻		
$+e^-$		+0,734
•	•	0,357
ние уран		
+e+ -+4e−		-0,61 $-1,50$
+3e ⁻	U↓	—1,80 —1,80
		+0,60
	2	-\ 0,052
-		+0,45
+2e-	$U^{4+} + 2H_2O$	+0,33
ие вана	дия	
+e-	V2+	0,255
	V	-0,87
+-ze +-e-		-1,18 + 0,337
+-e ⁻	VO ⁺	-0,044
		+0,9996
		+0,668
•	•	+0,360
	• • •	0,25
•	•	+1,26
+e-	$VO^{2+} + 3H_2O$	+1,31
ние воль	фрама	
+6e-	$W\downarrow + 4H_2O$	+0,05
$+6e^-$	W ↓ + 8OH¬	-1,05
ие иттри	. Я	
		-2,37
ние цинн	t a	,
+2e ⁻	Zn ↓	0,764
•		-1,216
ние цирі		
-		—1,57
	+e ⁺ +4e ⁻ +4e ⁻ +4e ⁻ +4e ⁻ +e ⁻ +2e ⁻ +2e ⁻ +e ⁻ +2e ⁻ +e ⁻ +4e ⁻	+4e ⁻ U ↓ +3e ⁻ U ↓ +e ⁻ U 4+ + 2H ₂ O +e ⁻ UO ₂ ↓ +2e ⁻ UO ₂ ↓ +2e ⁻ U ⁴⁺ + 2H ₂ O име ванадия +e ⁻ V ²⁺ +3e ⁻ V ↓ +2e ⁻ V ↓ +e ⁻ V ³⁺ + H ₂ O +e ⁻ VO ⁺ +e ⁻ VO ²⁺ + H ₂ O +3e ⁻ V ↓ + 2H ₂ O +3e ⁻ V ↓ + 2H ₂ O +5e ⁻ V ↓ + 2H ₂ O +2e ⁻ VO ⁺ + 3H ₂ O +e ⁻ VO ²⁺ + 3H ₂ O +e ⁻ V ↓ + 4H ₂ O +e ⁻ V ↓ + 8OH ⁻ Име иттрия +3e ⁻ Y ↓ ние инн ка +2e ⁻ Zп ↓

3.45. ЗНАЧЕНИЯ ПОТЕНЦИАЛОВ ПОЛЯРОГРАФИЧЕСКИХ ПОЛУВОЛН

В таблице приведены значения потенциалов полярографических полужволи на ртутном капельном электроде по отношению к насыщенному каломельному электроду при температуре $20-25\,^{\circ}\mathrm{C}$.

Принятые сокращения:

Жел. — желатина; м. д. — массовая доля

жел. 0,5 моль/дм ³ КОН + 0,025 % м. д жел. Au 1 моль/дм ³ КСN Ва 0,1 моль/дм ³ [(CH ₃) ₄ N]Cl Ві 1 моль/дм ³ NaOH	до ре- акции +1 +3 +3 -43 4. +3 4. +3 +1 +2 +3	после реакции 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	— 0,3 —1,75 —1,8 —0,7 —0,26 —1,46 —1,92
Al 0,1 моль/дм ³ KCl 0,5 моль/дм ³ L1 ₂ SO ₄ As 1 моль/дм ³ H ₂ SO ₄ + 0,01 % м. д жел. 0,5 моль/дм ³ KOH + 0,025 % м. д жел. Au 1 моль/дм ³ KCN Ba 0,1 моль/дм ³ [(CH ₃) ₄ N]Cl Bi 1 моль/дм ³ NaOH	+3 +3 1. +3 1. +3 +1 +2 +3	0 0 0 +5 0	-1,75 -1,8 -0,7 -0,26 -1,46
жел. 0,5 моль/дм ³ КОН + 0,025 % м. д жел. Au 1 моль/дм ³ КСN Ba 0,1 моль/дм ³ [(CH ₃) ₄ N]Cl Bi 1 моль/дм ³ NaOH	+3 +1 +2 +3	+5 0 0	-0,26 -1,46
Au 1 моль/дм ³ KCN Ba 0,1 моль/дм ³ [(CH ₃) ₄ N]Cl Bi 1 моль/дм ³ NaOH	$^{+2}_{+3}$. 0	
0.5 моль/дм 3 $ m H_2SO_4+0.01~\%$ м. д жел.	t: +3	0	-0,6 -0,04
0,5 моль/дм³ NaKC ₄ H ₄ O ₆ + 0,01 % м. д. жел. pH = 4,5 pH = 9 Вг 0,1 моль/дм³ KCl 0,1 моль/дм³ CaCl ₂ Са 0,1 моль/дм³ [(CH ₃) ₄ N] Cl Cd 1 моль/дм³ NaOH 0,1 моль/дм³ HClO ₄ 0,1 моль/дм³ KCl + 0,01 % м. д	+3 +3 +5 +5 +2 +2 +2 +2 +2	0 0 -1 -1 0 0 0	-0,29 -0,70 -1,78 -1,51 -2,22 -0,78 -0,64 -0,60
жел. Се 0,1 моль/дм³ этилендиамин Со 0,1 моль/дм³ КС! 1 моль/дм³ КСN 2; 5 моль/дм³ NH ₄ OH + 0,1 моль/дм NH ₄ Cl	+4 +2 +3 +3	$^{+3}_{0}_{+2}_{+2}$	-0,71 -1,20 -1,25 -0,54
1 моль/дм ³ KSCN Cr 1 моль/дм ³ NaOH 0,1 моль/дм ³ KCl Cs 0,1 моль/дм ³ [(CH ₃) ₄ N] Cl Cu 0,5 моль/дм ³ H ₂ SO ₄ + 0,01 % м. д жел. 1 моль/дм ³ NH ₄ OH + 1 моль/дм		0 +3 +3 0 0	-1,03 -0,85 -0,3 -2,1 0,00 -0,25

				114011111111111111111111111111111111111
еляе- темент	Состав раствора (фон)		гепень ісления	циал ол вы,
Определяе-	Cocias pacisopa (que)	до ре- акции	после реакции	Потенциал полуволны, В
Cu	1 моль/дм ³ NH ₄ OH + 1 моль/дм ³ NH ₄ Cl	+1	. 0	-0,54
• .	I моль/дм ⁸ KSCN	+2	0	0,54
	0,1 моль/дм ³ KCl	+2	+1	0,04
Ēr	0,1 моль/дм ⁸ LiCl	+3	0	1,85
Fe	0,1 моль/дм ³ КС1	+2	0	-1,3
	$1,1$ моль/дм ³ $HClO_4$, $pH=0\div 2$	+2	0	—1,37
	0,05 моль/дм ³ ЭДТА + 0,8 моль/дм ³			
	CH_3COONH_4 pH = 7	+3	+1	-0.15
_	pH = 2	+3	+1	0,12
Ga	0,1 моль/дм ³ NH ₄ OH + 0,1 моль/дм ³ NH ₄ Cl	+3	0	1,58
	1 моль/дм ⁸ КСN	+3	0	-1,29
Gd	0,1 моль/дм ³ КСl	+3	0	-1.75
Ge	$0,1$ моль/дм ³ $NH_4OH + 0,1$ моль/дм ³	+4	+2	-1,45
	NH₄Cl	•	•	
	0,2 моль/дм ³ ЭДТА, pH = 6,8	+4	0	1,3
	0,5 моль/дм ³ HCl	+2	0	0,42
Η,	0,1 моль/дм ⁸ KCl	+1	0 🖟	-1,58
I	0,05 моль/дм ³ КС!	+5	—1	1,28
	0,1 моль/дм ³ HClO ₄	+5	-1	-0.04
In	1 моль/дм ³ NaOH	+3	0	-1,09
	0,1 моль/дм ³ [(CH ₃) ₄ N] Cl	+3	0	-0,56
	12 моль/дм ³ HCl	+3	0.	0,77
	1 моль/дм ³ HCl	+3	0	0,56
K	0,1 моль/дм ³ [(CH ₃) ₄ N]Cl	+1	0	-2,13
La	0.1 моль/лм ³ I(CH _a), NICl	+3	.0	-1,9
Li	0,1 моль/дм ³ [(CH ₃) ₄ N] Cl 0,1 моль/дм ³ [(CH ₃) ₄ N]Cl	+1	0	-2,35
Mg	0,1 моль/дм ³ [(CH ₃) ₄ N]Cl	+2	0	-2,30
Mn	0.5 моль/дм ⁴ NH ₄ OH $+$ 0.5 моль/дм ⁵	 -2	0 -	-1,54
	NH ₄ Cl			. 0. 00
Mo	0,1 моль/дм ³ HCl	+6	+5	-0.29
	0,1 моль/дм ³ HCl	+ 5	+3	-0,74
	3 моль/дм ³ HClO ₄	+6	<u>+5</u>	-0.14
	3 моль/дм ³ HClO ₄	+5	+3	0,79
N	0,1 моль/дм³ LiCl	+5	3	-2.1
Na	0,1 моль/дм ³ [(CH ₃) ₄ N]Cl	+1	0	-2,10
Nb	$0,1$ моль/дм ³ $H_2C_2O_4$, pH = $1,2 \div 5,5$	+5	+4	-1.5 -1.28
NT.J	0,1 моль/дм ³ LiCl -	+5	+4	-1,28 $-1,83$
	0,1 моль/дм ² КС1	+3	+1	
Ni	1 моль/дм ³ NH ₄ OH + 0,2 моль/дм ³	+2	0	1,06
	NH ₄ Cl + 0,005 % м. д. жел.	+2	0	1,1
NT	0,1 моль/дм ³ КС1	+2	+3	-1,1
Np	1 моль/дм ³ $HClO_4$ Раствор KOH или HCl , $pH = 1 \div 10$	0	-1	-0.05
$\Theta(O_2)$	Раствор КОН или HCl, $pH = 1 \div 10$ Раствор КОН или HCl, $pH = 1 \div 10$	<u>-1</u>	$-1 \\ -2$	-0,03 -0,04
(H À)	O I work / must I i so	_i	$-\frac{2}{-2}$	-0.88
(112O2)	0,1 моль/ дм ³ Li ₂ SO ₄	—1	— 2	-0,00

Ment			епень сления	иал лиы,
Определяе- мый элемент	Состав раствора (фон)	до ре- акции	после реакции	Потенциал полуволны, В
(H ₂ O ₂) Os	0,1 моль/дм ³ NaOH 1 моль/дм ³ NaOH	-1 +6	0	-0,17 -0,61
Рb	1 моль/дм ³ NaOH 0,1 моль/дм ³ KCl	$^{+6}_{+2}$	+3 0	1,54 0,40
	1 моль/дм ³ NaOH	$^{+2}_{+2}$	0 0	0,76 0,72
Pd	1 моль/дм ³ КСN 2 моль/дм ³ КОН	-1-2	ŏ	-1,41
-	1 моль/дм ³ КСN	+2	0	-1,77
Pt	0,1 моль/дм ³ KCl 0,5 моль/дм ³ KSCN + 0,05 моль/дм ³	$^{+4}_{+2}$	$^{+2}_{0}$	1,0 1,41
<u> </u>	этилендиамин	+2	0	-1,84
Ra Rb	0,1 моль/дм ³ КСl 0,1 моль/дм ³ [(CH ₃) ₄ N]Cl	+1	ŏ	—2 03
Re	0,1 моль/дм ³ КСI	+ 7	+4	1,7
Rh	2 моль/дм ³ HCl 1 моль/дм ³ NH ₄ OH + 1 моль/дм ³	+7 +3	+4 +1	0,45 0,93
	NH ₄ Cl 1 моль/дм ³ KCN	+3	+2	-1,47
Sb	1 моль/дм ³ HCl	+3	0	0.15
	1 моль/дм ³ NaOH 1 моль/дм ³ KCN	$^{+3}_{+3}$	0	-1.15 -1.13
Sc	0,1 моль/дм ³ КСI	+3	0	-1,80
Se	$1 \text{ моль/дм}^3 \text{ NH}_4\text{OH} + 1 \text{ моль/дм}^3$	+4	-2	-1,53
Sm	$NH_4CI + 0,005 \%$ м. д. жел. 0,1 моль/дм³ [(CH ₃) ₄ N] I + 0,0005 моль/дм³ H_2SO_4	,+3	. 0	—1,97
Sn	1 моль/дм ³ NaOH + 0,01 % м. д. жел.	+2	0	-1,22
	I моль/дм³ НСI	$^{+2}_{+2}$	0	-0.47 -0.1
Sr	1 моль/дм ³ HCl 0,1 моль/дм ³ LiCl	+2	$+4 \\ 0$	-2,10
Ta	0,86 моль/дм ³ HCl	+5	,	-1,16
Te	0,1 моль/дм ³ $K_2C_4H_4O_6$, pH = 3 ÷ 5 0,1 моль/дм ³ NaOH + 0,003 % м. д.	$^{+5}_{+4}$	+4 2	-1,57 $-1,22$
	жел.			
	0,1 моль/дм³ NaOH + 0,003 % м. д. жел.	+6	2	-1,60
.8 ₂ ,\$	0,1 моль/дм ³ NH ₄ Cl + NH ₄ OH, pH = 6,2	+6	-2	1,17
3,100 3,100 3,100 3,100	0,1 моль/дм ³ NH ₄ Cl + NH ₄ OH, pH = 9,2	+6	-2	-1,34
Ti	0,1 моль/дм ³ HCl 0,4 моль/дм ³ Na ₂ C ₄ H ₄ O ₆ + 0,005 %	+4 +4	$^{+3}_{+3}$	0.81 1,65
Ti	м. д. жел., pH = 11,8 1 моль/дм ⁸ HCl	+1	0	-0,48
	1 моль/дм ⁸ HCl	+3	ŏ	-0,46 -0,45
	0,1 моль/дм ³ KCl	+3	0	-1,85
U	0,1 моль/дм ³ КС1	+4	+3	0,93

			· ·
Состав раствора (фон)	Степень окисления		В2.Л ЛНЫ,
	до ре- акции	пос л́е реакции	Потенциал полуволны, В
2 моль/дм ³ HCl	+6	+4	-0,20
1 моль/дм ³ 1 моль/дм ³ NH₄OH + 1 моль/лм ⁸	+6 +5 +5	$^{+3}_{+2}_{+4}$	-0,9 -0,80 -0,96
1 моль/дм ³ NH ₄ OH + 1 моль/дм ³ NH ₄ Cl + 0,005 % м. д. жел.	+4	+2	-1,28
0,1 моль/дм ³ LiCl	+5 +3	+3	-0,66 -1,8
0,1 моль/дм ³ KCl	$^{+3}_{+2}$	0	-2.0 -1.00 -1.53
0,1 моль/дм ⁸ КС1	4	ŏ	-1,53 $-1,65$
	2 моль/дм ³ HCl 2 моль/дм ³ HCl 1 моль/дм ³ NH ₄ OH + 1 моль/дм ⁸ NH ₄ Cl + 0,005 % м. д. жел. 1 моль/дм ³ NH ₄ OH + 1 моль/дм ³ NH ₄ Cl + 0,005 % м. д. жел. 4 моль/дм ³ HCl 0,1 моль/дм ³ LiCl 0,1 моль/дм ³ KCl 1 моль/дм ³ KCl 1 моль/дм ³ KCl 1 моль/дм ³ NAOH	Состав раствора (фон) 2 моль/дм³ НС! 2 моль/дм³ НС! 3 моль/дм³ НС! 46 46 47 47 48 47 48 47 48 48 48 48 48 48 48 48 48 48 48 48 48	Состав раствора (фон) 2 моль/дм³ НС! 2 моль/дм³ НС! 3 моль/дм³ НС! 46 +3 1 моль/дм³ НС! 45 +5 +2 1 моль/дм³ NH₄OH +1 моль/дм³ +5 +4 NH₄Cl +0,005 % м. д. жел. 1 моль/дм³ NH₄OH +1 моль/дм³ +4 +2 NH₄Cl +0,005 % м. д. жел. 4 моль/дм³ HC! 6,1 моль/дм³ LiCl 7,1 моль/дм³ KCl 7,1 моль/дм³ NAOH 7,2 0

ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

4.1. КЛАССИФИКАЦИЯ И НОМЕНКЛАТУРА

4.1.1. Основы классификации и номенклатуры

Органические соединения чаще всего классифицируют по химическому

строению на ациклические и циклические.

Ациклические — это углеводороды с открытой цепью атомов (алифатические, или соединения жирного ряда). Они подразделяются на предельные (насыщенные) и непредельные (ненасыщенные). Предельные — это углеводороды с общей формулой C_nH_{2n+2} (парафины, или алканы). Атомы углерода в этих соединениях связаны между собой и с атомами водорода простыми (ординарными) связями: C-C и $C-H_1$

Непредельные — это углеводороды с общей формулой C_nH_{2n} (олефины); C_nH_{2n-2} (ацетиленовые или диеновые), C_nH_{2n-4} , C_nH_{2n-6} и т. д. Олефиновые углеводороды содержат двойную (олефиновую) связь C=C, ацетиленовые — тройную связь C=C, диеновые — две двойные связи, называемые, в зависимости от их взаимного расположения в цепи кумулированными C=C=C, сопряженными C=C=C, изолированными C=C=C.

Циклические — это соединения с замкнутой (кольцевой, или циклической) ценью атомов. Они делятся на изоциклические и гетероциклические. Изоциклические — это углеводороды с замкнутой ценью

атомов углерода. К ним относятся:

а) алициклические, или полиметиленовые (циклопарафины и их

производные);

б) ароматические соединения (бензол, нафталин и т. д. и их про-

изводные).

Гетероциклические — это соединения, в циклическую систему которых, кроме атомов углерода, входят атомы других элементов (например, кислорода, азота, серы).

Углеводороды C_nH_{2n+2} , C_nH_{2n} , C_nH_{2n-2} и т. д. образуют гомологические ряды, в которых каждый последующий член ряда отличается

от предыжущего на группу СН2 (гомологическая разность).

При замещении в гомологических рядах углеводородов одного или нескольких атомов водорода функциональными группами: X (любой галоген), —OH, —NH₂, —NO₂, —COOH и т. д. соответственно образуются гомологические ряды — галогенпроизводных RX, спиртов ROH, аминов RNH₂, нитросоединений RNO₂, кислот RCOOH и т. д., где R — радикал (C_nH_{2n+1}, C_nH_{2n-1} и др.).

Қ важнейшим классам производных углеводородов принадлежат

слелующие.

1. Галогенпроизводные — вещества, происшедшие от углеводородов в результате замещения одного или нескольких атомов водорода на атомы галогенов.

2. Спирты, или алкоголи, содержат в молекуле гидроксильную

группу -ОН, связанную с углеводородным радикалом.

3. Простые эфиры содержат кислород, связанный с двумя углево-

дородными радикалами.

4. Альдегиды и кетоны содержат в молекуле двухатомную группу С=О (карбонильная группа, или карбонил). В альдегидах она соединена с атомом водорода и с углеводородным радикалом, так что получается одноатомная группа —С (альдегидная группа). В кетонах карбонильная группа соединена с двумя углеводородными радикалами.

5. Органические, или карбоновые, кислоты содержат в молекуле карбоксильную группу (радикал карбоксил) —С ОН, представляющую

собой сочетание карбонильной и гидроксильной групп.

6. Серосодержащие производные:

а) тиоспирты, или меркаптаны, содержат группу -SH;

б) тиоэфиры общей формулы $\stackrel{R}{R}$ > (где R — углеводородный радикал);

в) сульфокислоты содержат одноатомную сульфогруппу — SO₃H.

7. Производные, содержащие в функциональной группе один атом азота: первичные, вторичные и третичные амины содержат радикалы — NH₂ (аминогруппа), NH (иминогруппа) и N (нитрильная группа). В аминах атомы азота соединены соответственно с одним, двумя или тремя атомами углерода.

8. Производные, содержащие в функциональной группе атом

азота, связанный с кислородом:

а) нитросоединения содержат радикал - NO2 (нитрогруппа);

б) нитрозосоединения содержат группу — N = О (нитрозогруппа). 9. Фосфины, арсины, стибины и висмутины представляют собой соединения, построенные аналогично аминам. Могут существовать соединения, содержащие группы — PH₂, PH и — Р (первичные, вторичные, третичные фосфины). Так же построены арсины, стибины и висмутины, содержащие соответственно остатки молекул AsH₃, SbH₃ и BiH₃.

10. Соединения, содержащие два связанных между собой атома азота;

а) органические гидразины содержат несимметричные остатки молекулы гидразина NH_2-NH_2 ; $-NH-NH_2$ или $N-NH_2$ (если этот радикал связан с двумя углеводородными). Соединения, в которых группа $N-NH_2$ связана с одним углеводородным радикалом, называются гидразонами:

б) гидразосоединения содержат симметричные остатки —NH—NH— или N−N√;

в) азосоединения содержат радикал — N = N — (азогруппа), свя-

ванный с двумя углеводородными радикалами;

г) диазосоединения содержат азогруппу -N=N-, одновременно связанную с одним углеводородным остатком, с одной стороны, и с неуглеродным атомом — с другой ($C_6H_5-N=N-SO_8Na$).

11. Металлоорганические соединения содержат атомы металлов,

непосредственно связанные с атомами углерода.

12. Многоатомные соединения являются производными углеводородов, в которых два или более атомов водорода замещены на одинаковые или различные атомы или радикалы (кроме углеводородных). Мнотоатомные соединения называются соединениями со смешанными функциями. Эти классы соединений обычно получают названия, отвечающие содержащимся в них различным функциональным группам; например, при наличии в молекуле гидроксильной и альдегидной групп вещества называются альдегидоспиртами, гидроксильной и карбоксильной — оксикислотами, амино и карбоксильной групп — аминокислотами и т. л.

Для наименования отдельных органических соединений пользуются различными номенклатурными системами. Наибольшее распространение получили системы: тривиальная, рациональная и женевская

По наиболее старой, тривиальной, номенклатуре названия органических соединений носят случайный характер, например: болотный газ, муравьиный спирт, янтарная кислота и т. д. Такие названия не дают представления о-строении соединений, и поэтому тривиальная система не удовлетворяет требованиям теории и практики органической химии.

Однако и некоторые тривиальные названия подверглись определенной систематизации. Например, в ряду метана, начиная с C_6 , названия углеводородов являются систематическими, так как их корни производятся от греческих числительных и, кроме того, все они имеют общее окончание -ан. То же самое окончание сохраняется и у тривиальных названий первых четырех представителей этого ряда, образование корней которых не связано с какой-либо системой. Такие названия иногда именуют полутривиальными или полусистематическими.

Рациональная и женевская номенклатуры основаны на принципах научной систематики органических соединений; название вещества по этим номенклатурам дается в соответствии с его химическим строе-

нием.

По рациональной номенклатуре в основу наименований органических веществ положены названия простейших (первых) соединений того или иного гомологического ряда. Более сложные соединения рассматриваются как производные простейших соединений, в которых ато-

мы водорода замещены радикалами.

Согласно женевской номенклатуре каждое органическое соединение может иметь только одно наименование, составленное по определенной схеме. Основой наименования является название нормального углеводорода, содержащего то же число атомов углерода, что и самая длинная (или самая сложная) непрерывная цепь углеродных атомов вданном соединении. Для каждого функционального и нефункционального заместителя имеются твердо фиксированные названия и места перед названием главной цепи или после него.

Начало нумерации главной цепи определяется прежде всего углеводородными радикалами (—СН₃, —С₂Н₅ и т. д.), названия которых ставят перед корнем слова. В случае одинакового положения двух радикалов предпочтение отдается радикалу с меньшим числом атомов углерода. Кратные связи, обозначаемые окончанием -ен либо суффиксом -ен- (двойная связь) или -ин (тройная связь) вместо -ан у насыщенного углеводорода, занимают второе место при определении порядка нумерации, причем тройная связь старше двойной. Следующие места принадлежат функциональным кислород- или серосодержащим группам и азотсодержащим группам, обозначения которых соответственно

ставятся в конце слова и перед названием углеводородных радикалов. Последнее по значению место при определении начала нумерации принадлежит нефункциональным заместителям (галогенам, нитрозо-, нитро-, азидогруппам), обозначения которых ставят в самом начале названия органического соединения. Порядок расположения названий нефункциональных заместителей обратный к их старшинству при определении нумерации.

Цифрами обозначаются положения боковых цепей, групп или кратных связей в главной углеводородной цепи; греческими (иногда латинскими) числительными — число одинаковых замещающих групп

или кратных связей.

При наименовании соединений с замкнутой цепью атомов общие принципы женевской номенклатуры остаются неизменными, но имеется ряд особенностей.

Кроме приведенных номенклатурных систем довольно широко применяются также льежские правила и номенклатура JUPAC (1957, 1965).

По внешним признакам названия ациклических соединений, построенные по льежским правилам и по женевской номенклатуре, сходны между собой. Однако принципиальные положения этих номенклатур и ряд их существенных деталей весьма различны. Прежде всего льежские правила допускают возможность употребления для соединения не одного, как этого требует женевская номенклатура, а нескольких равноправных названий. Допускается выбор в качестве основной не самой длинной, а какой-либо другой цепи. Отсутствует строгая регламентация порядка и местонахождения заместителей.

Названия монофункциональных производных, внешне совпадая с женевскими, отличаются порядком выбора главной цепи и нумерации, который определяется не углеродным скелетом, а функцией. В наименовании соединений со смешанными функциями в соответствии с льежскими правилами в суффиксе остается обозначение только главной функции, а обозначения остальных выносятся в префикс.

Номенклатура JUPAC 1957 г. развивает и уточняет льежские правила, но отличается от них допущением в корне отличных от женевских названий, например построенных по принципу рациональных. Названия парафиновых углеводородов по правилам JUPAC 1957 г. в основном сходны с женевскими. В случае ненасыщенных углеводородов имеют место существенные различия. Главной считается не самая длинная цепь, а цепь с наибольшим числом кратных связей. Вне зависимости от положения боковых цепей ее нумеруют так, чтобы кратные связи получили наименование номера. Для циклических соединений в правилах JUPAC 1957 г. имеется несколько вариантов номенклатуры.

4.1.2. Органические радикалы и атомные группы

Одновалентные насыщенные радикалы (алкилы) образуются при снятии одного атома водорода от предельных углеводородов (алканов). Названия радикалов образуются из названий углеводородов заменой окончания -ан на -ил. Например: метан СН₄ — метил СН₃ —; этан C_2H_6 — этил C_2H_5 —; бутан C_4H_{10} — бутил C_4H_9 —.

Одновалентные алифатические радикалы имеют окончания: для олефинов — -енил, для ацетиленов — -инил, для диенов — -диенил. Простейшие ненасыщенные радикалы называются: винил, или этиле-

нил (СН₂=СН—), и ацетиленил, или этинил (СН≡СН—).

При отщеплении двух автомов водорода от одного атома углерода в углеводородах (или атома кислорода в альдегидах и кетонах) образуются двухвалентные радикалы, названия которых получаются заменой соответствующего окончания на -илиден (этилиден для СН - СН -) При отнятии гидроксильной группы от молекулы кислоты получаются радикалы, названия которых (с окончанием -ил) являются производными от названий соответствующих кислот. Например: ацетил — для CH_3CO —; пропионил — для C_2H_5CO —; бензоил — для C_6H_5CO —.

 При отщеплении атома водорода от гидроксильной группы (—ОН) одноатомных спиртов образуются радикалы, названия которых получаются заменой окончания -ан в углеводороде, соответствующем данному спирту, на окончание -окси. Например: метокси для СН2-О-;

Этокси — для C_2H_5 —O—.

Радикалы предельных углеводородов делятся на первичные $(R-CH_2-)$, вторичные (R-CH-R) и третичные (R-C-R), если в

них атомы углерода со свободными валентностями соединены с одним. двумя или тремя углеводородными радикалами.

Соединения, в которые входят эти радикалы, называются соответственно первичными, вторичными и третичными.

Название некоторых радикалов и атомных групп

Азимино (азимидо) -N = N - NH - ...Изопропилиден (СН3) С= Aзино = N - N =Имино HN= Aso -N=N-Карбамино H₂NCONH— Азокси -NO=N-Карбоксил —СООН Алкил C_nH_{2n+1} — Карбонил О=С Алкокси $C_nH_{2n+1}O$ — Аллил СН, =СН—СН, — Крезил $CH_3(OH)C_6H_3 - (o, M, n)$ н-Амил СН₃(СН₂)₃СН₂— Кротонил ČH₃CH=CH—CO— Ксилил (CH₃)₂C₆H₃-изо-Амил (CH₃)₂CH—CH₂CH₂— Меркапто НSвтор-Амил -Метенил HC∈ (CH₃)₃C--CH₂-трет-Амил Метилен СН, Амино H₂N-Анилино С.Н. NH-Метокси СН-О-Арсено — As = As — Нафтил $C_{10}H_7$ — Арсил H₂As-Нафтилен СтоН в Ацетил СН СО-Ацетиленил НС≡С-Нитрамино NO₂-NH-Апетокси СН-СОО-Hитро -NOБензил С₆Н₅СН₂— Нитрозо -N=0Бензоил С Н СО-Нонил СН (СН .) -СН .--Бензокси С Н СОО— Октил СН3(СН2) СН2-Бифенилен -С.Н. С.Н. Пикрил $(NO_2)_3C_6H_2$ — (2, 4, 6—) и-Бутил CH₃(CH₂)₂CH₂— Пропартил НС=С-СН,*изо-*Бутил (СН₃)₂СН—СН₂— Пропенил СН₃СН=СН-CH₃ Пропил СНаСНоСНовтор-Бутил Пропионил СН,СН,СО-Салицил НОС₆H₄— (о) Силиконо НО—О—Si *трет*-Бутил (СН₃)₃С— Винил Н₂С=СН-Силил H₃Si-Винилен —НС=СН— Силоксано —Si—O—Si— Винилиден Н.С-С-Стеарин СН3(СН3)16СО-Гексил СН₃(СН₂)₄СН₂— Стирил C₆H₅CH=CH-Гептил СН₃(СН₂₎₅СН₂— Сульфамино HO₃SNH— Гидразино На N-NH-Сульфо HO₃S— Гидразо -- NH-- NH--Сульфонамидо SO₂NH— Гидрокси (окси) —ОН Сульфонил — SO₂— Глицерил -- СН, -- СН-- СН. Глицил На N-СНа СО-Tuo S Тиоциано —S—С≡N Изогексил Толил $CH_3C_6H_4$ — (o, м, n) $(CH_3)_2CH(CH_2)_2CH_2$ Толуил $CH_3C_6H_4CO$ — (o, м, n)

Tриазо N=N-N-

COMP

Изотноциано S=C=N-Изоциано C=N-Фенацил С Н СОСН ---Фенетил С.Н.СН2СН2-Фенил С_вН₅— Фенилазо С_вН₅—N=N— Фенилен С.Н. Фенокси С НьО-Формил НСО

Триметилен — (СН2)3— Ундецил CH₃(CH₂), CH₂— Фталил — OC—C₆H₄—CO— Цетил CH₂(CH₂)₁₄CH₂— Циано N≡C-Циклобутил CH₂(CH₂)₂CH— Циклогексил CH₂(CH₂)₄CH-Этенил СН₃С

4.1.3. Некоторые важнейшие приставки и окончания

-аза - окончание названий энзимов или ферментов (мальтаза, амилаза. лактаза); присоединяется к названию (или корню названия) вешества, на которое действует энзим;

-аль — окончание названий альдегидов (по женевской номенкла-

Type); -ан — окончание названий предельных (парафиновых) углеводородов:

-диен — окончание для обозначения наличия двух двойных свя-

вей в молекуле; -диол — окончание, характерное для названий двухатомных

спиртов (гликолей); D- — приставка, указывающая на принадлежность одного из пары зеркальных изомеров (онантиомеров) к ряду соединений с определенной пространственной конфигурацией. Зеркальные изомеры с противоположной пространственной конфигурацией обозначают с помощью приставки L-.

d- — приставка, обозначающая оптически активные соединения, вызывающие правое вращение плоскости поляризации света. Оптические антиподы, вызывающие левое вращение, обозначают с помощью

приставки 1-. -ен - окончание названий углеводородов с этиленовой (ненасы-

щенной) связью; изо- — приставка, указывающая на разветвленное строение цепи атомов углерода;

-ил — окончание названий одновалентных радикалов: метил (—CH₃), этил (—CH₂CH₃), пропил (—CH₂CH₂CH₃) и т. д.;

-илен — окончание названий углеводородов олефинового ряда; этилен $\mathrm{CH_2}{=}\mathrm{CH_2}$, пропилен $\mathrm{CH_3}\mathrm{CH}{=}\mathrm{CH_2}$ и т. д.;

-ин — окончание названий углеводородов ацетиленового ряда (например, этин НС=СН); это же окончание по женевской номенклатуре применяют для названий жиров (глицеридов), например, трибутирин (триглицерид масляной кислоты), а также для протеинов и глюкозидов (серин, глутамин и т. д.);

-ит — окончание названий многоатомных спиртов: эритрит, пен-

тит, гексит, маннит и т. д.; N — перед названием азотсодержащих соединений указывает на непосредственную связь азота с радикалом, например, N-метилпиррол:

н- — приставка, означающая, что молекула имеет нормальное (неразветвленное) строение цепи атомов углерода;

Изодиазо — NH—N=

Изопропил (СН.) СН-

-оза — окончание названий углеводов;

ол — окончание названий спиртов;

-он — окончание названий кетонов;

поли- - приставка для обозначения полимеров: полистирол, полиэтилен, полиизобутилен и т. д.;

(симм.) — сокращение от «симметричный»;

-тиол - окончание названий тиоспиртов, или меркаптанов;

транс- — приставка для обозначения геометрических изомеров с диагональным расположением заместителей в молекуле;

-триол — окончание названий трехатомных спиртов; пропантриол (глицерин);

цис- - приставка для обозначения геометрических изомеров с заместителями, расположенными по одну сторону молекулы.

4.1.4. Обозначения в некоторых циклах

4.2. СВОЙСТВА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

4.2.1. Длина связей в молекулах, не содержащих сопряженных связей

Связь	Соединение	Длина, нм	Связь	Соединение	Длина, нм
C—C	Алмаз	0,1545	С—Н	Метан	0,1091
21	Этан	0,1543		Этан	0,1102
	Пропан	0.154		Этилен	0,1086
	Изобутан	0,154		Ацетилен	0.1064
	Тетраметилметан	0,154		Бензол	0,1004
	(неопентан)	-,		Фтор-, хлор-,	0,1000
	Циклопропан	0,152	1.	бром-и иодметан	0,111
	Циклобутан	0,157		Формальдегид	0,109
	Циклопентан	0,154		Ацетальдегид	0,1086
	Циклогексан	0,154		Синильная кисло-	
	Диоксан	0,151		та	0,1065
	Уксусная кислота	0,154	C-F		0.120
	Парацетальдегид	0,154	C—I	Фторметан	0,139
	(d, l) Аланин	0.154		Дифторметан	0.136
C=C	Этилен			Дифторхлорметан	0,136
,—.	Аллен	0,1337		Дифтордихлорме-	0,135
ŒC	Ацетилен	0,1309	C 01	тан	
	_ '	0,1204	C—Cl	Хлорметан	0,177
	Пропин	0,1207		Хлороформ	0,177
	Диацетилен	0,1205		Хлорэтан	0,176

Связь	Соединение	Длина, нм	Связь	Соединение	Длина, нм
C —CI	1,2-Дихлорэтан	0,176	C=0	Формальдегид	0.1225
	Хлораль	0.176		Ацетальдегид	0,1215
C-Br	Бромэтан	0.191		Глиоксаль	0.120
	Четырехбромистый	1,191	C-N	Нитрометан	0.147
	углерод	•		Метиламин	0,147
I—CI	Иодоформ	0,212		Триметиламин	0,147
C —O	Метанол	0,144		Этиламин	0,147
- 44	Бутанол-1	0,143		Диазометан	0,147
. ·	Этиленгликоль	0,143		Метилазид	0,147
	Диметиловый эфир Тетрагидрофуран	0,143 0,143	C≡N	Синильная кисло-	0,1156
	Диоксан	0,143		Ацетонитрил	0.1157
	Виниловый эфир	0,140	CSi	Метилмоносилан	0,1867
	Метилнитрит	0,144	U -01	···c i mimonocavian	0,1007
	Парацетальдегид	0,143		-	

4.2.2. Длина простых углерод-углеродных связей

Соединение	Длина, нм	Соединение	Длина нм
CH ₃ —CH ₃ CH ₃ —CH ₃ —CH ₃ CH 3—C≡CH	0,1543 0,154 1,1459	CH ₃ -	0,152
CH.—C≡N CH.—C≡C—C≡N CH.—CH—C≡CH	1,1458 0,1458 0,1446	H ₂ =CH-CH=CH ₂ H	0,1483
CH ₂ =CH—C <u>=</u> N O=CH—C <u>=</u> CH CH ₃ —CH=CH—CH ₃	0,1426 0,1445 0,154	H ₃ -CH=CH-C=O	0,146
CH ₃ —C—CH ₃	0,152 C	H ₃ —C—C—CH ₃ H≡C—C≡CH	0,147 0,1379
	Cl	H=C-C=N =C-C=N	0,1378 0,1380

4.2.3. Средняя длина главных ковалентных связей (несопряженных)

Связь	Длина, нм	Связь	Длина, нм	Связь	Длина, нм
C—C C=C C=C C—H C—F C—CI C—Br C—I	0,1543 0,1334 0,1207 0,109 0,140 0,177 0,191 0,212	C—O C=O C—S C—N C=N C≡N C=P	0.143 0,121 0,182 0,147 0,127 0,115 0,187	O-H N-H N-N N=N N=N N-O N-O	0,096 0,101 0,141 0,124 0,1093 0,137 0,122

4.2.4. Ковалентные радиусы

	Раднус, нм		
Атом	односвязанный	двоесвязанный	троесвязанный
Н	0,030		- .
C	0,077	0,067	0,060
F	0,064	(0,054)	
Cl	0,099	(0,089)	
Br	0,114	(0,104)	
I	0,133	(0,123)	
0	0,065	0,055	(0,050) 0,088
S	0,104	0,094	0,088
N	0,070	0,060	0,055
P	0,110	(0,100)	
Si	0,117		
	*		

4.2.5. Инфракрасные частоты основных химических связей

Связь	Соединение	Волновое число,
Связи вод	дорода	
С—Н	Насыщенные Алкены (=CH₂) Алкены (=CH—C) Алкины (=CH) Ароматические	2800—3000 3075—3095 3000—3030 3300 3030

Связь	•	1
· L	Соединение	Волновое число,
О—Н Спирть	Si .	3590—3650
N—Н Амины	гы (димеры)	2500—3000 3300—3370
Простые связи	углерода	
	тические	990—1100
	гическое ядро	1575—1625
Бензол	I	1605
Хлорбе		1581
Нитроб	рензол	1587
С—О Первич	ные спирты	1050
	ные спирты	1100
С—N Амины	ные спирты	1150
2 04	-	1030
С—СІ Первич	LUDIN	650
C—Br » C—I »		560 500
"		500
Двойные связи	углерода	
О=С Алкень		1620—1680
С=С=С Аллен		1695, 1070
C =C-C=C »		около 1600
	тый винил	1608
Акроле		1618
С=О Альдегі	иды	1720—1740
α, β-Η	енасыщенные альдегиды	1680—1705
Кетоны	I	1705—1725
α, β-Η	енасыщенные кетоны	16651 685
Кислот		1700—1725
α, p-ne	енасыщенные кислоты	1690—1715
	ле эфиры	1735—1750
Амиды С=N Анеталі		16501690
C=N Ацетали N=N Азомета		1630
	ан роизводные	1575
"	ронзводные	1300—1350
"		1500—1560
Тройные связи у	/глерода	
С≡С Однозан	мещенные алкины	2100-2140
Двухзаг	мещенные алкины	21902260
Двухзаг	мещенные алкины енные нитрилы	2190—2260 2240—2260
Двухзаг		

4.2.6. Рефракции R_D ковалентных связей для расчета молекулярных рефракций (линия D натрия)

Связь	R_D	Связь	· R _D
С—Н С—С в циклопропане в циклобутане в циклогексане С=С в ароматическом соединении С=С (концевая) С=С (неконцевая) С-F С—С С С—Вг С—І С—О в спиртах и прос-	1,676 f,296 1,49 1,37 1,26 1,27 4,17 2,688 5,87 6,24 24,508 1,44 6,51 9,39 14,61 1,54	C=O	3,32 3,49 4,61 11,91 1,57 3,76 4,82 1,66 1,80 4,80 4,80 4,94 -0,20 1,76 2,43 1,78 4,00 1,99
тых эфирах в ацеталях и слож- ных эфирах	1,46	N—N N=N	4,12

4.2.7. Теплоты сгорания алканов, алкенов и первичных спиртов (для стандартных условий)

Соединени е	Теплота сгора- ния, кДж/моль	Разность для СН₂-группы, кДж/моль
Нормальные алканы		•
Метан СН	890.95	669,97
Этан С ₂ Н ₆	1560,92	660,91
Пропан C_3H_8	2221,52	658,67
н-Бутан С ₄ Н ₁₀	2880,43	658,67
н-Пентан С ₅ H ₁₂	3539,1	658,6
н-Гексан С ₆ Н ₁₄	4197,7	659,0
н-Гептан С ₇ Н ₁₆	4856,7	659,0
н-Октан С ₈ Н ₁₈	5515,7	
,		
Алкены с концевой дво	йной связью	
	1411,91	647,96
Этилен H ₂ C=CH ₂ Пропен H ₂ C=CHCH ₂	2059,86	660,56
Hence $H_2C = CHC_2H_5$	2720,42	657,48
н-Пентен-1 H ₂ C=CHC ₃ H ₇	3377.9	659.4
H-Tekceh-1 $H_2C=CHC_3H_7$	4037,3	659,0
H-Tenten-1 $H_2C = CHC_5H_{11}$	4696,3	659,0
M-1 cuien-1 1120-011051-II	· · · · · · · · · · · · · · · · · · ·	

Соединение	Теплота сгора- ния, кДж/моль	Разность для СН ₂ -группы, кДж/моль
M-OKTEH-1 H ₂ C=CHC ₆ H ₁₃	5355,3	659,5
и-Нонен-1 H ₂ C=CHC ₇ H ₁₅ ·	6014,8	659,0
н -Децен-1 H ₂ C=CHC ₈ H ₁₇	6673,8	
Первичные спирты с но	- · · · · · · · · · · · · · · · · · · ·	045.00
Метанол СН ₃ ОН	764,43	645,60
Этанол С2Н5ОН	1410,03	654,90
Пропанол С ₃ Н ₇ ОН	2064,93	656,07
Бутанол С ₄ Н ₉ ОН	2721,00	656,70
Пентанол С ₅ Н ₁₁ ОН	3377,70	656,70
Гексанол С6Н13ОН	4034,40	657,33
Гептанол С ₇ Н ₁₅ ОН .	4691,73	657.33
Октанол С.Н. ОН	5349 ,06	657,32
a a a a a a a a a a a a a a a a a a a	6006,38	657,33
Нонанол С ₉ Н ₁₉ ОН		

4.2.8. Средняя длина водородной связи

Связь	Соединение	Средняя длина, нм	Оценка сжатия за счет связи, ны
0 —н о	Неорганические кислоты	0,255	0,065
	Оксимы	0.258	0.062
	Карбоновые кислоты	0.263	0.057
	Фенолы	0.267	0.053
–	Спирты	0.274	0.046
	Вода в солях	0.273	0.047
•	Вода в неорганических соединениях	0.275	0.045
	Вода в органических соединениях	0,280	0.040
	Гидроксиды	0.282	0.038
O—H N	Bce	0.280	0.050
N—H O	Соли аммония	0.288	0.050
	Амиды	0,293	0.040
	Амины	0,304	0.030
N− H N	Bce	0.310	0,040
O —H Cl	Bce	0.308	
N ←H F	Bce	0,278	
N—H—Cl	Bce	0.321	
F —H F	Bce	0.244	

оценке величины сжатия приняты следующие предельные вандерзальсовы контактные расстояния: 0,32 нм для О—Н...О; 0,33 нм для 0—Н...N; 0,34 нм для N—Н...О; 0,35 нм для N—Н...N.

		Энергия, кДж/моль			
Связь	Соединение	Чистая	Димеры		
		жидкость	в газе	в CCl ₄	
0—Н О	H_2O	14,2	20,9	-	
	CH₃OH	19,7	$18,8 \pm 6,3$	$19,2\pm 5,0$	
	$C_6H_5^{\circ}OH$		• • • •	$18,0\pm0,8$	
	CH ₃ COOH	24,3	29,3	22,6	
N-H O	CH,CO HCH,	•••	•••	16,3	
N-H N	NH_3		18.4		
•	CH_3NH_2		14.2		
F—H F	ЙF ²		28,4		
C-H N	HCN	19,2	13,8		

4.2.10. Константы ковалентных связей для вычисления теплоты сгорания несопряженных молекул

Связь	кДж/моль	Связь	кДж/моль
C—H C—C C—C B CH ₂ =CH ₂ B RCH=CH ₃ B RCH=CHR B R ₂ C=CHR B R ₂ C=CR ₂ C=C B HC=CH B RC=CH B RC=CR C—O C=O B CH ₂ O B CH ₃ CH=O B R ₂ C=O C—N C=N	226,1 206,4 507,4 498,6 491,5 477,3 468,9 848,2 827,7 810,6 41,9 111,0 82,9 56,5 138,2 252,5	С≡N С—СІ С—Вг С—І О—Н N—Н Поправки Третичный углерод Четвертичный цикл Шестичленный цикл Вторичный спирт Третичный спирт Ацеталь Метоксильная группа	408,6 12,1 112,6 162,0 31,4 127,7 -7,1 -17,6 +25,1 +4,2 -15,1 -36,8 -12,6 +12,6

4.2.11. Энергия связи [при 25 °C]

	Энергия, «Дж/моль	Связь	Энергия, кДж/моль	Связь	Энергия, кДж/мол
Двухатом Р Н—Н О=О N≡N С=О (оксид углерода)	437 499 946 1072	пекулы F—F CI—CI Br—Br I—I	243 194	H—F H—Cl H—Br H—I	563 432 367 300

Продолжение таблицы

ź						
	Связь	Энергия, кДж/моль	Связь	Энергия, кДж/моль	Связь	Энергия, кДж/моль
	М ногоат	омные м	олекулы		· · · · · · · · · · · · · · · · · · ·	
	C-H •		C≕C	837	C-F	486
	N—H		C-N `	305	CC1	339
	O-H		C=N	616	C—Br	285
	S H		C≡N	891	C—I	214
	P—H		C-O	358	C—S	273
	N—N	164	С=О (диоксид	803	C=S (cepo-	536
	N=N	4 19	углерода)		углерод)	
	0 0	147	С=О (формаль-	695	N-F	273
	\$ S	227	дегид)		N-Cl	193
	N-O	222	С=О (другие	737	O-F	189
	N=O	607	альдегиды)		O-Cl	218
	C—C C=C	346 611	С=О (кетоны)	750	O—Br	201

4.2.12. Энергия диссоциации связи R = X

•		Энергия, кДж/моль				
R	Н	Br	ı	ОН		
CH ₃ — CH ₃ CH ₂ —	427	281	226	362		
CH ₃ CH ₂ —	410	272	218	364		
CH ₂ CH ₂ CH ₂ —	398	• • •	209	360		
(CH ₂) ₂ CH—	373	• • •	197	354		
(CH ₂) ₂ C—	356	255	188	356		
CH ₂ =CHCH ₂	322	210	151	•••		
$C_6H_5CH_2$ —	324	209	163	• • •		
CH ₂ =CHCH ₂ C ₆ H ₅ CH ₂ CH ₂ =CH	435	• • •	230			
C_6H_5 —	435	297	239	• • •		

4.2.13. Энергия диссоциации связи С — С

Свя эь	Энергия, кДж/моль	Связь	Энергия, кДж/моль
H ₃ C—CH ₃	348	H ₂ C=CHCH ₂ —CH ₃	251
C ₄ H ₅ —CH ₃	343	C ₆ H ₅ CH ₂ —CH ₃	264
C ₄ H ₅ —C ₂ H ₅	343	C ₆ H ₅ CH ₂ —CH ₂ C ₆ H ₅	197
(CH ₃) ₂ CH—CH ₃	310	C ₆ H ₅ —CH ₃	381
(CH ₃) ₃ C—C(CH ₃) ₃	251	C ₆ H ₅ —C ₆ H ₅	431

4.2.14. Величины типичных сдвигов протонов [разбавленные хлороформные растворы]

Принятые обозначения: протон, дающий резонансное поглощение, выделен жирным шрифтом; R— цепь насыщенного углеводорода; *— чувствителен к растворителю, концентрации и температуре; химический сдвиг выражен в герцах относительно тетраметилсилина; рабочая частота спектрометра равна 60 МГц.

Соединение	Массовая доля, млн-1 (миллионная часть)	Химический сдвиг, Ги	Соединени е	Массовая доля, млн ¹ (миллнонная доля)	Химический сдвиг, Ги
R-CH ₃	0,9	54	R—C—OH	11*	660*
R-CH ₂ -R	1,3	78	O		
R ₃ —CH	2,0	120	R-C-CH ₃	2,3	126
$R_2C=CH_2$	5,0	300	R-CH ₂ -CI	3,7	220
$R_2C = CH$	5,3	320	R—CH ₂ —Br	3,5	210
	•		R-CH ₂ -I	3,2	190
нс—СН нс	7,3	440	R—CH(—Cl) ₂	5,8	350
нс=сн	•		R—O—CH ₃	3,8	220
R—C <u>≕</u> C—H	2,5	150	(R—O—) ₂ CH ₂	5,3	320
p.cC CH	1,8	108	RCH	9,7	580
R ₃ C=C—CH ₃ L R	1,0	100	O R-O-H	5*	300*
HC—СН НС С−СН₃ НС==СН	2,3	140	HC—CH HC—CH	7*	420*

4.2.15. Энергия стабилизации некоторых органических соединений [при 25°C]

Принятые обозначения: $Q_{\text{теор}}$ — теплота сгорания, вычисленная по энергии связи (табл. на с. 406) и теплоте испарения воды (41,84 кДж/моль); $Q_{\text{эксп}}$ — теплота сгорания, полученная опытным путем; $E_{\text{с}}$ — энергия связи (приближенное значение энергии резонанса), равная $Q_{\text{теор}}$ — $Q_{\text{эксп}}$.

<u> </u>				
Соединение	Структурная формула	Q _{Teop}	Q _{эксп}	Ec
Бензол		3465	3305	160
Толуол	CH ₃	4120	3955	165
Бифенил		6690	6340	350
Бифенилен		6455	6210	245
Нафталин		5540	5245	295
Антрацен		7610	7175	435
Фенантрен		7615	7150	465
	* *			· 10

	11 po	U U ZE STUDE I EL	at muo	· · · · · · · · · · · · · · · · · · ·
Соединение	Структурная формула	Q _{Teop}	Q _{эксп}	E _c
Пиридин		2910	2830	80
Анилин	NH ₂	3620	3450	170
Фенол	ОН	3305	3140	165
Уксусная кислота	O CH ₃ —C—OH	997	921	76
Метилацетат	CH ₃ -C-O-CH ₃	1695	1630	65
Уксусный ангидрид	CH ₃ —C—O—C—CH ₃	1955	1848	107
Ацетамид	CH ₈ —C—NH ₂	1315	1270	45
Диметилкарбонат	CH ₃ —O—C—O—CH ₃	1571	1466	105
Мочевина Бутадиен-1,3 Пентадиен-1,3 Метилбутадиен-1,3 (изопрен)	$H_{2}N-C-NH_{2}$ $CH_{2}=CH-CH=CH_{2}$ $CH_{2}=CH-CH=CH-CH_{3}$ $CH_{2}=CH-C=CH_{2}$ $CH_{3}=CH-C=CH_{3}$	817 2550 3203 3203	721 2550 3190 3190	96 13
Бензохинон	0= 0.	2834	2813	21

4.2.16. Физические константы органических соединений

Соединения в таблице размещены в алфавитном порядке их названий. В таблице приведены с точностью до второго знака относительные молекулярные массы, вычисленные по относительным атомным массам углеродной шкалы (по ¹²C).

Для жидких и твердых веществ, а также для газов в сжиженном состоянии приведена относительная плотность (т. е. плотность вещества, отнесенная к плотности воды при 4 °C) при 20 °C или температуре (в градусах Цельсия), указанной в верхнем индексе. Для газов дана плотность в килограммах, деленных на метр в кубе, при нормальных

условиях, т. е. при температуре 0 °С и давлении 101325 Па.

Температуры плавления и кипения приведены для давления 101325 Па или для давлений, указанных в скобках. Разные значения температуры (цифры приведены через точку с запятой) взяты из разных источников. В этих графах даны также сведения об устойчивости веществ при нагревании. Если слово «разл.» стоит перед цифрой, то при указанной температуре вещество разлагается, возгоняется или обезвоживается без плавления (или кипения); если слово «разл.» стоит после цифры (значение температуры), это означает, что при указанной температуре вещество плавится (или кипит) и одновременно разлагается или обезвоживается. Слово «разл.» без цифры обозначает, что при нагреве вещество разлагается, возгоняется или обезвоживается.

Значения показателя преломления приведены для длины волны $\lambda = 589$ нм при температуре 20 °C или температуре (в градусах Цель-

сия), указанной в верхнем индексе.

Растворимость, т. е. масса вещества, насыщающего 100 г растворителя, для твердых и жидких веществ приведена в граммах, для газов — в сантиметрах кубических при температуре 20 °С или температуре (в градусах Цельсия), указанной в верхнем индексе. В большинстве случаев растворимость характеризуется только качественно.

Физические константы приведены для безводных веществ.

Принятые сокращения

Ац. — ацетон Безв. -- безводный Бз. — бензол Взр. — взрывается Возг. — возгоняется Гл. — глицерин Гор. — горячий Давл. — плавится под давлением Ж.— жидкость К. - кислота Конц. — концентрированный (ая) Мет. — метиловый спирт Мин. -- минеральный (ая) Н. - верастворимо

Обезв. — обезвоживание гидрата Орг. раст. — органические растворители Разл. — разлагается Р. — растворимо Сп. — этиловый спирт Тол. — толуол Тр. р. — трудно растворимо Укс. к. — уксусная кислота Хл. — хлороформ Хол. — холодный Х. р. — хорошо растворимо Э. — этиловый эфир со — смешивается в любых количествах

		· · · · · · · · · · · · · · · · · · ·	7		
№ п/п	Название	Формула	Молекуляр- ная масса	Плотность	
1	Абиетиновая кислота	C ₁₂ H ₂₉ CO ₂ H	302,46	•••	-
2	Адалин	(C ₂ H ₅) ₂ CBrCONHCONH ₃	237,10	•••	
3	Адамантан	$C_{10}H_{16}$	136,24	1,07	
4 5	Адамсит Аденин (6-амино-	$HN(C_6H_4)AsC1$ $C_5H_5N_5$	277,59 135,13	1,650	
6 7	пурин) Аденозин Аденазинтрифос-	$\substack{C_{10}H_{13}O_4N_5\\C_{10}H_{16}O_{13}N_5P_3}$	267,25 507,21	•••	3
⁵ 8	форная кислота Адипиновая	CO ₂ H(CH ₂) ₄ CO ₂ H	146,14	1,366	
9 10	кислота I-Адреналин Азасерин	C ₆ H ₃ (OH) ₂ CH(OH)CH ₂ • NHCH ₃ N ₂ CHCO ₂ CH ₂ CH(NH ₂) • CO ₂ H	183,21 173,13	•••	
11	Азелаиновая	CO ₂ H(CH ₂) ₇ CO ₂ H	188,23	1,029	
12	кислота Азобензол	$C_6H_5N=NC_6H_5$	182,23	1,203	
13 14	Азоксибензол Азулен	$C_{6}H_{5}N = NC_{6}H_{5}$ $C_{10}H_{8}$	198,23 128,18	1,246	
15 16	Аймалин Аконитин	$C_{21}H_{29}O_2N_2 \\ C_{34}H_{49}O_{11}N$	341,48 647,78	•••	
17	Аконитовая	C ₃ H ₃ (COOH) ₃	174,12	•••	
18	кислота Акридин	C ₆ H ₄ CHC ₆ H ₄ N	179,22	1,100.	
19	Акриламид	CH ₂ =CHCONH ₂	71,08	•••	
20	Акриловая	CH ₃ =CHCO ₂ H	72,06	1,06216	
21	кислота Акриловоэтило- вый эфир	$CH_2 = CHCO_2C_2H_5$	100,12	0,92515	
22 23	(этилакрилат) Акрилонитрил Акрихин	$\begin{array}{l} CH_2 \!\!=\!\! CHCN \\ C_{23H_{30}ON_3Cl} \cdot 2HCl \cdot 2H_2O \end{array}$	53,06 508,92		
24 25 26 27	(атебрин) Акроленн α-Аланин (dl) β-Аланин Ализарин (1, 2-диоксиантрахинон)	CH_2 = $CHCHO$ $CH_3CH(NH_2)CO_2H$ $H_2NCH_2CH_2CO_2H$ $C_6H_4(CO)_2C_6H_2$ = $(OH)_2$	56,06 89,09 89,09 240,22	0,841	

Темт	Температура, °С		Раст	воримость	76
плавления	кипения	Показатель преломления	в воде	в органических растворителях	0/11
174—175	248—250 (1,27 кПа)	•••	н.~	Р. э., ац., мет., хл., бз.,	ı
116—118	•••	. • • •	0,05	укс. к., CS ₂ Р. ац., бз., сп.	. 2
269 возг.	•••	1,568	Н.	X. р. бз., тол.	3
195 3 60—365	410 разл. Возг.	•••	H. 0,09	Р. ац., хл.	4 5
229	•••	•••	X. p. X. p.	Н. Тр. р.	6 7
153	265 (13,3 кПа)	. •••	1,515	Р. сп., э.	8 ,
212 146—162		•••	0,027 P.	Р. укс. к.	9 10
разл. 106,5	287 (13,8 кПа)	•••	0,24	Р. сп., э.	11
68	293	. •••	Н.	Р. сп., бз.	12
36 98,599	Разл. 163 (1,86 кПа)	1,664426	Н. Х. р. конц. мин. к.	Р. сп., э. Разл.	13 14
158—160 188—197,8; 204	253—255	•••	P. 0,31 ²⁵	Р. хл. Р. сп., э., бз., хл.	15 16
194—195 разл.	•••	•••	1813	Р. сп.; тр. р. э.	17
111	346	. :	Тр. р.	P. сп., бз., CS ₂	18
84—85	215	•••	X. p.	мет., ац.	.19
13	141	1,4224	∞ _	Р. сп., э.	20
in satyt••• Si	j00—101	•••	Тр. р.	, • • •	21
—83 24 8—250	78—79 Разл.	1,3911	P. P.	Р. сп., э. Р. сп.	22 23
· —87,7 29 5 разл.	52,5 Возг. 200	1,3998	40 P.	Р. сп., э.	24 25
196 разл. 290	430	• • •	P. Tp. p.	Тр. р. сп. Р. сп. э., бз., укс. к., мет.	26 27

№ п/п	Название	Формула	Молекуляр- ная масса	Плотность
28	Ализариновый красный	C_6H_4 $C_6H(OH)_2SO_3Na$	342,22	•••
2 9	Аллантонн	$C_4H_6O_3N_4$	158,12	•••
30	Аллил бромистый	CH ₂ =CHCH ₂ Br	120,98	1,398
31	Аллил иодистый	CH ₂ =CHCH ₂ I	167,98	1,84812
32	Алил хлористый	CH ₂ =CHCH ₂ CI	76,53	0,938
33	Аллилен (пропин,	CH₃C≡CH	40,06	•••
34	метилацетилен) Аллиловый спирт	CH ₂ =CHCH ₂ OH	58,08	0,854
35	D-А ллоизолейцин)	C_6H_5 CHCH(NH ₂)CO ₂ H	121 19	•
36	L-Аллоизолейцин)	CH ₃ CHCH(Wh ₂)CO ₂ H	131,18	•••
37	Аллоксан	HN (CO) ₃ NHCO	142,07	•••
38	Альдрин	$C_{12}H_8Cl_6$	364,93	***
39	Альтакс (дибензо- тиазолдисуль- фид)	C ₆ H _s C-s-s-C _s C ₆ H ₄	332,49	1,500
40 41	Алюминон Амбреттолид ·	$C_{22}H_{23}O_{9}N_{3}$ $C_{16}H_{28}O_{2}$	473,43 252,40	0,958
42	Амигдалин	$C_{20}H_{27}O_{11}N$	457,45	•••
43 44 45 46	Амил бромистый Амил иодистый Амил хлористый Амил хлористый вторичный	$CH_3(CH_2)_3CH_2Br$ $CH_3(CH_2)_3CH_2I$ $CH_3(CH_2)_3CH_2CI$ $(CH_3)_2CHCHCICH_3$	198,05	0,88715
47 48	Амиламин α-н-Амилкорич- ный альдегид (жасминаль-	$CH_3(CH_2)_4NH_2$ $C_6H_5CH=(C_5H_{11})CHO$	87,17 202,28	
49	дегид) d-Амиловый спирт (первич- ный) (d-2-метил-1-бу- танол)	CH ₃ CH ₂ CH(CH ₃)CH ₂ OH	88,15	0,816

Темпера	атура, °С	тель	Раст	воримость	N ₂
плавления	кипения	 Показатель преломления	в воде	в органических растворителях	n/n
•••	•••	•••	Х. р.	Х. р. сп.	28
235	Равл.	•••	0,06	Тр. р. сп.;	29
-119,4	71,3	1,4655	Н.	н. э. Р. сп., э.,	30
99,3	103	• • •	H.	хл. Р. сп., э.,	31
-136,4	44,6	1,4154	H.	ул. Р. сп., э.,	32
-104,7	— 23,3		Tp. p.	бз. Р. сп.	33
—129	96,6	1,4135	∞	Р. сп., э.,	34
278 разл.	•••	• • •	2,94	бз. 0,82 сп. (80 %)	35
280—281 разл.	•••	•••	2,9	Н. э.	36
170 разл.	***	. •••	P.	Р. сп.	37
104—104,5	•••	. • • •	Н.	Х. р.	38
186	Разл.	•••	H.	***	39
214—216 	 185—190 (2,13 кПа)	1,4815	X. p. H. 8,3 ¹⁰ ∞ 100	Тр. р. Р. сп., бенз. сп. Р. сп.; н. э.	40 41 42
88 86 99	129,7 157 108,4 96,7 (99,4 кПа)	1,4444 1,4955 1,4119 ¹⁸ 1,4060	H. H. H. H.	Р. сп., э. Р. сп., э. Р. сп., э. Р. сп., э.	43 44 45 46
—55 •••	104 153—154 (1,33 кПа)	1,5552	P	Р. сп., э.	47 48
•••	128	1,4109	3,630	Р. сп., э.	49
	*				

			екуляр- масса)CTb		Темпер	атура, °С	тель	Расти	воримость	N₂
№ п/п	Название	Формула	Молеку ная ма	Плотность		плавления	кипения	Показатель преломления	в во де	в органических растворителях	π/13
50	Аминазин	C ₁₇ H ₂₀ N ₂ Cl ₂ S	335,34	•••		194—197	•••	• • •	Ρ.	Р. сп., хл.; н. бз., э.	5(
51	Аминарсон	H ₂ NCONHC ₆ H ₄ AsO ₈ H ₂	260,07	• • •	-	172—174	•••	•••	Ρ.	т. оз., э. Тр. р. э., хл.	51
52	п-Аминоазо-	$H_2NC_6H_4N=NC_6H_5$	197,24	• • •	, i	126	225 (16 кПа)	•••	Н.	Р. э., бз., хл.,	52
	бензол п-Аминобензой-	H ₂ NC ₆ H ₄ CO ₂ H	137,14	•••		187	Возг.	•••	0.3^{13}	гор. сп. Р. сп., э.	53
	ная кислота e-Аминокапроно-	H ₂ N(CH ₂) ₅ CO ₂ H	131,18		j.	203	•••	•••	P.	· · · · · · · · · · · · · · · · · · ·	54
5 5	вая кислота с-Аминомасля-	C ₂ H ₅ CH(NH ₂)CO ₂ H	103,12	•••	1	Разл. 285	Возг.	•••	28	Тр. р. сп.; н.	55
56	ная кислота α-Аминопиридин	N(CH) ₄ CNH ₂	94,12	* • • •	1	57,5 возг.	204	•••	Р.	э. Р. сп., э.	56
57	л-Аминосалици-	H ₂ NČ ₆ H ₃ (OH)CO ₂ H	153,14	•••		220 разл.	•••	•••	P.	Р. сп.; тр. р.	57
	ловая кислота 11-Аминоундека-	$H_2N(CH_2)_{10}CO_2H$	201,31	•••		185—186	•••	• •••	P. rop.	э. Р. сп. гор.	58
5 9	новая кислота Аминофенилар соновая кислота	$H_2N-C_6H_5-AsO(OH)$,	217,04			15 3—154	•••	• • •	P.	Р. сп., мет., ледяной укс.	59
60 61 62	м-Аминофенол о-Аминофенол n-Аминофенол	NH₂C ₆ H₄OH	109,13	•••		{ 123 174 184	 Возг. Возг.	•••	2,6° 1,7° 1,1°	Р. сп.; тр. р. э Р. сп.; тр. р. э Р. сп. э. Р. сп.	62 62
63	ω-Аминоэнан-	H ₂ N(CH ₂) ₆ CO ₂ H	145,20	•••		195	• •••	•••	Р.	•••	6
64	товая кислота Амитал (изоамил- этилбарбитуро-	$(C_2H_5)(C_5H_{11}) = CCONHCONHCO$	226,28	***	ķ	154—156	•••	•••	Tp. p.	Р. сп., э.	6
65 66 67 68	вая кислота) Амитал, Nа-соль Анабазин Анальгин <i>цис-</i> Андростерон	$\begin{array}{l} C_{11}H_{17}O_3N_2Na \\ C_{10}H_{14}N_2 \\ C_{13}H_{16}N_3OSO_3Na \cdot H_2O \\ C_{19}H_{20}O_2 \end{array}$	248,26 162,24 351,36 290,45	1,045		150,5 178; 185	276 	1,5430	X. p. X. p. Tp. p.	P. cn. 100 P. cn., 9, 63. Tp. p. cn., 9. P. 9.; Tp. p. cn.	68 67 68
69	Анастезин (бен-	$H_2NC_6H_4CO_2C_2H_5$	165,20	•••	K	91—92	•••	•••	0,04	Р. сп., э., хл.	69
70	зокаин)	CH ₃ OC ₆ H ₄ CH=CHCH ₃	148,20	0,9936		20 —21	235,3	•••	Tp. p.	Р. сп., э., бз.,	, 70
71 72 73 74 75	о-Анизидин п-Анизидин } Анизол Анилин	CH ₃ OC ₆ H ₄ NH ₂ CH ₃ OC ₆ H ₅ C ₆ H ₅ NH ₂ C ₆ H ₅ NH ₂ · HCl	123,16 108,14 93,13 129,59	1,001		5,2 57,2 -37,3 -6,2 198	225 243 155 184,4 245	1,5754 1,555967 1,5170 1,5863	Tp. p. Tp. p. H. 3,6 ¹⁸ P.	хл. Р. сп., э. Р. сп., э. Р. сп., э., бз. Р. сп., э., бз.	. 7 7: 7: 7:
76	кислый	CH ₃ OC ₆ H ₄ CHO	136,15	1,123		. 0	248	1,576413	Tp. p.	Р. сп., э.	76
77	альдегид	CH ₂ OC ₂ H ₄ CH ₂ OH	138,17	1,109		19—21; 25	258,8	•••	Н.	Х. р. сп., э.	77

№ 0/µ	Назранне	Формула	Молекуляр- ная масса	Плотвость
7 8	Антипирин (1-фе- нил-2,3-диметил- пиразолон-5)	C ₁₁ H ₁₂ ON ₂	188,23	1,08811
7 9	Антраниловая кислота	H ₂ NC ₆ H ₄ CO ₂ H	137,14	•••
80	Антрахас	$C_{14}H_9O_5As$	332,12	•••
81	Антрахинон (9, 10)	C ₆ H ₄ CO	208,22	1,419
82	Антрацен	$(C_6H_4CH)_2$	178,24	1,2527
83	Апоморфин	$C_{17}H_{17}O_2N$	267,33	•••
		CNHNH₂		
84	Апрессин	C ₆ H; N₂·HCl	196,65	•••
85	Апрофен	$ \begin{array}{c} (C_6H_5)_2CCH_3 - CO_2(CH_2)_2 \times \\ \times N(C_2H_5)_2 \cdot HCl \\ OH \ OH \ OH \ H \end{array} $	361,92	•••
86	<i>l</i> -Арабиноза	HO—H ₂ C—C—C—C—CHO H H OH	150,13	1,585
87	Арбутин	$C_{10}H_{16}O_{2}$	272,26	
88	<i>l</i> -Аргинин	H ₂ NCNH(CH ₂) ₃ CHNH ₂	174,20	.***
89	Ареколин	NH COOH $C_{6}H_{10}NCO_{2}CH_{3}$ $C_{2}H_{5}O \qquad C_{2}H_{5}$	155,20 259,20	1.255-
90	Армин	$O_2NC_6H_4O$	200,20	1,260
91	Арсаниловая кислота	$H_2NC_6H_4AsO(OH)_2$	217,06	•••
92	<i>п</i> -Арсацетин	CH ₃ CONHC ₆ H ₄ AsO(OH) ₂	259,08	•••
93	Арсфенамин (сальварсан)	$(AsC_6H_3(OH)NH_2)_2 \cdot 2HC1 \cdot 2H_2O$	475,02	•••
94	Аскаридол	CH ₃ C ₆ H ₆ O ₂ CH(CH ₃) ₂	168,25	0,999
95	<i>l</i> -Аскорбиновая кислота	HO - C = C + CH (OH) CH₂OH	176,13	•••

	113 (23 145 Разл. 286 возг. 37 216 возг. 170 разл. 170 разл. 273—276 160—162 159,5 199 238 разл.	атура, °С	тель ления	Раств	оримость	Na
		кипения	Показатель преломленяя	в воде	в органических растворителях	n/n
	113	319 (23,2 кПа)	•••	Р.	Р. сп., хл.	78
	145	Bosr.	•••	0,4	Р. сп., э.	79
	Разл.	•••	•••	Tp. p. rop.	Тр. р. сп., э.	80
	286 возг	379—381		Н.	Тр. р. сп., э., бз.	81
	216 возг.	342,3	•••	H.	P. s., CS ₂ ,	82
	170 разл.	•••	,•••	Tp. p.	хл., бз. Р. сп., э., бз., хл.	83
		•••	•••	4,4	Тр. р. сп.; н. э.	84
	160—162	•••	•••	X. p.	•••	85
	159,5	•••	•••	58,910	Тр. р. сп.	86
		•••	•••	12,5 15	6,67 сп.; н. э.	87 88
	•••	220	1,522— 1,527	Тр. р.	∞ сп., э.; р. X. р. сп., э., бз.	89 90
	232	Разл. >280	•••	P. rop.	Тр. р. сп.; р. э.	91
	>20	•••	•••	Р. водн.	Тр. р. сп.	92
	•••	•••	•••	Na ₂ CO ₃ X. p.	Р. мет., гл.; тр. р., сп., э.	93
	Взр. 250	115 (2 кПа)	• • •	H.	Р. сп., э.	94
•	190 разл	• • •	• • •	Р.	•••	95
			± -	•		

-		1	1	
№ n/n	Название	Формула	Молекуляр- ная масса	Плотвость
	<u> </u>		₹ E	=
96	<i>l</i> -Аспарагиновая кислота	CO ₂ HCH ₂ CH(NH ₂)CO ₂ H	133,10	1,66112
97 98	Аспирин Атофан	CH ₃ CO ₂ C ₆ H ₄ CO ₂ H C ₆ O ₅ C ₉ H ₅ NCO ₂ H	180,16 249,28	•••
99 100	Атропин Ауксин	$C_{17}H_{28}O_3N$ $C_{18}H_{32}O_5$	289,38 328,45	•••
101 102	Аурамин Аурин (розоло- вая кислота)	$[(CH_3)_2NC_6H_4]_2C=NH C_{19}H_{14}O_3$	267,38 290,30	•••
103	Афиллин	$C_{15}H_{24}ON_2$	238,29	• • •
104 105 106 107	Аценафтен Ацеталь Ацетамид Ацетанилид	$C_{10}H_6(CH_2)_2$ $CH_3CH(OC_2H_5)_2$ CH_3CONH_2 $C_6H_5NHCOCH_3$	154,21 118,18 59,07 135,17	0,831 0,825 1,159 1,214
108 109	(антифебрин) Ацетил хлористый Ацетила гидропе- рекись (надуксус- ная кислота)	CH3COOOH	78,50 76,05	1,105 1,226
110 111	<i>п</i> -Ацетиланизол Ацетилацетон	CH ₃ OC ₆ H ₄ COCH ₃ CH ₃ COCH ₂ COCH ₃		1,0182 0,972 ²⁵
112	Ацетилен	СН≡СН	26,04	1,173 kr/m³
113	Ацетилендикар- боновая кислота	$(C \cdot CO_2H)_2$	114,06	MI/M"
114	Ацетол (ацетил- карбинол)	CH ₃ COCH ₂ OH	74,08	1,080
115	Ацетон	(CH ₃) ₂ CO		0,792
116 117	Ацетонитрил Ацетонциан- гидрин	CH ₃ CN (CH ₃) ₂ C(OH)CN	41,05 85,11	0,783 0,932 ¹⁸
118	ү-Ацетопропило- вый спирт	CH ₈ CO(CH ₂) ₂ CH ₂ OH	102,13	1,0071
119	Апетоуксусный эфир	CH ₃ COCH ₂ CO ₂ C ₂ H ₅	130,14	1,028
120	Ацетофенон	CH₃COC ₆ H ₅	120,15	1,026
121	Барбитуровая кислота	H ₂ CCONHCONHCO	128,08	
122 123	Бензальдегид Бензальдиацетат	C ₆ H ₅ CHO C ₆ H ₅ CH(OCOCH ₈) ₂	106,13 208,22	1,049 1,11

Темпера	тура, °С	гель	Расти	оримост ь	Ne
плавления	кипения	Показатель преломления	в воде	в органических растворителях	π/π
271 разл.	•••	E y ge de To the ∎ ∎	0,5		96
135 212—213	Разл. 140 •••		1,37 Н. хол.; р. гор.	Р. сп., э., хл. Р. сп., э., хл.	97 98
115 × 196	•••	•••	Tp. p.	P. сп., э., хл. X. р. сп., мет., э., ац.; тр. р. э., бз.	99 100
136 308—310	•••	•••	H. 0,12 ²⁵	Р. сп., э. Х. р. сп.; р. укс. к.; тр. р.	10
52— 53	200 (0,53 кПа)		Tp. p.	э., хл. Х. р.	103
95 82—83 114	278 104 222 305	1,6048 ⁹⁸ 1,3819	H. 4,58 ²⁵ X. p. 0,56 ²⁵	Р. сп., хл., тол. Р. сп., э. Р. сп., гл., хл. Р. сп., мет.,	100 100 100
-112 0,1	51—52 105	1,3898	Разл. Х. р.	хл., э. Р. э., бз., хл. Х. р.	10 10
37—39 —23	258—263 139	1,5470 ^{41.3} 1,4541 ¹⁷	Tp. p. 17,6 ³⁰	Х. р. Р. сп., э., хл.	11
—80,8	(99,4 кПа) Возг. —83,8		100 см3	Р. ац., сп., бз., хл., укс. к.	11
179—180	•••	• • • •	Х. р.	Х. р. сп., э.	.11
—17	145—146	1,4295		∞ сп., ∞ э.	11
—95,35 —44,9 —19	56,24 81,6 82	1,3591 1,3442	Х. р.	Р. сп., э., хл. Р. сп., э. Х. р. сп., э.	11 11 11
•••	(3,1 кПа) 145	1,443617	Х. р.	Х. р. сп., э.	Ú
<-4 5	180 разл.	1,420914	14,3	Разл.	11
20,5	202,3	1,5342	Н.	Р. сп., э., хл., бз.	12
245 разл.	•••	•••	Tp. p.	Тр. р. сп.; р. э.	12
—26 44—46	179 220	1,5456	0,33	Р. сп., э. Р. сп., э.	12 12

:				- dr =	ا م
№ n/n	Название	Формула	,	Молекуляр- ная масса	Плотвость
124 125	Бензамид Бензанилид	C ₆ H ₅ CONH ₂ C ₆ H ₅ NHCOC ₆ H ₅		121,15 197,24	1,341 1,31
126 127	Бензидин Бензил	$H_2NC_6H_4C_6H_4NH_2$ $(C_6H_5CO)_2$		184,24 210,23	1,250 1,23 ¹⁵
128	Бензил хлористый	$C_6H_5CH_2CI$		126,59	1,10318
129 130 131	Бензил дианистый Бензиламин Бензил- <i>n</i> -аминофенол	$C_6H_5CH_2CN$ $C_6H_5CH_2NH_2$ $C_6H_5CH_2NHC_6H_4OH$		117,15 107,16 19 9,2 5	•••
132 133 134	Бензилацетон а-Бензилдиоксим Бензилиден хло- ристый (бензаль- хлорид)	$C_8H_5(CH_2)_2COCH_8$ $(C_6H_5C=NOH)_2$ $C_8H_5CHCl_2$		148,20 240,26 161,03	0,989 1,256 ¹⁴
135 136 137	Бензиловый спирт Бензимидазол Бензоил хлористый	C ₆ H ₅ CH ₂ OH C ₇ H ₆ N ₂ C ₆ H ₅ COC1		108,14 118,14 140,57	1,045 1,219 ¹⁴
138	Бензоила перекись	$(C_6H_5CO)_2O_2$	1	242,23	• • • •
139 140	Бензоилацетон Бензоилдисуль- фид	$CH_3COCH_2COC_6H_5$ $(C_6H_5CO)_2S_2$		162,19 274,36	1,09
141 142 143	Бензоин α-Бензоиноксим Бензойная	$C_6H_5CHOHCOC_6H_5$ $C_6H_5CHOHC(=NOH)C_6H_8$ $C_6H_5CO_2H$	-	212,25 227,27 122,12	1,310 1,266 ¹⁵
144	кислота Бензойный	$(C_6H_5CO)_2O$		226,23	1,19915
145	ангидрид Бензол	C_6H_6		78,11	0,879
146	Бензолсульфиновая кислота	C ₆ H ₅ SO ₂ H		142,18	•••
147	Бензолсульфо- кислота	C ₈ H ₅ SO ₃ H		158,18	
148	Бензолсульфо-	C ₆ H ₅ SO ₂ Cl		176,62	1,38315
149	Бензопурпурин	$C_{84}H_{26}O_6N_6S_2Na_2$		724,74	
150	Бензофенон	C ₆ H ₅ COC ₆ H ₅		182,22	1,08550
151	Бензтиазол	C ₆ H ₄ N=CHS		135,19	
152	Бетаин	(CH ₃) ₃ NCH ₃ COO		117,15	• •,1
153	Биурет	NH(CONH ₂) ₂		103,08	• • •

Ì	Темпера	тура, °С	гель	Раст	воримость	№
	плавления	кипения	Показатель преломления	в воде	в органических растворителях	n/r
	125—126 163	117—119 117—119 (1,33 кПа)	•••	Р. Н.	Р. сп., э., бз. Р. сп., э., бз.	124 125
	128 9 5	401,7 346—348	•••	0,04 ¹² H.	Р. сп., э. Р. сп., э.	126 127
	39	сл. разл. 179,4	1,541515	H.; разл. гор.	Р. сп., э	128
	-23,8 	234 184,5	1,5211 ²⁵ 1,5441	H. ∞	Р. сп., э. Р. сп., э. Р. сп., бз.	129 130 131
	89 	100 (1,87 кПа) 235	1,511122	Тр. р.	Р. сп., э.	132
	235—237 —16	207	1,5502	Н, Н,	Тр. р. сп., э. Р. сп., э.	133 134
	-15,3	205	1,5396	4	Р. сп., э., ац.	135
	170 - -0,6	>360 198	1,5537	Р. Разл.	Р. сп., э. Р. э., бз.	130 137
	108	Разл.	•••	Tp. p.	P. сп., э., бз., CS ₂	13
	61 128; 133	261—262 Разл.	137	Тр. р. Н.	Р. сп., э. Тр. р. сп., э.	13 14
	133, 137 149—152	344	•••	0,03 ²⁵ Tp. p.	Р. сп.; тр. р. э. Р. сп., э.	14 14
	122,5	249,2	1,539715	0,30	Р. сп., э., ац., мет., бз., хл.	14
	42 5,533	360	1,5767 ¹⁵ 1,5017	Н.	Р. сп., э.	14 14
	65	80,1 Разл. >100	1,0017	0,08 P. rop.	P. сп., э., ац. X. р. сп., э.,	14
	6566	Разл.	•••	р.	ац. Р. сп.	14
	14,5	251,5	•••	Н.; разл.	Р. сп., э.	14
•	49 	306 возг. 230	•••	rop P. H. Tp. p.	Р. сп., э., хл. Р. сп., э.,	14 15 15
	293, разл.	. • • •		157	СS ₂ Р. сп.	15
	192—193	•••	•••	1,25°	Р. сп.	15

	· · · · · · · · · · · · · · · · · · ·	 		
№ п/п		Фор мула	Молекуляр- ная масса Плотность	Темпе плавления
154 155	dl-Борнеол Борноэтиловый эфир	C ₁₀ H ₁₇ OH (C ₂ H ₈ O) ₃ B	154,25 1,011 145,90 0,864	Раэл. —84,8
156	Бромацетонфенон	C ₆ H ₅ COCH ₂ Br	199,06 1,647	51
157	Бромбензил-	C ₆ H ₅ CH(Br)CN	196,05 1,539	29
158 159 160	цианид Бромбензол с-Бромнафталин Бромоформ	C_6H_5Br $C_{10}H_7Br$ $CHBr_3$	157,02 1,495 207,08 1,482 262,75 2,890	-30,6 6,2 7,7
161 162 163	Бромурал п-Бромфенол Бруцин	(CH ₃) ₂ CHCHBrCONHCONH ₃ BrC ₆ H ₄ OH C ₂₃ H ₂₆ O ₄ N ₂	223,08 ··· 173,02 1,840 394,47 ···	160 63,5 178
164	Бутадиен-1, 3	CH ₂ =CHCH=CH ₂	54,09 Ж.	108,9
165 166	(дивинил) Бутадион Бутан	C ₁₉ H ₂₀ O ₂ N ₂ CH ₃ CH ₂ CH ₂ CH ₃	0,646° 308,38 ··· 58,12 Ж. 0,60°	105 —138,4
169	1-Бутен Бутил бромистый Бутил иодистый Бутил хлористый трет-Бутил хлористый	$CH_3CH_2CH = CH_2$ $CH_3CH_2CH_2CH_2Br$ $CH_3CH_2CH_2CH_2I$ $CH_3CH_2CH_2CH_2CI$ $(CH_3)_3CCI$	56,11 0,668° 137,03 1,299 184,02 1,617 92,57 0,892 92,57 0,847 ¹	-185,3 112,4 103,5 123,1 28,5
172 173	Бутиламин β-Бутиленгликоль (бутандиол-1,3)	C ₂ H ₅ CH ₂ CH ₂ NH ₂ CH ₃ CH(OH)CH ₂ CH ₂ OH	73,14 0,739 ²⁵ 90,12 1,0053	_50
174 175	Бутиловый спирт	CH ₃ (CH ₂) ₂ CH ₂ OH CH ₃ CH ₂ CH(OH)CH ₈	74,12 0,810 74,12 0,808	—80 —114,7
176	Бутиловый спирт третичный	(CH ₃) ₃ COH	74,12 0,789	25,5
177	Бутиролактон	CH ₂ CH ₂ CO	86,09 1,1286	-4 2
178	Валериановая	CH ₃ (CH ₂) ₃ CO _e H	102,13 0,939	-35
180	кислота l Валин Ванил аль Ванилин	(CH ₃) ₂ CHCH(NH ₃)CO ₂ M HO(C ₂ H ₃ O)C ₄ H ₃ CHO HO(CH ₃ O)C ₄ H ₃ CHO	117,15 · · · · 166,18 · · · · 152,15 1,056	315 77,5 81,2
182	Веронал	HN—CO C_2H_5 OC C HN—CO C_2H_5	184,20	191

	Темпера	атура, °С	тель ления	Раств	оримость	№
	плавления	кипения	Показятель	в год е	в органических растворителях	n/n
	Разл. —84,8	Возг. 188,6	1,38076	Тр. р.	Р. сп., э., бз. Разл.	154 155
	51	133—135	• 4,•\$5	1 . H	Р. сп., э., ба.	156
. •	29	(1,6 кПа) 137 (2 кПа)	• • • •		Разл.	157
	-30,6	156,2	1,5604	0,04590	Р. сп., э., бз.	158
•	6,2	281	1,6582	P. rop.	Р. сп., э., бз.	159
	7,7	149,6	1,5980	0,3230	P. сп., э., хл., 63.	160
	160	Boar.	• • •	P, rop.	Р. сп., э.	161
	63,5	238	• • • •	1,4215	Х. р. сп., э.	162
	178	Разл.	• • •	Тр. р.	Р. сп., хл., ац., бз.	163
	108,9	-4,47	•••	Н.	Р. бз., э., хл., сп., ац.	164
	105	•••	• • •	H.	Р. сп., э., ап.	165
	—138,4	0,5	***	15 см ³ (0,1029 МПа)	P. cn., 9.	166
	-185,3	-6,3	1,3792	Н.	Р. сп., э.	167
	-112.4	101,6	1,4398	P.	Р. сп., э.	168
	-103.5	131	1,4998	H.	Р. сп., э.	169
	-123.1	78,5	1,4015	Tp. p.	Р. сп., э.	170
	-28,5	51—52	•••	Н.	Р. сп., э.	171
• •	50	77,8		∞	∞ сп., ∞ э.	172
	• • •	204	1,4401	P.	Р. сп.; н. э.	173
	80	117,7	1,3991	915	Р. сп., э.	174
	-114,7	100	1,394925	12,5	Р. сп., э.	175
	25,5	82,8	1,3878	Х. р.	Р. сп., э.	176
	~ 42	206	1,4360	∞	Р. сп., э., бз., хл	177
	-35	186,4	1,4086	3,716	Р. сп., э.	178
	315	Возг.; разл.		р.	Тр. р. сп.	179
	77,5	i briani	• • •	Ď.	Р. сп., бз., э.	180
-	81,2	285 (в CO ₂);		114	Р. сп., э., хл.,	181
٠.		146(0,53 кПа)	* **	575	укс. к., CS ₂	
•	191	Возг.; разл.	• • •	0,69	Р. э., сп., ац.	182
	<u> </u>	i Januari wa jita <u>ili il</u>		<u> </u>		·

الإشراعية والمواد المحرة العقبيلاء العمريدانية

№ п/п	Название	Формула	Молекуляр- ная масса	Плотность
183 184 185	Винил бромистый Винил иодистый Винил фтористый	CH ₂ =CHBr CH ₂ =CHI CH ₂ =CHF	153,95	1,529 ¹¹ 2,08 ⁰ 0,853-2 ⁶
186	Винил хлористый	CH ₂ =CHCl	62,49	Ж.
187 188 189	Винилацетат Винилацетилен Винилиден хло- ристый (1, 1-ди-	$CH_3CO_2CH=CH_2$ $CH\equiv CCH=CH_2$ $CH_2=CCl_2$	52,08	0,920 0,932 0,687° 1,250 ¹⁵
. 190	хлорэтилен) N-Винилкарбазол	$C_{15}H_{14}N$	193,24	
191	N-Винилпирро-	C ₆ H ₉ OH	111,15	1,0458
192 193	та (виноградная	CO ₂ H(CHOH) ₂ CO ₂ H CO ₂ H(CHOH) ₂ CO ₂ H	150,09 150,09	
194	кислота) d-Галактоза	$C_5H_{11}O_5CHO$	180,16	• • •
195	Галловая кислота	$(HO)_3C_8H_2CO_2H$	170,12	1,6944
196	Гваякол (о-ме- токсифенол)	C ₆ H ₄ (OH)OCH ₈	124,14	1,129
197	Гексаметилен- бензамид	C ₁₃ H ₁₇ ON	203,29	•••
198	Гексаметилендиа-	$NH_2(CH_2)_6NH_2$	116,21	•••
199	Гексаметилентетрамин (уротропин)	$(CH_2)_6N_4$	140,19	
20 0	Гексан	$CH_3(CH_2)_4CH_3$	86,18	ό,6 60
201	1, 6-Гександиол	CH ₂ OH(CH ₂) ₄ CH ₂ OH	118,8	1
20 2	Гексанитродифе- ниламин (гексил)	$[(NO_2)_3C_6H_2]_2NH$	439,21	
203	1-Гексанол	CH ₃ (CH ₂) ₄ CH ₂ OH	102,18	0,819
204 /	Гексаоксибензол	$C_6(OH)_6$	174,04	• • •
				-

	Темпер	атура, °С	тель	Pact	гворимость	N₂
	плав ления	кипения	Показатель преломления	в воде	в органических растворителях	n/¤
	—138	15,8	•••	Н.	∞ сп., ∞ э.	183
	•••	56 72,2	•••	Н.	P. cn. 400 cm ³ ,	1 84 18 5
	159,7	-13,4	•••	Tp. p.	ац. 550 см ⁸ Р. сп., э.	186
- 12	<-60	73	1,3958	2	Р. сп., э.	187
	—122,5	5,5 37	•••	Н.	•••	188 189
	65	140—150	•••	H.	Р. разн.	190
	•••	(0,13 κΠa) 65—66	1,5117	P.	Р. разн.	191
٠	170 206	(0,2 кПа) Разл. —Н ₂ О, 100	•••	139 20,6	Р. сп., э., ац. Тр. р. сп., э.	192 193
				on het		104
	165—168	• • •	• • •	68,324	Тр. р. сп., мет.	194
	206 разл.	Разл.	•••	1,1625	Р. ац., сп., э., гл.	195
	28,3	205	•••	1,715	Р. сп., э., хл., укс. к.	196
	36	190 (1,6 кПа)	1,5460 ^{36,5}	H.	Разл.	197
	42	204—205	•••	Р.	Р. сп., э., бз., хл.	198
	Bosr.	Разл.	••• /	150	Р. сп.	199
	95,3	68,7	1,3754	0,0138	Р. э., хл., сп.	200
	42	250	•••	P.	Р. сп.; тр. р.	201
٠.	24 5 разл.	•••	• • •	H.	•••	202
	-51,6	157,2	1,4133	0,59	Р. сп., э.	203
	Разл. 200	•••	•••	Tp. p.	Тр. р. сп., э., бз.	204

	100000000000000000000000000000000000000		z* ar jr.	R D	4		Темпера	атура, °С	гель ления	Раст	воримо сть	No.	
№ п/п	Название	Формула		Молокуляр- ная масса	Плотность		плавления	кипения	Показатель преломленяя	в воде	в органических растворителях	n/n	
205	Гексахлоран (смесь изомеров			<u>'</u>			*		•			205	
	гексахлорцикло- гексана): α β			; *	,870 ,890 ¹⁹		157—158 310—312	Разл. >158 	•••	1	,		
	γ δ ε ε	$C_eH_eCl_e$	2	290,83	•••		111,8—112,8 138—139 218,5—259,3 88—89 89,8—90,5		•••	н. {	Р. сп., бз., хл. Тр. р. бз., хл., укс. к.		
206	ү	C ₆ Cl ₆		284,78 2		•	124—125 228—231	 309 (98,9 кПа)	•••	H.	Р. гор. бз.	206	
207 208	Гексахлорэтан Гексен-1	CCl ₃ CCl ₃ CH ₂ =CH(CH ₂) ₃ CH ₃	2		2,091 0,673		<u> </u>	Bosr. 187 63,4	1,3821	H. H.	Р. сп., э. Р. сп., э.	207 208	
209	(гексилен) Гексиламин Гексоген	CH ₃ (CH ₂) ₅ NH ₂ C ₃ H ₆ O ₆ N ₆		101,20 223,13	0,763 1,816		—19 204,1	132,7	•••	Тр. р. Н.	∞ сп., э. Р. ац.; тр. р. сп., р. э., бз.,	209 210	
211	Гелиотропин	(CH ₂ O ₂)C ₆ H ₃ CHO		150,14	• • •		37	263		. 0,2	тол., хл. ∞ э., гор. сп.	211	
212	(пиперонал) Гематоксилин	$C_6H_{14}O_6 \cdot 3H_2O$		236,23	•••.		140 (—3H ₂ O)	•••	•••	Тр. р.	Р. сп., э., глиц.	212	
213 214	Гептан 1-Гептен	$CH_3(CH_2)_5CH_3$ $CH_2=CH(CH_2)_4CH_3$		100,21 98,19	0,684 0,697	•	~90,6 —119	98,4 93,6	1,3876 1,3996	0,0052 ^{15,5} H.	Р. э., хл. Р. сп., э.	213 214	
216	(гептилен) Гептиловый спирт Гераниол Гибберелловая кислота (гиббе-	$CH_3(CH_2)_5CH_2OH$ $C_{10}H_{17}OH$ $C_{19}H_{22}O_6$			0,824 0,881		—34,1 <—15 233—235	176,3 229 	1,4215 1,4766	0,09 H. P.	Р. сп., э.	215 216 217	
2 18	реллин) Гидразобензол (1, 2-дифенилгид-	C ₆ H ₅ NHNHC ₆ H ₅		184,24 1	,158 ¹⁶		127—128	Разл.	•••	Tp. p.	Р. сп., э.	218	
219	разин) Гидрастин	$C_{21}H_{21}O_{8}N$		383,41	•••		132	•••	•••	Н.	X. р. хл., бз.; р. сп., э.	* :	
2 20	Гидратороповый	C ₆ H ₅ CH(CH ₃)CHO		137,17	1,0920		•••	202-205	1,5169	H.	Р. сп. +H ₂ O		
2 21	альдегид Гидрохинон (<i>n</i> -	C ₆ H ₄ (OH) ₂	•	110,11	1,358		170,5	286,2	•••	5,915	Р. сп., э.	221	
2 22	диоксибензол) Гиппуровая	C ₆ H ₅ CONHCNH ₂ CO ₂ H		179,18	1,371		189—190	Разл.	•••	0,33	Р. сп., хл.; тр р. э.	. 22	
2 23	кислота Гистамин	C ₃ H ₃ N ₂ CH ₂ CH ₂ NH ₂		111,15	:···		86	209—210	•••	Х. р.	X. р. сп., гор. хл.	223	

№ u/u	Название	Формула	Молекуляр- ная масса Плотность
224 225	<i>l</i> -Гистидин Гликоль	C ₃ H ₃ N ₂ CH ₂ CH(NH ₂)CO ₂ H NH ₂ CH ₂ CO ₂ H	155,16 75,07 1,610
226	(глицин) Глоколевая	HOCH ₂ CO ₂ H	76,05
227	кислота Глоколевый	HOCH ₂ CHO	60,05 1,391
228	альдегид Гликоль	CH ₂ OH—CH ₂ OH	62,07 1,114
229 230 231	(этиленгликоль) Глиоксим Глицерин Глицеросфорная	$\begin{array}{l} \text{HON=CHCH=NOH} \\ \text{CHOH(CH}_2\text{OH)}_2 \\ \text{C}_3\text{H}_5\text{(OH)}_2\text{OPO(OH)}_2 \end{array}$	98,06 92,10 1,260 172,08 1,590 ¹⁴
232	кислота Глутаминовая	$CO_2H(CH_2)_2CH(NH_2)CO_2H$	147,13 1,460
233	кислота Глутаровая	CO ₂ H(CH ₂) ₃ CO ₂ H	132,12 1,42915
234 235	кислота d-Глюкоза Глюкуроновая	CH ₂ OH(CHOH) ₄ CHO OCH(CHOH) ₄ CO ₂ H	180,16 1,544 ²⁵ 194,15 ···
236	кислота Глютатион	$C_{10}H_{17}O_6N_3S$	307,32
237 238 239 240	Грамин Гуанидин Дезоксирибоза Дезоксихолевая	$egin{array}{ll} C_{11}H_{14}N & & & & \\ NH=C(NH_2)_2 & & & & \\ CH_2OH(CHOH)_2CH_2CHO & & & \\ C_{24}H_{40}O_4 & & & & \\ \end{array}$	170,24 · · · · 59,07 · · · · · 134,10 · · · · 392,56 · · ·
241	кислота Декагидронафта-	$C_{10}H_{18}$	138,25 0,8963
242 243	лин (декалин) Декан Дециловый альде-	$\mathrm{CH_3(CH_2)_8CH_3}$ $\mathrm{CH_3(CH_2)_8CHO}$	142,29 0,730 156,27 0,828
244	гид (каприновый) Дециловый спирт	CH ₃ (CH ₂) ₈ CH ₂ O	158,28 0,8292
2 45	(1-деканол) Диазоаминобен-	$C_6H_5N=NNHC_6H_5$	197,24
24 6	зол _, Диазометан	CH ₂ N ₂	42,04
247	Диазоуксусный	N ₂ CHCOOC ₂ H	114,10 1,08518
24 8	эф ир Диаллилфтала т	$C_6H_4(CO_2CH_2CH=CH_2)_g$	244,3 1,120
24 9	3, 5-Диаминобен-	$(NH_2)_2C_6H_3CO_2H$	152,15 •••
250	зойная кислота о-Дианизидин	[CH ₃ O(NH ₂)C ₆ H ₃] ₂	244,30 •••

	Температура, °С		тель ления	Растворимость		№
	плавления	кипения	Показатель преломления	в воде	в органических растворителях	n/n
	287 разл. 233 разл.	Разл.	•••	P. 25,3 ²⁵	• • •	224 225
	80	Разл.		P.,	Р. сп., э.	226
	97	•••	•••	X. p.	Х. р. гор. сп.;	227
	—13,2	197,2	1,4319	∞	тр. р. э. Р. сп., мет.,	228
	-178 17,9 -20	Возг. 290 разл.	1,4729	X. p. rop. ∞ ∞	ац., укс. к. Р. сп., э. ∞ сп. ∞ сп.	229 230 231
	200 разл.		•••	Тр. р.	•••	232
	97,5	200 (2,67 кПа)	•••	64	Р. сп., э., бз., хл.	233
	146	(2,0. 1110)	• • •	83	P. rop. cm.	234
,	156	. •••	•••	P.	Р. сп.; н. э.	235
	190—192 разл.	•••	•••	Ρ.	Н.	236
	138—139	•••	• • •	P.	Разл.	237
	~ 50	• • •	• • •	P.	Р. сп.	238
	78—82	• • •	• • •	P.	•••	239
	172	• • •	•••	Tp. p.	Р. сп., укс. к., ац.	240
	-43,01	195,77	•••	Н.	Р. сп., э.	241
	<u>30</u>	174 208—209	1,4120 1,42977	н. н.	P. сп., э. P. сп., э.	242 243
	6	. 231	1,43719	н.	P. cn.; ∞ 9.	244
	96—98	Разл.; взр.	•••	H.	Р. э., бэ., гор. сп.	245
	-145	—23; взр. 200	•••	Разл.	Р. сп., э.	246
	-22	141 (96 кПа)	1,458818	Tp. p.	Р. сп., э., бэ.	247
	—70	175 (1,33 кПа)	1,490— 1,49 3	Н.	P. cn.	248
	22 8—236	Разл.		1,18	Х. р. сп., э.	249
	133—137	• • • :	•••	P. rop.	Р. сп., э., ац., хл., бз.	250

	<u> </u>	<u> </u>	١.	i i
№ n/n	Название	Формула	Молекуляр- ная масса	Плотность
251	Диацетил	CH ₃ COCOCH ₃	86,09	0,98118
252	(бутандион-2, 3) Дибензил	C ₆ H ₅ CH ₂ CH ₂ C ₆ H ₅	182,27	0,995
253	о-Дибромбензол	$C_6H_4Br_2$	235,92	1,9557
254	Дибромоксин	C ₉ H ₅ ONBr ₂	302,9 8	•••
255	Дибутиладипинат	$(CH_2CH_2CO_2C_4H_9)_2$	258,37	0,9605
256 257	Дибутиламин Дибутилсебаци-	$(C_4H_9)NH$ $[(CH_2)_4COOC_4H_9]_2$	129,25 314,47	0,767 0,933 ¹⁵
258 259 260	нат Дибутилсульфид Дибутилфталат Дивинил	(C ₄ H ₉) ₂ S C ₆ H ₄ (CO ₂ C ₄ H ₉) ₂ см. № 164 Бутадиен-1,3	146,28 278,35	1,047
261 262	Дивинилацетилен 1, 3-Дивинилбен-	$CH_2 = CHC \equiv CCH = CH_2$ C_6H_4 $(CH = CH_2)_2$		0,776 0,9294
263	зол Диизоамиловый эфир	$[(CH_3)_2CHCH_2CH_2]_2O$	168,28	0,7777
264 265	Диизобутилен	$\begin{cases} (CH_3)_3CCH_2C(CH_3) = CH_2 \\ (CH_3)_3CCH = C(CH_3)_2 \end{cases}$	112,22 112,22	
2 66	Дикетен	$H_2C = C - CH_2$ $O - CO$	84,06	1,088
267 268	Дильдрин Димедон	$C_{12}H_8OCI_6$ $C_8H_{12}O_2$	380,60 140,18	1,54
269 270	Димедрол 2, 3-Димеркапто-	$(C_6H_5)_2$ CHOCH $_2$ CH $_2$ N $(CH_3)_2$ · HCI HOCH $_2$ CHSHCH $_2$ SH	291,83 124,23	1,2385
271	пропанол 3, 4-Димеркапто- толуол	H ₃ CC ₆ H ₃ (SH) ₂	156,25	•••
272 273	Диметиламин Диметиламино-	$(CH_3)_2NH$ $(CH_3)_2NC_8H_4CHO$	45,08 149,20	0,6800
274 275	бензальдегид Диметиланилин 2, 3-Диметилбу- тадиен-1, 3	C ₈ H ₅ N(CH ₃) ₂ CH ₂ =C-C=CH ₂ CH ₃ CH ₃	121,18 82,14	0 956 0,7272
276	Диметилгидра- зин, симметрич-	CH ₃ NHNHCH ₃	60,10	0,827
277	ный Диметилгидра- зин, несимме- тричный	(CH ₃) ₂ NNH ₂	60,10	0,791

	Темпера	тура, ℃	тель	Растворимость		N•
-	пларления	кипения	Показатель преломления 	в воде	в органических растворителях	n/a
	-2,4	88	1,393318	2515	Р. сп., э.	251
	52,5	284	•••	Н.	Р. сп.; х. р. э.	252
	6,7	221	•••	H.	Р. сп., ∞ э.	253
	196	Возг.	•••	н.	X. р. сп.; н. э., бз.	254
	-37,5	183	•••	H.	∞ сп., э.	255
	<u>-8</u> _11	(1,86 кПа) 159—161 344—345	1,439125	P. H.	Х. р. сп., э.	256 257
	—79,7 —35	182 340	1,4925 ²⁵	H. 0,04 ²⁵	•••	258 259 260
ř.	87,8 52,25	85 210,55	1,5047 1,5726 ²²	Тр. р.	∞ cn., э.; p. мет., CS ₂	261 262
	•••	173,4	1,4085	Tp. p.	Разл.	263
	-93,6 -106,5	101,2 104,5	1,4086 1,4158	•••	•••	264 265
	6,5	127,4	1,4379.	Н.	•••	266
	175—176 145—148	•••	•••	H. 3,8 ⁹⁰	Р. сп., ац. Р. гор. сп., э., хл., бз.	267 268
	166 —168	8,9	1,5720	X. p. 8,7	X. р. сп.; н. э. Р. растит. масл.	269 270
	31—32	(0,07 кПа) 185—187	•••	Р. разб.	Mac.I.	271
,	-92,2 74	(11,17 кПа) 6,9 176—177 \	1,350017	щел. Р. Тр. р.	Р. сп., э. Р. сп., э., укс. к.	2 72 273
	2,5 76,01	(2,26 кПа) 192,5—193,5 69,6	1,5582 1,4391	Тр. р.	Р. сп., э., бз.	274 275
	•••	81 (0,1004 МПа)	1,4209	. ∞	∞ сп., э.	276
	•••	62,5 (95,4 кПа)	1,40753	Х. р.	Х. р. сп., э.	277

, % n/n	Название	Формула	Молекуляр- ная масса	Плотность
278 279	Диметилглиоксим Диметилдихлор- силан	(CH ₃ C=NOH) ₂ (CH ₃) ₂ SiCl ₂	116,12 129,06	1,0715
280	Диметилолмоче-	HOCH₂NHCONHCH₂OH	120,11	•••
281 282	Диметилсульфат Диметилтере- фталат	(CH ₃) ₂ SO ₄ C ₆ H ₄ (COOCH ₃) ₂	126,13 194,19	
283	Ди ме тилфлуорон	$C_{19}H_7O_5N$	363,39	•••
284	Диметилформа-	HCON(CH ₃) ₂	73,09	0,95025
28 5	мид Диметилфталат	C ^e H ⁴ (COOCH ³) ³	194,19	1,18825
286	м-Динитробензол			1,575
287	о-Динитробензол	$C_6H_4(NO_2)_2$	168,12	1,56517
288	<i>п</i> -Динитробензол			1,62518
289 290	1, 5-Динитро- нафталин 1, 8-Динитро-	C ₁₀ H ₆ (NO ₂) ₂	218,17	•••
291	нафталин ^Л 2, 4-Динитро-	$C_6H_3CH_3(NO_2)_2$	182,14	1,52115
292	толуол 2, 4-Динитро-	$(NO_2)_2C_6H_3NHNH_2$	198,14	
293	фенилгидразин 2, 4-Динитро-			1,68124
294	фенол 2,5 Динитро-	C ₆ H ₃ OH(NO ₂) ₂	184,11	•••
295	фенол 2, 6-Динитро-			•••
296	фенол / 2, 4-Динитро-	C ₆ H ₃ (NO ₂) ₃ Cl	202,55	1,69722
297	хлорбензол Диоксан (1, 3)	OCH ₂ OCH ₂ CH ₂ CH ₂	·	1,034**
298	Диоксан (1, 4)	OCH ₂ CH ₂ OCH ₂ CH ₂	,	0,3375
299	Диоксивинная кислота	(HO) ₂ CCOOH	182,09	•••
30 0	Диоктилсеба-	(HO) ₂ CCOOH C ₈ H ₁₇ O ₂ C(CH ₂) ₈ CO ₂ C ₈ H ₁₇	426,69	0,913
801	цинат Диоктилфталат	C ₆ H ₄ (CO ₂ C ₈ H _{17)₂}	390,46	·

	Темпера	тура, °С	тедь	Ра створимость		N₂
	плавления	кипения	Показатедь преломления	в воде	в органических растворителях	9 /0
	238—240 —86; —76	70	•••	0,06 Разл.	Р. сп., э.	278 279
	126	Разл.	• • •	Ρ.	Р. сп., мет.	280
8	-26,8 $141-142$	183,3—188,6 Возг,	1,3874	Tp. p. Tp. p.	Р. сп., э., бз. Р. сп., э.	281 282
	•••	•••	•••	H.	Р. подкисл.	283
L	61	153	1,426925	P.	сп. Р. сп., э.,	284
n	• • •,	280	1,5155	0,4	ац., CS ₂ Р. сп., э.	285
	89,8	(97,9 кПа) 300—302	•••	0,046915	Р. сп., бз.,	286
. •	117,4	319 (0,1031 МПа)	•••	0,01	жл., тол. Р. сп., хл., бз.	287
	174,2	(0,1031 MHa) 299 (0,1036 MHa)	• • •	0,18100	Р. бз., хл.,	288
-	216	Разл.	•••	H.	сп., укс. к. Р. гор. бз.,	289
· · ·	173—173,5	Разл.	***	H.	пиридин Р. пиридин, бз.	290
	70,5	300 разл.	•••	H.	Р, бз., гор.	291
· ·	197—198	•••	• • •	H.	сп. Р. подкисл.	292
	114115	Возг.		0,5	сп. Р. сп., бз., э., хл.	293
	108	•••	•••	Tp. p.	Р. э., гор.,	294
	63—64	•••		P. rop.	P. э., хл., бз., гор. сп.	295
	51	315 разл.	• • •	H.	P. э., бз., гор.	296
	-42	105; 106	•••	∞ .	∞ Cn., Э.	297
•	11,80	101,32	1,42241	∞	∞ СП., Э.	2 98
(114—115 разл.	•••	•••	X. p.	•••	299
	— 55	248	1,4496	Tp. p.	Разл.	300
	4 0	(0,53 кПа) 340	1,482	H.	Р. петролейном э., бензине, мин. маслах	301

№ п/п	Название	Формула	Молекуляр- вая масса	Плотность
302	4, 4' -Дипиридил	$(C_bH_4N)_2$	156,18	•••
303 304	Дисульфан Дитизон	$H_2NC_6H_4SO_2NHC_6H_4SO_2NH_2$ $C_6H_5NHNHC(=S)N=NC_6H_5$	327,38 256,33	•••
305 306	Дифенил Дифениламин	$(C_6H_5)_2$ $(C_6H_5)_2$ NH	154,21 169,23	1,180° 1,159
307	Дифенилбензи-	$(C_6H_4NHC_6H_5)_2$	3 36 ,4 3	•••
308	дин Дифенилгуа-	$HN = C(NHC_6H_5)_2$	211,27	1,130
309	нидин Дифенилкарба-	(C ₆ H ₅ NHNH) ₂ CO	242,28	••••
310	зид Дифенилкарба- зон, симметрич- ный	$C_6H_5N=NCONHNHC_6H_5$	240,26	•••
311 312	Дифенилметан Дифенилмоче-	С _в Н _ь СН ₂ С _в Н _ь см. № 399 Карбанилид	168,24	1,00126
313	вина Дифенилолпропан	$(CH_8)_2C(C_8H_4OH)_2$	228,29	•••
314	(диан) Дифениловый	$C_6H_5OC_6H_5$	170,21	1,073
315	эфир Дифенилтиомо-	см. № 715 Тиокарбанилид		
3 16	чевин а Дифенил-п-фени-	C ₆ H ₅ NHC ₆ H ₄ NHC ₆ H ₅	260,34	• • •
317	лидендиамин Дифенилхлорар-	$(C_6H_5)_2$ AsCl	264,59	1,48216
3 18	син Дифенилцианар-	(C ₆ H ₅) ₂ AsCN	255,15	1,31658
319	син Дифосген	CICOOCCI ₈		1,65314
32 0 3 21	о-Дихлорбензол } п-Дихлорбензол }	C ₆ H ₄ Cl ₂	147,00	1,305 1,458
3 22	4, 4'-Дихлорди- фенилтрихлор- метилметан	CCl ₃ CH(C ₆ H ₄ Cl) ₂	354,48	•••
3 23	(ДДТ) Дихлордифтор-	CCl ₂ F ₂	120,91	1,48630
3 24	метан Дихлорметило-	CICH ₂ OCH ₂ CI	114,97	1,328
3 25	вый эфир Дихлорнафто-	$O = C_{10}H_4Cl_2 = O$	227,05	. •••
3 26	хинон Дихлороксин	C ₉ H ₅ ONCl ₂	214,05	•••

	Температура, °С		тель	Раство	римость	N₂
	плавления	кипения	Показатель преломления	в воде	в органических растворителях	n/n
	114	304,8	•••	Тр. р.	X. р. сп., э.; р. бз., хл.	302
	131—134	• • •	• • •	н. н,	P. aц., укс. к. Тр. р. сп., э.;	303 304
:	69,0 53	255 302	1,588277	H. 0,03	р. хл Р. сп., мет., э. Р. э., мет., бз.,	305 306
	242	•••	• • •	H.	сп. Тр. р. сп.,	307
	148	Разл. 170	•••	Tp. p.	бз.; р. гор. тол. Р. сп., хл.	308
	170	Разл.	• • •	H.	Р. гор. сп., бз.	309
	157 разл.	•••	•••	H.	Р. сп., бз., хл., э.	310
	26—27	261—262	1,578817	Н.	Р. сп., э., хл.	311 312
	156—157	250—252	•••	Tp.p.	Р. сп., мет.,	313
	28	(1,7 кПа) 259	1,582624	Tp. p.	ац., укс. к., э. Р. сп., э., укс. к., бз.	314
i A				-	·	315
	152	•••	- • • •	• • • .	Р. э., хл., rop. бз.	3 16
	44	333 разл.	1,633256	H.	Р. э., бз., сп.	317
	31,5	346 разл.	1,615352	Tp. p.	Р. разн.	318
	57 17,5 53	128 180—183 174	1,4566 ²² 1,5518 ²² 1,5210 ⁸⁰	Тр. р., разл. Н. Н.	Р. сп., э., бз. Р. гор., сп.,	319 320 321
	108,5 —109	Разл.	•••	Н.	хл., э., бз. Р. сп., э., бз.	322
	—160	28	•••	н.	Р. сп., э.	323
	. •••	104—105	•••	Разл.	•••	324
	192193	•••	•••	Н.	P. rop. cn.	325
	179—180	. • •	•••	Н.	X. р. сп., бз.; р. э., CS ₂	326
_						

-				
№ n/n	flазвание	Формула	Молекуляр- ная масса	Плотность
327	2, 4-Дихлорфе- ноксимасляная кислота	C ₆ H ₃ (Cl ₂)O(CH ₂) ₃ CO ₂ H	249,10	•••
328	2, 4-Дихлорфе- ноксиуксусная	C ₆ H ₃ (Cl ₂)OCH ₂ CO ₂ H	221,04	•••
329	к ислота Дициандиамид	$H_2NC(=NH)NHCN$	84 08	1,40014
330	Дициклогексил	C.H., C.H.,		0.8644
331	Диэтаноламин	$C_6H_{11}C_6H_{11}$ $HN(CH_2OH_2OH)_2$	105,14	
332	Диэтиламин	$(C_2H_5)_2NH$	73.14	0,706
333	Диэтиламино-	$(C_2^2H_5^3)_2^2NCH_2CH_2OH$	117,19	
334	Диэтиланилин	$(C_2H_5)_2NC_6H_5$	149,24	0.935
335	Диэтиленгликоль	(HOČH ₂ CH ₂) ₂ O	106,12	
336	Диэтил- <i>п</i> -нитро- фенилтиофосфат	$(C_6H_5)_2PSOC_2H_4NO_2$	3 07,31	1,26625
337	Диэтилоксалат	(COOC ₂ H ₅) ₂	146,14	1,079
338	Диэтилфталат	(COOC2H5)2C6H4(CO2C2H5)2	222,24	1,118
339	Дульцит	CH ₂ OH(CHOH) ₄ CH ₂ OH	182,17	1,46615
340	Дурол (1, 2, 4, 5-тетраметил- бензол)	$(CH_9)_4C_6H_2$	134,22	0,83881
341	Жасмон	$C_{11}H_{16}O$	164,24	0,9437
		o		
342	Зоман	(CH ₃) ₈ CCH(CH ₃)OPF	182	1,013
343	Изатин	C ₆ H ₄ NHCOCO CH ₈	147,13	•••
344	Изоамил	(CH ₃) ₂ CH(CH ₂) ₂ Br	151,05	1,21514
345	бромистый Изоамил	$(CH_3)_2CH(CH_2)_2I$	198,05	1,510 ¹⁸
346	иодистый Изоамил	(CH ₃) ₂ CH(CH ₂) ₂ Ci	106,60	0,893
347	хлористый α-Изоамилен	(CH ₃) ₂ CHCH=CH ₂	70 14	0,63215
348	Изоамилнитрит	(CH ₃) ₂ CH(CH) ₂ ONO	117,15	0.872
	Изоамиловый	(CH ₃) ₂ CH(CH ₂) ₂ OH	88,15	0,812
350	спирт Изобутан	(CH ₃) ₂ CHCH ₃	58,12	Ж. 0,6030

	Темпера	тура, °С	тель	Раство	Раствор имост ь	
	плавления	кипения	Показатель преломления	в воде	в органических растворителях	n/a
	70		• • •	P.	Р. бз., сн.	327
	139—140	•••	•••	0,05	Р. бз.	328
	207—208 3,65 28	Разл. 234 270 (99,7 кПа)	1,4776	2,3 ¹³ Tp. p. P.	P. cn. P. cn.; ∞ э. P. cn.; тр. р. э., бз.	329 330 331
	—50,0 · · ·	55,5 162,1	1,3873 ¹⁸ 1,4400 ²⁵	P. P.	Р. сп., э. Р. сп., э., бз., хл.	332 333
	-38,8 -6,5	215,5 244,8; 133 (1,87 кПа)	1,5411 ²² 1,4472	1,44 ¹² ∞	Р. сп., э., хл. Р. сп., э., ац.	3 34 335
	6,1	157—162 (0,08 кПа)	1,537025	Tp. p.	Р. сп., э., ац., хл., бз.	336
•	40,6 40	185,4 296,1	1,4101 1,501	Тр. р. Н.	Р. сп. э. ∞ сп., э.; р. бз.	337 338
	188,5	295 (0,47 кПа)	•••	3,215	•••	339
	79,24	196,85	•••	Н.	Р. сп., э., бз., укс. к.	340
	•••	134—135 (1,6 кПа)	1,497922	Н.	Разл.	341
*	80	42 (0,03 кПа)	1,408	Тр. р.	Х. р.	342
	203,5	Bosr.	•••	Tp. p.	Р. мет., сп., ац., бз.	34 3
	 112	121.	1,4433	H.	Р. сп., э.	344
	• • •	147,7	• • •	Н.	Р. сп., э.	345
).). ; -	•••	98,9	1,411218	Н.	Р. сп., э.	346
* * * * * * * * * * * * * * * * * * *	<−135 ← 117,2	- 20,1 99 132	1,3640 1,3871 1,4058	H. Tp. p. 2,6	Р. сп., э. Р. сп., э., бз. Р. сп., э., бз.	347 348 349
	-159,6	11,7	•••	13 ¹⁷ см ³ (0,1029 МПа)	Р. э., хл., сп.	350

Ль n/п	Название	Формуда	Молекуляр- ная масса	Плотность
351	Изобутил	(CH ₃) ₂ CHCH ₂ Br	137,03	1,27215
352	бромистый Изобутил	(CH ₃) ₂ CHCH ₂ I	184,02	1,605
353	иодистый Изобутил	(CH ₃) ₂ CHCH ₂ Cl	92,57	0,884
354 355	хлористый Изобутиламин Изобутиловый спирт	(CH ₃) ₂ CHCH ₂ NH ₂ (CH ₃) ₂ CHCH ₂ OH	73,14 74,12	0,731 0,805
356	Изовалериановая кислота	(CH ₃) ₂ CHCH ₂ CO ₂ H	102,13	0,933
357	Изовалериано-	(CH ₃) ₂ CHCH ₂ CHO	86,13	0,802
358	вый альдегид L-трет-Изолейцин	CH ₃ CH ₂ CH(CH ₃)CH(NH ₂) CO ₂ H	131,18	•••
359	Изомасляная	(CH ₃) ₂ CHCO ₂ H	88,10	0,950
360	кислота Изооктан (2, 2, 4-триметилпен-	$(CH_3)_2CH(CH_2)C(CH_3)_3$	114,24	0,692
361 362	тан) Изопентан Изопрен	(CH ₃) ₂ CHCH ₂ CH ₃ CH ₂ =CHC(CH ₃)=CH ₂		0,620 0,681
363	Изопропил	CH ₃ CHBrCH ₃	123,00	1,310
364	бромистый Изопропил	CH3CHICH3	169,99	1,703
365	иодистый Изопропил	CH ₃ CHCICH ₃	78,54	0,859
366	хлористый Изопропиловый	(CH ₃) ₂ CHOH	60,10	0,789
367	спирт Изопропиловый	[(CH ₃) ₂ CH] ₂ O	102,18	0,7258
368	эфир Изосахарная	(CHOHCHCO ₂ H) ₂ O	192,13	
369	кислота Изохинолин	C ₆ H ₄ CH=NCH=CH	129,16	1,099
370	Изоэвгенол (смесь иис- и	$C_6H_3(C_9H_5)(OCH_9)OH$	164,21	1,085— 1,087
371	<i>транс</i> -изомеров) Имидазол	NHCH=NCH=CH	68,07	
372	Инден	C ₆ H ₄ CH ₂ CH=CH	116,16	0,996
373	Индиго	$C_{10}H_{10}O_{2}N_{2}$	262,27	1,350
374	Индигокармин	C ₁₈ H ₈ O ₂ N ₂ (SO ₃ Na) ₂	466,37	•••

	Темпер	атура, °С	тель	Растворимость		95 Растворимость		Ņ₂
	плавления	кипения	Показатель преломления	в воде	в органических растворителях	ñ/n		
	-118,5	91	1,4361	н.	Р. сп., э.	351		
	93,5	(0,1021 МПа) 120,4	1,4960	H.	Р. сп., э.	352		
. 1	—131,2	68,9	1,401018	H.	Р. сп., э.	353		
	—85 —108	68—69 108	1,397715	∞ 9,5	∞ сп., э. Р. сп., э.	354 355		
	—37	176 ,7	1,4043	4,2	Р. сп., э., хл.	356		
	—51	92,5	1,3902	Tp. p.	Р. сп., э.	357		
	285—286	Bosr. >280	• • •	Tp. p.	Р. гор. укс. к.	358		
	разл. —47,0	154,4	1,3930	20	Р. сп., э., хл.	359		
	-107,4	99,3	1,3916	Н.	Р. э.	360		
7	—160 —146	27,85 34,1	1,3537 1,4194	Н . Н,	Р. э. Р. сп., э.	361 362		
	в амерзает —89	59,4	1,428515	0,32	Р. сп., э.	363		
	-90,8	89,5	1,5026	0,14	Р. сп., э., бз.,	364		
	—117,2	34,8	1,381115	0,31	хл. Р. сп., э.	365		
is. C	-88,5	82,2	1,3776	∞	Р. сп., э., бз.	366		
	60	68,5—69,0	1,367823	0,2	∞ сп., э.	367		
à,	185	Разл.	•••	P.	Р. сп.; тр. р.	368		
	24	240,5	1,6148	Tp. p.	•••	369		
	15—20	140—145 (1,6 кПа)	1,5750— 1,5780	Tp. p.	Р, сп., э.	370		
	90	256	• • • •	Х. р.	Х. р. сп.;	371		
N.	-2,59	182,4	1,5773	H.	р. э. Р. сп., э., бз.,	372		
	39 0 (давл.)	Boar. >290	•••	H.	ац. Р. анилине, нит-	373		
		•••	•••	Р.	робензоле, хл. Тр. р. сп.	374		

Na n/s	Название	Формула	екуляр- масса	Лотность		Темпер	атура
			Мол	Пло	пл	авления	ı
375	Индоксил	C ₈ H ₄ NHCH=COH	133,15	•••		85	1
376	Индол	C ₈ H ₄ NHCH=CH	117,16	•••			,
377	3-Индолил- <i>н</i> -ма-	C ₆ H ₄ NHCH=C(CH ₂) ₃ CO ₂ H	203,24	•••		52,5	2
37 8	сляная кислота 3-Индолилуксус-	C ₆ H ₄ NHCH=CCH ₂ CO ₂ H	175,19			124	
37 9	ная кислота Инозин	$C_{10}H_{12}O_5N_4$ $C_6H_6(OH)_6$	268,24	•••	16	64—165	
380	Инозит	$C_6H_6(OH)_6$	180,16	•••	22	218 25—227	
381	Иодаллилуро- тропин	$C_9H_{17}N_4I$	308,18	•••		148	(
383 384	тропин Иодацетамид Иодбензол Иодозобензол Иодоформ	NH ₂ COCH ₂ I C _a H ₅ I C _a H ₅ IO CHI ₃	184,97 204,05 220,01 393,73	1,838 ¹⁵ 4,008	21	95 31,4 Ю взр.	D
386	Иодуксусная	ICH ₂ CO ₂ H	185,96	• • •		9 возг.	Pas
387	кислота α-Ионон)			0,930		32—83	
38 8	β-Ионон	$C_{10}H_{16} = CHCOCH_8$	192,30	0,944		•••	(3
38 9	Иприт (β, β'-ди- хлордиэтилсуль-	(CICH ₂ CH ₂) ₂ S	159,08	1,274	1	4—15	(3 2
390 3 9 1	фид) dl-Қамфен d-Қамфора	$C_{10}H_{16}$ $C_{10}H_{16}O$	136,24 152,24	0,822 ⁷⁸ 0,990 ²⁵		51 178,5	1 20
392 393	<i>dl-</i> Камфора Ј Каприловая	CH ₃ (CH ₂) ₈ CO ₃ H	144,22	0.910		178,8	
	кислота Каприновая	CH ₃ (CH ₂) ₈ CO ₂ H		0,88640	1	16,2	
	кислота ε-Капролактам	NH(CH ₂) ₆ CO	113,16			31,5	
	Капроновая	 CH ₃ (CH ₂) ₄ CO ₂ H	116,16	•		70	(1
	кислота Каптакс (2-мер-	$C_6H_4SC(CH)=N$	167,25			—1,5	(1
,,,	каптобензотиа-		101,20	1,720	17	7-179	
3 9 8	зол) Карбазол	C ₆ H ₄ NHC ₆ H ₄	167,21	•••		244,8	
3 9 9	Карбанилид (дифе-	C ₆ H ₅ NHCONHC ₆ H ₅	212,25	1,239			
100	нилмочевина) Кверцетин	C ₁₅ H ₁₀ O ₇	302,25	• • •		240 3—314 Разл.	

	Темпер	атура, °С	тель	Расте	оримость	№
	плавления	кипения	Показатель преломления	в воде	в органических растворителях	n/o
	85	110 разл.	•••	P.	Р. сп., э., ац.	375
	52,5	253-254	•••	P. rop.	Р. сп., э., бз.	376
	124	•••	•••	P. rop.	Р. сп., э., ац.	377
	164—165	•••	•••	P. rop.	Р. сп., э., ац.	378
	218 225—227	 319 (2 кПа)	•••	P. 4,15 ¹⁵	Тр. р. сп.; ч. э.	3 79 380
	148	(2 KHa)	• • •	X. p.	X. р. сп.; н. э., хл.	381
	95 —31,4 210 вэр. 119 возг.	188,7 Разл. >120	1,621318	X. p. rop. H. P. 0,01 ²⁵	Р. сп., э., хл. Р. сп., гор. э. Р. сп., э., ац., хл.	382 383 384 385
	82—83	•••	•••	P. rop.	Х. р. сп., э.	386
	•••	146 (3,73 кПа)	1,5015	Tp. p.	Р. сп., э.	387
	•••	150 (3,2 кПа)	1,5100	Tp. p.	Р. сп., э.	388
	14—15	217 разл.	1,5313	Н.	Разл.	389
	51 178,5	160—162 204 возг.	•••	H. 0,1	Р. э., сп. Р. сп., э., хл., др.	390 391
	178,8 16,2	Возг. 237,5	1,4275	•••	Р. сп., э., бэ., хл.	392 393
	31,5	268,4	1,428640	Tp. p.	Р. сп., хл., э.	394
	70	139 (1,6 кПа)	1,476875	~400	Р. сп., э., бз., хл.	395
	—1,5	205,3	1,4144	1,1	Р. сп., э.	396
	177—179	Разл.	• • •	H.	Р. гор. сп.	397
	244,8	354,8	•••	H.	Р. сп., э., бз., ац.	398
	240	260	•••	Tp. p.'	P. 9.	399
_	3 13—314 Разл.	Возг.	•••	0,35	0,48 сп.; тр. р. э.; р. укс. к.	400

N≥ n/π	Название	Формула	Молекуляр- ная масса	Плотность
401 402	Кетен Кетон Михлера	$CH_2=CO$ $[(CH_3)_2NC_6H_4]_2CO$	42,04 268,36	•••
403	Кодеин	$C_{18}H_{21}O_3N$	299,37	1,31514
404	Кокаин	C ₁₇ H ₂₁ O ₄ N	303,36	•••
405 406	Конго красный Коричная кислота	$\begin{array}{l} [C_{10}H_5(NH_2)(SO_3Na) \cdot N{=}NC_6H_4]_2 \\ C_6H_5CH{=}CHCO_2H \end{array}$	696,66 148,16	 1,2484
407	Коричный.	C ₆ H ₅ CH=CHCHO	132,16	1,11215
408 409 410	альдегид Коричный спирт Кофеин	$C_8H_5CH = CHCH_2OH$ $C_8H_{10}O_2N_4$	134,18 194,19	
411 412	м-Крезол о-Крезол	CH ₃ C ₆ H ₄ OH	108,14	1,047
413	n-Крезол) o-Крезолфталеин	$C_6H_4CO_2C=[C_6H_3CH_3OH]_2$	346,36	1,034
414	Креозол	CH ₃ OC ₆ H ₃ (CH ₃)OH	138,16	1,092
415	Кротоновая	CH ₃ CH=CHCO ₂ H	86,09	1,018
416	кислота Кротоновый	CH ₃ CH=CHCHO	70,09	0,85815
417 418	альдегид Ксантин Ксантогеновая кислота	$C_5H_4O_2N_4$ C_2H_6OCSSH	152,12 122,20	•••
,		<u> </u>		
419	Ксантон	C ₆ H ₄ CO	196,20	•••
420	м-Ксиленол (2, 4) несимметричный			1,02814
4 21	о-Ксиленол (3, 4) несимметричный	$(CH_3)_2C_6H_3OH$	122,17	1,02217
42 2	n-Ксиленол $(2,5)$			•••
423 .	м-Ксилидин (2, 4)	$(CH_3)_2C_6H_3NH_2$	121,18	0,978
424	Ксилит	CH ₂ OH(CHOH) ₃ CH ₂ OH	152,15	, •••
425 426	D-Ксилоза	CH ₂ OH(CHOH) ₃ CHO	150,13	1,530 0,864
427 428	м-Ксилол о-Ксилол n-Ксилол	$C_6H_4(CH_3)_2$	106,17	

	Темпера	атура, °С	тель	Раство	оримость	Ne
	плавления	кипени я	Показатель преломления	в воде	в органических растворителях	n/n
	-151 179	—56 >360 разл.	•••	Разл. Н.	P. ац., э. P. гор. бэ.; тр. р. сп., э.	401 402
	155	•••	•••	0,8325	Р. э., сп.,	403
	98	Возг.; разл.	•••	0,1625	бз., хл. Р. э., сп., бз., хл.	404
	133	300	•••	Tp. p. rop. 0,1	H. сп., э. Р. сп., хл., бз., э.	405 406
	7, 5	252 разл.	1,6195	H.	Р. сп., э.	407
	33 235 11,3 30,9 36 213—214	257,5 Boar. 178 202,8 191,9 202,5	1,5819 1,5398 1,5453 1,5395	Tp. p. 1,3516 2,35 2,45 1,94 Tp. p. rop.	Р. сп., э. Р. хл., сп. Разл. Разл. Разл. Р. сп., э.	408 409 410 411 412 413
	5,5	221,2	•••	Н.	∞ сп., э.; р.	414
	72	(0,1017 МПа) 189	•••	8,315	бз., хл.	415
	-69	102,2	1,438417	18	Р. сп., э., бз.	416
	≽150 разл. —53	Возг.; разл. Разл.	•••.	0,26 ¹⁷ Tp. p.	0,033 ¹⁷ сп.	417 418
	174	351	• • •	Tp. p. rop.	6,71 гор. сп.	419
	27—28	211, 5 (0,1021 МПа)	1,542014	Tp. p.	Р. сп., э.	420
	62,5	225 (0,1009 ΜΠa)	•••	Tp. p.	Р. сп., э.	421
	74,5	211,5 (0,1016 кПа)	•••	• • •	Р. сп., э.	422
	•••	216 (97 кПа)	1,5607	Tp. p.	•••	423
,	93—94,5	(o. n.m)		P.	Р. сп., мет. укс. к.; н. э.	424
	144 -47,87 -25,2 -13,2	139,1 144,4 138,35	1,4972 1,5071 ¹³ 1,5004	117 H. H. H.	P. rop. cn. P. cn., 9. P. cn., 9. P. cn., 9.	425 426 427 428

Ne n/n	Название	Формула	Молекуляр- ная масса Плотность
429	о-Кумаровая кислота	HOC ₆ H ₄ CH=CHCO ₂ H	164,16
4 30	Кумарин	C ₆ H ₄ OCOCH=CH	146,15 0,935
431	Кумарон (бензо-	C ₆ H ₄ OCH=CH	118,14 1,778 ¹⁵
432	фуран) Кумол (изопро-	C ₆ H ₅ CH(CH ₃) ₂	120,20 0,862
433 434	пилбензол) Купферон Куркумин	$C_6H_5N(NO)ONH_4$ $[(CH_3O)(OH)C_6H_3CH=\rightarrow$ $\rightarrow =CHCO]_2CH_2$	155,16 · · · · 368,39 · · ·
435	Лактоза (молоч-	$C_{12}H_{22}O_{11}$	342,30 1,525
436	ный сахар) Лауриновая	$CH_3(CH_2)_{10}CO_2H$	200,32 0,86950
437	кислота Лауриновый	$CH_3(CH_2)_{11}OH$	186,34 0,8309
438	спирт Левулиновая	CH ₃ COCH ₂ CH ₂ CO ₂ H	116,12 1,139
439	кислота L-Лейцин	(CH ₃) ₂ CHCH ₂ CH(NH ₂)CO ₂ H	131,18 1,29318
440 441 442	Лепидин Лизин <i>d</i> -Лимонен	$CH_3C_9H_6N$ $H_2N(CH_2)_4CH(NH_2)CO_2H$	143,19 1,0852 146,19 · · · 0,842
443	dl-Лимонен }	$C_{10}H_{16}$	136,24 0,844
444	(дипентен) Ј Лимонная	$^{-}$ C ₃ H ₄ (OH)(CO ₂ H) ₃	192,13 1,542
445 446 447	кислота l-Линалоол dl-Линалоол Линолевая	$C_{10}H_{18}O$ $C_{17}H_{31}CO_{2}H$	154,26 0,862 0,870 280,45 0,903
448	кислота Линоленовая	$C_{17}H_{29}CO_2H$	287,44 0,905
449 45 0	кислота Лофин Люизит	$C_{21}H_{16}N_2$ CICH=CHAsCl ₂	296,37 · · · · 207,32 1,888
451	Люминал (фено- барбитал)	C_6H_5 OC—NH C_6H_5 OC—NH	232,24
452	Магнезон (п-нит-	$NO_2C_6H_4N_2C_6H_3(OH)_2$	259,23
45 3	зорцин) Малахитовый	$C_6H_5CH[C_6H_4N(CH_3)_3]_2$	330,47
454	зеленый Малеиновая кислота	CO ₂ HCH=CHCO ₂ H	116,07 1,590

	Темпер	атура, °С	гель пения	Растворимость		N₂
The second second	плавления	кипения	Пок аз атель прел ом ления	в воде	в органических растворителях	п/п
	207—208 разл.	Разл.	444	Tp. p.	X. р. сп.; тр. р. э.	429
	70	291	•••	Тр. р.	Р. сп., э., хл.	430
	<-78	174	1,564523	н.	Р. э., сп.	431
	96,03	152—153	1,4930	н.	Р. сп., э., бз.	432
	163—164 177; 183	Возг.	•••	X. p. H.	Р. гор. сп. Р. сп.; бз., хл., тр. р. э.	43 3 434
	201,6	Разл.	• •••	17 ¹⁵ 86 ⁷⁴		435
	44,3	225 (13,3 кПа)	1,418382	Н.	Р. сп., э.,	436
	22,6; 24	255	•••	н.	мет., бз. Р. сп., э.	437
,	3335	245—246	1,442016	Р.	Р. сп., э.	438
	293—295 разл.	сл. разл. Возг.	•••	$2,43^{25}$	Р. укс. к., гл.	439
	9—10 224 разл.	258263	1,6206	Тр. р. Р.	∞ сп., э.	440 441
	-96,9	177	1,4743	H.	Р. сп., э.	442
	•••	178	1,4727	H	Р. сп., э.	443
	153	Разл.	. • •	133	Р. сп., э.	444
		198—200	1,460422	Tp. p.	Р. сп., э.	445
	—11 , —5 ,2	197—199 230	1,4711	Тр. р. Н.	Р. сп., э. Р. сп., э.	446 447
	11—11,3	(2,13 кПа) 230	•••	н.	Р. сп., э.	448
	275	(2,27 кПа)		77	_	440
	0,1	Возг. 190 разл.	1,609224	H. H.	Тр. р. сп., э. Разл.	44 9 45 0
	174	•••	•••	P. rop.	Р. сп., э.	451
· .	199—200	. •••	•••	н. 🗽	Р. гор. сп., ац., укс., к.	452
:	102; 93—94	Разл.	•••	Ħ.	Р. сп., бз.;	453
	130,5	135 разл.	•••	78,825	х. р. э. Р. сп., э., ац.	454
9	•					

	Speller, to					Тампол	атура, °С	8 8	Dans	гворимость	ī
№ n/n	Название	Формула	екуляр. м асса	4T20		Темпер	атура, ч	атели		воримость	_ No.
n/n	trasbanke	Фортупа	Молек ная ма	Плотность		плавления	кипения	Показатель преломления	в воде	в органических растворителях	11/11
455	Малеиновый	OCOCH=CHCO	98,06	0,934		54	202 возг.	•••	16,330	Р. ац., хл.	455
456	ангидрид Малоновая	CO ₂ HCH ₂ CO ₂ H	104,06	1,63115		135,6	Разл.	. •••	13816	Р. сп., э., мет	. 456
457	кислота Малоновый эфир	$CH_2(CO_2C_2H_5)_2$	160,17	1,055		-49,9	198,9	1,4143	2,08	Р. сп., э.,	457
	Мальтоза Маннит	C ₁₂ H ₂₂ O ₁₁ CH ₂ OH(CHOH) ₄ CH ₂ OH	342,30 182,17	1,540 1,489		160—165 166	Разл. 295 (0,47 кПа)	•••	X. p. 15,6 ¹⁸	хл., бз. Тр. р. сп.	458 459
460	Масляная	CH ₃ (CH ₂) ₂ CO ₂ H	88,10	0,959		—7, 9	163,5	1,3991	∞	Р. сп., э.	460
461	кислота Масляный	CH ₃ CH ₂ CH ₂ CHO	72,11	0,817		- 99	75,7	1,3843	3,7	Р. сп., э.	461
463	альдегид Мезидин Мезитила окись Мезитилен (сим- метричный три-	$(CH_3)_3C_6H_2NH_2$ $CH_3COCH=C(CH_3)_2$ $C_6H_3(C_3)_3$	135,21 98,15 120,20	0,963 0,865 0,864		<-15 -59 -52,7	233 130 164,6	1,4484 ¹³ 1,4967	H. 3,0 H.	Разл. Р. сп., э. Р. сп., э., бз.	462 463 464
465	метилбензол) Меламин	$N=C(NH_2)N=C(NH_2)N=CNH_2$	126,12	1,573250		· 2 50	Возг.; разл.	•••	P. rop.	. •••	465
467	n-Ментан l-Ментол Меркамин (хол- гидрат β-меркап-	CH ₃ C ₆ H ₁₀ C ₃ H ₇ C ₁₀ H ₁₉ OH HSCH ₂ CH ₂ NH ₂ · HCl	140,27 156,27 113,61	0,793 0,889 ¹⁵		42,5 70—7 2	169—170 215 	1,4375 1,4780 ²⁵	H. Tp. p. X. p.	Р. сп., э., хл. Р. сп., э., хл. Х. р. сп., н. э.	
469	тоэтиламина) Метакриловая	$CH_2 = C(CH_3)CO_2H$	86,09	1,015		16	160,5	1,4314	P	Р. сп., э.	469
470	кислота Метальдегид	$(C_2H_4O)_{4-6}$	(44,05)4	6		246,2	Возг. 112—115	•••	H.	Тр. р. сп.; э.	470
471	Метан	CH ₄	16,04	0,717		-182,5	-161,6	•••	9 см3	Р. э.	471
472	Метаниловая	NH ₂ C ₆ H ₄ SO ₃ H	173,19	КГ/М ³		Разл.	•••	•••	1,5	Тр. р. сп., э.	472
	кислота Метанол Метил бромистый	CH₃OH CH₃Br	32,04 94,95	0,792 1,732°		-97,8 -93,6	64,7 3,6	1,331215	$T_{p. p.}^{\infty}$	Разл. Р. сп., э., хл., бз.	473 474
475 476	Метил иодистый Метил хлористый	CH ₃ I CH ₃ Cl	141,94 50,49	2,279 2,310 kr/m ³		-66,1 -97,6	42,5 —23,7	1,5293	1,4 400 см ³	Р. сп., э.	475 476
477 478	Метилакрилат Метиламин	CH ₂ =CHCOOCH ₃ CH ₃ NH ₂	86,09 31,06	0,953 0,699 ^{-10,8}		-92,5	80,5 —7,55 (95,8 кПа)	1,3984	X. p.	Р. сп., э. Р. сп., э.	477 478
	Метиланилин 2-Метилантра-	$C_6H_5NHCH_3$ $C_6H_4(CO)_2C_6H_3CH_3$	107,16 222,25	0,989	T. W. Alle	—57 175—177	196 Bosr.	1,5702	Н. Н.	Р, сп., э., хл. Тр. р. сп.; р. э.	479 480
	хинон Метилацетат <i>n</i> -Метилацето- фенон	CH ₃ CO ₂ CH ₃ CH ₃ C ₆ H ₄ COCH ₃	74,08 134,18	0,9244 1,005		98,1 28	56,32 225 (98,1 кПа)	1,3619 - 1,5335	31,9 H.	о сн., э. Р. сп., э., бз., хл.	481 482

№ п/п	Название	Формула	Молекуляр- ная масса	Плотность
48 3	2-Метил-5-винил-	C_8H_9N	119,17	0,9579
4 84	пиридин Метилен иоди- стый	CH_2I_2	267,84	3,325
485	Метилен	CH ₂ Cl ₂	84,93	1,336
4 86	хлористый Метиленовый	$C_{16}H_{18}N_3SC1$	319,85	•••
4 87	голубой Метилизобутил-	CH ₃ COC ₄ H ₉	100,16	0,8017
488 489	кетон (гексон) Метилмеркаптан Метилметакри-	CH ₃ SH CH ₂ =C(CH ₃)COOCH ₃	48,10 100,12	0,8599 0,936
490 491	лат α-Метилнафталин Метиловый	$C_{16}H_7CH_3$ $(CH_3)_2NC_6H_4N=NC_6H_4SO_3Na$	142,21 327,35	1,02514
492	оранжевый Метиловый	$C_{24}H_{28}N_3Cl$	393,97	•••
493	фиолетовый Метиловый эфир (диметиловый	CH ₃ OCH ₃	46,07	1,617
494	` эфир) 2-Метилпропен	$(CH_3)_2C=CH_2$	56,11	Ж . 0595
495	Метилсерная	CH ₃ OSO ₂ OH	112,10	0030
496	кислота Метилциклогексан	CH ₂ (CH ₂) ₄ CHCH ₃	98,19	0,769
497	Метилциклогептан	CH ₂ (CH ₂) ₅ CHCH ₃	112,22	0,99818
498	Метилциклопентан	CH ₂ (CH ₂) ₃ CHCH ₃	84,16	0,749
499	Метилэтилкетон	CH ₃ COC ₂ H ₅	72,10	0,805
500 501	(-2-бутанон) <i>l</i> -Метионин Метол (<i>n</i> -метил- аминофенол-	$\mathrm{CH_3S(CH_2)_2CH(NH_2)CO_2H}$ $\mathrm{(HOC_6H_4NHCH_3)_2\cdot H_2SO_4}$	149,22 344,39	•••
502	сульфат) Миристиновая	CH ₃ (CH ₂) ₁₂ CO ₂ H	228,38	0,86254
503	кислота dl-Молочная	CH₃CHOHCO₂H	90,08	1,24915
504	кислота Монохлоруксус-	CH ₂ CICO ₂ H	94,50	1,580
505	ная кислота Морин	$C_{15}H_{10}O_{7}$	302,25	•••
506 507	Морфин Морфолин	$C_{17}H_{19}O_3N$ $OCH_2CH_2NHCH_2CH_2$	285,35 87,12	1,317 1,000

	Темпер	Температура, °C grand		Раст	воримость	N ₂
	плавления	кипения	Показатель преломления	в воде	в органических растворителях	п/п
7	•••	75 (2 кПа)	1,5454	• • •	Разл.	483
	6	180 разл.	1,756010	1,42	Р. сп., э.	484
	96,7	40,1	1,4237	2	Р. сп., э.	485
	. •••	•••	•••	X. p.	Х. р. сп.	486
	84	119	1,3959	1,9	∞ сп., э., бз.	487
	-123 -50	6 100	1,4130	Тр. р. Н.	X. р. сп., э. Р. сп., э.	488 489
	—19 •••	244,6	•••	H. X. p.	Р. сп., э. Р. сп.; н. э.	490 491
	•••	•••	•••	P.	Р. сп., гл.	492
	— 138,5	23,7	•••	3700 ¹⁸ см ³	P. cn., s.	493
	140,4	-6,9	1,3811	H.	Р. сп., э.	494
	<-30	Разл.		Х. р.	Р. сп., ∞ э.	495
•	-126,4	100,4	1,4235	H.	Р. сп., э.	496
: . , , .	• • •	134	1,439018	H.		497
	-140,5	72	1,408821	H.	Р. э.	498
· .	—86,4	(98,9 кПа) 79,6	1,3789	. 29,2	∞ сп.;'э.	499
	283 разл. 250—260 разл.	•••	•••	3,4 425	Н. э. Р. сп.	500 501
	58	250,5	1,430860	H.	Р. сп., э.	502
	18	(13,3 кПа) 122	1,4414	∞	∞ сп.	503
	61 —62	(1,87 кПа) 189,5	1,429765	Х. р.	Р. сп., хл., бэ.	504
	290	•••	•••	0,025	Р. сп., укс. к.,	505
	254 разл.	128—130	•••	0,03	тр. р. э. Тр. р. сп., хл. Р. сп., э.	506 507

№ п/п	Название	Формула	Молекуляр- ная масса	Плотность
508 509	Мочевая кислота Мочевина	C ₅ H ₄ O ₃ N ₄ H ₂ NCONH ₂	168,11 60,06	1,893 1,335
5 10	(карбамид) Муравьиная	HCO ₂ H	46,03	1,220
511 512	кислота Мурексид Нафталин	$\begin{array}{c} {\rm C_8H_4O_6N_5NH_4 \cdot H_2O} \\ {\rm C_{10}H_8} \end{array}$	302,21 128,18	1,16822
5 13 5 14 5 15	α-Нафтиламин } β-Нафтиламин } α-Нафтилуксус-	$C_{10}H_7NH_2$ $C_{10}H_7CH_2CO_2H$	143,19 186,21	1,120 1,060 ⁹⁸
5 16	ная кислота Нафтионовая	$H_2NC_{10}H_6SO_3H$	223,25	
517	кислота α-Нафтол	•		1,2244
518	β-Нафтол	C ₁₀ H ₇ OH	144,17	1,2174
5 19	β-Нафтохинолин	$C_{13}H_9N$	179,22	• • • •
5 20	α-Нафтохинон	$C_{10}H_6O_2$	158,16	1,422
521	Недокись	OC=C=CO	68,03	1,114
522 523	углерод а Неогексан Никотин	$\mathrm{CH_3CH_2C(CH_8)_2CH_3} \atop \mathrm{C_{10}H_{14}N_2}$	86,18 162,24	0,649 1,009
524	Никотиновая кислота	C ₅ H ₄ NCO ₂ H	123,11	•••
5 25	Нингидрив	CO COOH) ₂	178,14	
5 26	Нитрилтриуксус-	$N(CH_2CO_2H)_3$	191,14	***
527 528		O ₂ NC ₆ H ₄ NH ₂	138,13	-1,430 1,442 ¹⁵ 1,437 ¹⁴
529 5 30	<i>п</i> -Нитроанилин <i>Л п</i> -Нитробен-	C ₆ H ₄ (NO ₂)CO ₂ H	167,12	1,55032
531 532 533		C ₆ H ₅ NO ₂ CH ₃ CH ₂ CH ₂ CH ₂ NO ₂ CH ₃ CH ₂ CH(NO ₂)CH ₃	123,11 103,12 103,12	1,229° 0,988°
534 535	Нитроглицерин Нитрозобензол	$C_3H_5(ONO_2)_3$ C_8H_5NO	227,09 107,11	1,60115

	Темпер	атура, °С	тель	Раст	воримость	_ №
	плавления	кипения	Г Показатель преломления	в воде	в органических растворителях	п/п
	Разл. 132,7	 Разл.	• • •	Tp. p. 108, ∞ rop.	· ′ Р. гл. ∞ сп., мет.	508 509
	8,4	100,7	1,3714	∞ ,	Р. сп., э.	510
	80,28	218	1,582399	Tp. p. 0,003	Н. сп., э. Р. э., бз., тол.	511 , 512
	50 112 133	301 306,1 	1,6703 ⁵¹ 1,6493 ⁹⁸	0,17 P. rop. P. rop.	хл., гор. сп. Р. сп., э. Р. сп., э. Р. сп., э., бз., ац.	513 514 515
	Разл.	•••	•••	Tp. p.	оз., ац.	516
	96,1	280	1,620699	Н. хол.;	Р. сп., э., хл.	, 517
	122	286	• • •	р. гор. 0,074 ²⁵	бз. Р. сп., э.,	518
	93	351	• • •	P. rop.	хл., бз. Х. р. сп., э.,	519
	125	Возг. 100	•••	Tp. p.	бз. Р. сп., бз.;	520
	_107	7	• • •	Разл.	х. р. э. Р. сп.	521
#-	−99,7 <−10	49,7 246,1 (97,4 кПа)	1,3688 1,5280	Н. Тр. р.	Р. сп., э. Р. сп., э.,	522 523
	235,2	Возг.	•••,	P. rop.	хл. Р. гор., сп.	524
	•••	139 разл.	•••	***	Тр. р. э.	525
	242; 246	•••	•••	3,3100	•••	526
	114 71,5 148 240 —242	285 разл. 260 разл. 260 разл. Возг.	•••	0,1 P. rop. 0,08 0,02 ¹⁵	Р. сп., мет., э. Р. сп., хл., э. Р. мет., сп., э. Р. сп., э., ац.	527 528 529 530
	5,7 	210,9 151—152 138	1,5530	0,19 Tp. p.	Разл. Р. сп., э.	531 532 533
	13,2 68	(99,6 кПа) Взр. 260 57—59 (2,4 кПа)	1,4820	0,18 H.	Р. сп., мет., э. Р. сп., э., хл.	

№ п/п	Название	Формула	Молекуляр- ная масса	Плотность
5 36	п-Нитрозодиме-	ONC ₆ H ₄ N(CH ₃) ₂	150,18	
537	тиланилин Нитрозонафтол	ONC ₁₀ H ₆ OH	173,18	•••
538	Нитрометан	CH ₃ NO ₂	61,04	1,14415
539	Нитрон	C_6H_5N $N(C_6H_5)$ $N(C_6H_5)$	312,38	•••
540	α-Нитронафталин	$C_{10}H_7NO_2$	173,17	1,3314
541	1-Нитропропан	CH ₃ CH ₂ CH ₂ NO ₂	89,09	1,008 ^{24,3}
542	2-Нитропропан	CH ₃ CH(NO ₂)CH ₃	89,09	1,0240
543	о-Нитротолуол		137,14	1,163
544	<i>п</i> -Нитротолуол	$C_6H_4(CH_3)NO_2$	•	1,22615
545	м-Нитрофенол)			1,485
547	<i>о</i> -Нитрофенол <i>п</i> -Нитрофенол <i>о</i> -Нитрохлорбен-	O ₂ NC ₆ H ₄ OH	139,11	1,295 ⁴⁵ 1,479 1,368
549	зол <i>n</i> -Нитрохлорбен-	$ClC_6H_4NO_2$	157,56	1,520
5 50	зол Нитроциклогек-	$C_6H_{11}NO_2$	129,16	1,068
551	сан Нитроэтан •	CH ₃ CH ₂ NO ₂	75,07	1,047 ^{24,3}
	Нитроэтилен	CH ₀ =CHNO ₀	23,06	1,073
553	Новокаин (прокаин)	$H_2NC_6H_4COO(CH_2)_2N \cdot (C_2H_5)_2 \cdot HCl$	272,78	• • • •
554	Нонан	$CH_3(CH_2)_7CH_3$	128,26	0,718
	β-Нонилен	C ₆ H ₁₃ CH=CHCH ₃ CH ₃ (CH ₂) ₇ CHO	126,24	1,75415
556	Нониловый аль- дегид (пеларго- новый)	CH ₃ (CH ₂) ₇ CHO	142,18	0,8269
557	Нониловый спирт	CH ₃ (CH ₂) ₇ CH ₂ OH	144,26	0,828
558	Оксалилхлорид	CICCCÍ	126,93	1,4785
55 9	Оксамид	H ₂ NCOCONH ₂	88,07	1,667
560	<i>п</i> -Оксиацетофе- нон	CH3COC6H4OH	136,14	1,109109

Темпе	Темп ерату ра, °С		Раст	воримость	
д лавления	кипения	Показат	в воде	в органических растворителях	Nº 11/11
92, 5—93,5	•••	• • •	Н.	Р. сп., э.	536
152	•••	• • •	Tp. p.	Х. р. сп.; р.	537
-28,5	101,5 (0,1020 МПа)	1,3813 ^{21,6}	9,5	Р. сп., э.	5 38
189 разл.	• • •	•••	H.	Р. сп.; тр. р. э.	539
61,5	304	•••	H.	Р. э., хл., сп.	540
-108	131,6	1,400324	1,4		541
-93 -4 (β)	120,3 222,3	1,5474	1,7 0,07 ⁸⁰	Р. сп., э. Р. сп., э.,	542 543
51,9	237,7	•••	•••	Р. э., ац.,	544
9 7	194	***	1,3525	Р. сп., э., бз.	545
45		***	0.21	Р ст э ба	546
114	279 разл.	•••			547
3 3	245	•••	H.	Р. э., сп., бз.	548
83	212	•••	Н.	Р. э., гор., сп.	549
—34	205,5	1,4612	H.	Разл.	550
— 90	114,8	1,390124,3	4.5	Р. сп., э., хл.	551
150	98,5	•••		Разл.	552
156	• • •	•••	100	Р. сп.	553
-53,7	150,6	1,4055	H.	Р. сп., э.	554
•••	148		H.	• • •	555
• • •	190-192	1,4274	H.	Р. сп., э., хл.	556
-5 -10	213,5 64 (0,1015 МПа)	1,4358 ¹⁵ 1,4316	Н.	Р. сп., э. Разл.	557 558
419 разл.	•••	•••	Тр. р.	Тр. р. сп., э.	5 59
-108	147—148	•••	Ρ.	Х. р. сп., э.	560
	92,5—93,5 152 —28,5 189 разл. 61,5 —108 —93 —4 (β) 51,9 97 45 114 33 83 —34 —90 156 —53,7 —10 419 разл.	влавления кипения 92,5—93,5 152 —28,5 101,5 (0,1020 МПа) 189 разл. 61,5 304 —108 131,6 (120,3) —4 (β) 222,3 (120,3) —4 (β) 222,3 (120,3) —4 (β) 222,3 (120,3) —34 279 разл. 33 245 83 212 —34 205,5 —90 114,8 (120,3) 98,5 (120,3) 156 —53,7 150,6 (120,4) 148 (190-192) —5 64 (0,1015 MПа) 419 разл.	влавления кипения дородой 92,5—93,5 152 —28,5 101,5 (0,1020 МПа) 1,3813 ^{21,6} 189 разл. 61,5 304 —108 131,6 1,4003 ²⁴ —93 120,3 —4 (β) 222,3 1,5474 51,9 237,7 97 194 (9,33 кПа) 216 114 279 разл. 83 212 —34 205,5 1,4612 —90 114,8 1,3901 ^{24,3} 156 —53,7 150,6 1,4055 —10 64 1,4274 —5 64 (0,1015 МПа) 1,4316 419 разл.	92,5—93,5 H. 152 Tp. p. -28,5	92,5—93,5 H. P. cπ., 9. 152 Tp. p. X. p. cπ.; p. 6328,5 (0,1020 MΠa) 1,3813 ^{21,6} 9,5 P. cπ., 9. 61,5 304 H. P. cπ.; τp. p. 9. 61,5 304 H. P. cπ., 9108 131,6 1,4003 ²⁴ 1,4 P. cπ., 993 120,3 1,7 P. cπ., 94 (β) 222,3 1,5474 0,07 ⁸⁰ P. cπ., 9. 51,9 237,7 P. 9. au, au, 63. xπ. 97 194 1,35 ²⁵ P. cπ., 9., 63. (9,33 κΠa) (9,33 κΠa) (9,33 κΠa) (14 279 pas)π 1,6 ²⁵ P. cπ., 9., xπ. 33 245 H. P. 9., cπ., 63. 83 212 H. P. 9., cπ., 63. 83 212 H. P. 9., cπ., 6334 205,5 1,4612 H. Pas)π90 114,8 1,3901 ^{24,3} 4,5 P. cπ., 9., xπ90 114,8 1,3901 ^{24,3} 4,5 P. cπ., 9., xπ. 156 98,5 Pas)π. 156 148 H. P. cπ., 953,7 150,6 1,4055 H. P. cπ., 953,7 150,6 1,4055 H. P. cπ., 953,7 150,6 1,4055 H. P. cπ., 953,7 150,6 1,4055 H. P. cπ., 953,7 150,6 1,4055 H. P. cπ., 954 213,5 1,4358 ¹⁶ H. P. cπ., 955 213,5 1,4358 ¹⁶ H. P. cπ., 956 213,5 1,4358 ¹⁶ H. P. cπ., 957 213,5 1,4358 ¹⁶ H. P. cπ., 958 213,5 1,4358 ¹⁶ H. P. cπ., 959 213,5 1,4358 ¹⁶ H. P. cπ., 950 213,5 1,4358 ¹⁶ H. P. cπ., 951 213,5 1,4358 ¹⁶ H. P. cπ., 951 213,5 1,4358 ¹⁶ H. P. cπ., 951 213,5 1,4358 ¹⁶ H. P. cπ., 951 213,5 1,4358 ¹⁶ H. P. cπ., 951 213,5 1,4358 ¹⁶ H. P. cπ., 951 213,5 1,4358 ¹⁶ H. P. cπ., 951 213,5 1,4358 ¹⁶ H. P. cπ., 951 213,5 1,4358 ¹⁶ H. P. cπ., 951 213,5 1,4358 ¹⁶ H. P. cπ., 951 213,5 1,4358 ¹⁶ H. P. cπ., 951 213,5 1,4358 ¹⁶ H. P. cπ., 951 213,5 1,4358 ¹⁶ H. P. cπ., 951 213,5 1,4358 ¹⁶ H. P. cπ., 951 213,5 1,4358 ¹⁶ H. P. cπ., 9.

№ n/п	Название	Формула	Молекуляр- ная масса	Плотвость
561 562 563	о-Оксидифенил } n-Оксидифенил }	C ₆ H ₅ C ₆ H ₄ OH C ₆ H ₅ NHC ₆ H ₄ OH	, 170,21 185,24	***
	<i>n</i> -Оксидифенила-			
564	Оксииндол	C ₆ H ₄ NHCOCH ₂	133,16	•••
5 65	2-Окси-3-нафтой- ная кислота	HOC ₁₀ H ₆ CO ₂ H	188,18	•••
5 66	8-Оксихинальдин	$C_{10}H_9ON$	159,19	• • •
5 67	8-Оксихинолин (8-хинолинол, оксин)		145,16	•••
5 68 5 69	Октан Октилен-1	CH ₃ (CH ₂) ₆ CH ₃ CH ₃ (CH ₂) ₅ CH=CH ₂	114,24 112,22	0,703 0,715
570 5 71	(каприлен) Октиловый спирт Олеиловый спирт	CH ₃ (CH ₂) ₄ CH ₂ OH CH(CH ₂) ₇ CH ₂ OH	130,24 268,49	0,827 0,8489
57 2	Олеиновая кис-	$CH(CH_2)_7CH_3$ $C_{17}H_{33}CO_2H$	282,47	0,90012
573´ 574	Оротовая кис-	$H_2N(CH_2)_3CH(NH_2)CO_2H$ $C_5H_4O_4N_2$	132,1 6 156,1	•••
5 75	лота Орсин	$CH_3C_6H_3(OH)_2$	124,13	1,290
576	Пальмитиновая	CH ₃ (CH ₂) ₁₄ CO ₂ H	256,43	0,85362
577	кислота Папаверин	$C_{20}H_{21}O_4N$	339,39	1,300
578	Папаверин соля-	$C_{20}H_{21}O_4N \cdot HCI$	375,85	•••
579 580	нокислый Паральдегид Пеларгоновая	(CH ₃ CHO) ₃ CH ₃ (CH ₂) ₇ CO ₂ H	132,16 158,24	0,994 0,906
581 582 583	кислота Пентан Пентанол-I Пентахлорфенол	$CH_3(CH_2)_3CH_3$ $CH_3(CH_2)_3CH_2OH$ Cl_5C_6OH	72,15 88,15 266,34	0,626 0,814 1,978 ²²
584	Пентаэритрит	C(CH ₂ OH) ₄	136,15	•••
585	Пентен-1 (α-ами-	CH ₃ (CH ₂) ₂ CH=CH ₂	70,14	0,641
586	лен) Пентоксил	$C_6H_8O_3N_2$	156,14	•••

~,	Темпер	ратура, °С	гель	Раст	воримость	№
	плавления	кипения	Показатель преломления	в воде	в органических растворителях	п/п
	56—57 164—165 70	275 305—308 330	•••	H. H. Tp. p.	Р. сп., э. Р. сп., э., хл. Р. сп., э., хл.	561 562 563
	127	227	••••	X. p. rop.	Р. сп., э.	564
	222—223	(3,07 кПа)		Tp. p. rop.	Р. сп., э., бз.,	565
	74	Возг. 267	•••	Tp. p.	хл. Р. сп., э., бз.	566
	7 5—76	267 (0,1003 МПа)	•••	Тр. р.	Р. сп., ац., хл., бз.	567
	• .					ě
	-56,8 -102	124,7 122	1,3975 1,4088	0,0015 ¹⁶ H.	Р. э. Р. сп., э.	568 569
	—16,7 5,5—7,5	194,5 205—210	1,4304 1,4607	Р. Н.	Р. сп., э. Р. сп., э.	570 571
	16	223 (13,3 кПа)	1,4582	н.	Р. сп., э., хл., бз.	572
	140 323—345	•••	•••	P. P.	Р. сп. Тр. р.	573 574
	разл. 107—108	287—290	•••	X. p.	Х. р. сп., э.;	575
19 20 04	64	271,5 (13,3 кПа)	1,430470	н. `	р. бз. Р. сп., э.	576
	147		•••	H.	Тр. р. сп., бз.,	577
	220 разл.	•••	•••	2,5	хл., ац. Р. хл.,; тр. р.	578
	12,6 12,5	124,4 253—254	1,4049 1,4307	13,6 ¹³ H.	сп. Р. сп., э., хл. Р. сп., э., хл.	579 580
	—129,7 —79 189	36,1 137,8 309	1,3577 1,4101	0,036 ¹⁶ 2,7 ³² 0,003 ⁵⁰	Р. э. Р. сп., э. Р. сп., э.	581 582 583
	262	(0,1005 MΠa) 276		5,5618	•••	584
	<-138	(4 кПа) 30,2	1,3711	H.	Р. сп., э.	585
*	303—304 разл.	•••	•••	Тр. р.	Н. сп., э.	586
						

№ п/п	Название	Формула	Молекуляр- ная маєса	Плогность
. 587	Перфторпропи-	CF ₃ —CF=CF ₂	150,03	. • • •
588	лен Перхлорбутадиен	CCl ₂ =CClCCl=CCl ₂	260,79	1,6794
5 89	Пнкрамид	$(NO_2)_3C_6H_2NH_2$	228,13	1,762
590		$H_2N(NO_2)_2C_6H_2OH$	199,12	•••
591	кислота Пикрил хло-	$(NO_2)_3C_6H_2Cl$	247,56	1,797
592	ристый Пикриновая кис- лота (2, 4, 6-три-	$C_{\dot{6}}H_2OH(NO_2)_3$	229,11	1,763
593	нитрофенол) Пикролоновая	$C_{10}H_8O_5N_4$	264,20	•••
594	кислота Пилокарпин	$C_{11}H_{16}O_2N_2$	208,26	•••
595	Пимелиновая	$CO_2H(CH_2)_5CO_2H$	160,17	1,29125
596 597	кислота Пинаколин Пинаколинсеми-	$CH_3COC(CH_3)_3$ $C_5H_{12}C=NNHCONH_3$	100,16 157,22	0,80014
598 599 600 601	карбазон Пинакон Пинан α -Пинен (dl) Пиодианин	$[(CH_3)_2COH]_2$ $C_{10}H_{18}$ $C_{10}H_{16}$ $C_{12}H_{10}NO_2$	118,18 138,24 136,24 210,23	0,967 ¹⁵ 0,839 0,858
602	Пиперазин	HNCH ₂ CH ₂ NHCH ₂ CH ₂	86,14	•••
603	Пиперидин	CH ₂ (CH ₂) ₄ NH	85,15	0,861
604	Пиперилен (1, 3- пентадиен)	CH ₂ =CHCH=CHCH ₃	68,12	0,6910 (цис) 0,6760 (транс)
605	Пиразол	NHN=CHCH=CH	68,07	···
6 06	Пиразолин	NHN=CHCH ₂ CH ₂	70,09	1,017
607	Пиразолон	NHN=CHCH ₂ CO	84,07	•••
608	Пирамидон	$(CH_3)_2NC$ CCH_3 CCH_3 CCH_3 CCH_3	231,30	•••

	Темпер	атура, °С	тель	Раст	воримость	№
	плавления	кипения	Показатель	в воде	в органических растворителях	n/n
	—156,2	-29,4		Н.	Тр. р. э.	587
	-18,6	210—212	1,5557	Н.	Р. сп.,	588
	188	Взр.		0,106	диоксане 0,127 сп.; 0,121 э.; х. р. ац., укс. к.	589
	169	***	•••	0,1422	Р. бз., сп.	590
	83	Разл.	***	0,01815	4,48 ¹⁷ cm.;	591
į	121,8	Взр. >300		1,4	7,23 ¹⁷ э. Р. сп., ац., бз.	592
	116,5	Разл. 125	•••	0,1217	Tp. p. cn.	593
٠.	34	250 (0,67 кПа)	•••	X. p.	Х. р. сп., хл.;	594
	104—105	(0,07 кПа) 212 (1,33 кПа)	***	2,514	Тр. р. э., бз. Р. сп., гор. бз.	595
	—52,5 157	106,2	• • •	2,5 ¹⁵ Tp. p.	Р. сп., э., ац. Р. сп.	59 6 597
	$ \begin{array}{r} 41 - 43^{38} \\ 276 - 278 \\ < -50 \\ 133 \end{array} $	172,8 156,2	 1,4658 	тр. р. Н. Р. гор.	Р. сп., э. Р. сп. Р. сп., э., хл. Р. ац., этилац;	598 599 600 601
	105—106	146	•••	15	н. э., бз. Р. сп.	602
	- -9	106	1,4530	∞	Р. сп., хл.	603
	140,82	44,068	1,4363	H.	Х. р. ац.,	
	-87,47	42,032	1,4301	H.	Р. хл., э.,	604
	70	188		Х. р.		605
٠,		144	1,478	•••	р. бз. Р. сп.; тр. р.	606
	. 165	Возг.	•••	P.	_ ⁽ 9.	50 7
	108	•••,	•••	515	Р. сп., бз.	608
1/		•				

№ п/п	Название	Формула	Молекуляр- ная масса	Плотность	
609	Пирен	C ₁₆ H ₁₀	202,26	1,277°	
610 611	Пиридин Пиримидин	C ₃ H ₅ N CH=CHCH=NCH=N	79,10 80,09	0,982	
612	Пировиноград-	CH ₃ COCO ₂ H	88,06	1,267	
613	ная кислота Пирогаллол (1, 2, 3-триоксибен-	$C_6H_3(OH)_3$	126,11	1,4534	•
614	зол) Пирокатехин	$C_6H_4(OH)_2$	110,11	1,3711	į
615	(о-диоксибензол) α-Пирон	OCH=CHCH=CHCO	96,09	1,2001	
616	у-Пирон	OCH=CHCOCH=CH	96,09	1,1904	B
617	Пирослизевая	C ₄ H ₃ OCO ₂ H	112,09		
618	кислота Пирофос	$(C_2H_5O)_2 = P - O - P = (C_2H_5O)_2$	306,26	1,189	
619 620	Пиррол Пирролидин	O S C ₄ H ₅ N NHCH ₂ CH ₂ CH ₂ CH ₂	67,09 71,12	0,967 0,8576	;
621	Платифиллин	$C_{18}H_{27}O_5N$	337,42	• • •	
622	Пробковая кис-	$CO_2H(CO_2)_6CO_2H$	174,20	•••	
623	лота Пропадиен	$CH_2 = C = CH_2$	40,07	•••	
624	(аллен) Пропан	CH ₃ CH ₂ CH ₃	44,10	2,0140	
625	Пропаргиловый спирт (2-пропин	CH≝CCH₂OH	56,06	кг/м ³ 0,972	
626	1-ол) Пропил	CH ₃ CH ₂ CH ₂ Br	123,00	1,353	
627 628	бромистый Пропил иодистый Пропил хлори-	CH ₃ CH ₂ CH ₂ J CH ₃ CH ₂ CH ₂ Cl	169,99 78,54	1,743 0,891	
629 630	стый Пропилбензол Пропилен	$C_6H_5CH_2CH_2CH_3$ $CH_3CH=CH_2$	120,20 42,08	0,862 1,915 кг/м ³	3
631	Пропилена окись	OCH ₂ CHCH ₃	58,08	0,830	
632	α-Пропиленгли- коль	CH ₃ CH(OH)CH ₂ OH	76,10	1,040	

				, Пр	од о лжение табли	цы
	Температура, °С		гель	Раст	100	
	плавления	кипения	Показатель преломления	в воде	в органических растворителях	№ п/п
	149—150	>360	•••	Н.	P. э., CS ₂ , бз., гор. сп.	609
	-42 21	115,6 123,5	1,5092		Р. сп., э., бз. Р. сп., э.	610 611
	13,6	165 разл.	1,430315	∞	Р. э., сп.	612
	132,5—133,5	309	•••	62,525	Р. сп., э.	613
	-105	240	•••	45,1	Р. сп., э., бз.,	614
	5	206	1,527225	∞	ΧЛ.	615
	32,5	(95,4 кПа) 217,7	•••	Tp. p.	Р. сп., бз.;	616
	133	Возг. 230	•••	3,5715	х. р. э., хл. Р. сп.; х. р. э.	617
	•••	130—132 (0,27 кПа)	1,448	Tp. p.	Х. р.	618
	•••	130—131 87,5—88,5	1,5035 1,4428	Н.	Р. сп., э., бз. ∞ сп., э.	619 620
	129	•••	•••	H.	Х. р. сп., хл.;	621
	140	279	•••	0,1416	р. бз., ац. Р. сп.; тр. р.	622
	-146	(13,3 кПа) —32	•••	•••	э, 	623
	—187,7	-42,1	•••	6,5 см ³	P. 9.	62 4
	-17	114—115	1,4306	P.	Р. сп., э.	625
4	-109,9	70,9	1,4341	0,25	Р. сп., э.	626
	-101,4 $-122,8$	102,4 46,6	1,5055 1,3884	0,11 0,27	P. сп., э. P. сп., э.	627 628
	—99,2 —187,7	159,5 47,8	1,4925	0,006 45 cm ³	 Р. сп., укс. к.	629 630
	•••	35	1,3667 .	P.	Р. сп., э.	631
	•••	188	1,4328	Х. р.	Р. сп., э.	632

№ п/п	Название	Формула	Молекуляр- ная масса	Плотность
633	Пропиловый	CH ₃ CH ₂ CH ₂ OH	60,10	0,804
634	спирт Пропионовая	CH ₃ CH ₂ CO ₂ H	74,08	0,992
6 35	кислота Пропионовый	CH ₃ CH ₂ CHO	58,08	0,807
6 36	альдегид Псевдобутилен (2-бутен)	CH ₃ CH=CHCH ₃	56,11	Ж . 0,635
637 638 6 39	Псевдокумо л Пулегон Пурин	(CH ₃) ₃ C ₆ H ₅ C ₁₀ H ₁₆ O C ₅ H ₄ N ₄	120,19 152,44 120,12	0,8758 0,9323
64 0	Пурпурин	C_6H_4 CO CH(CH ₃) ₂	256,22	•••
64 1	Рафиноза	$C_{18}H_{82}O_{16} \cdot 5H_2O$	594,53	1,465°
642 643	Резерлин Резорцин	$C_{33}H_{40}O_{9}N_{2}$ $C_{8}H_{4}(OH)_{2}$	608,70 110,11	 1,285 ¹⁸
644	(м-диоксибензол) Ретен	C ₁₈ H ₁₈	234,34	1,13016
645 646	<i>D</i> -Рибоза Рицинолевая	$C_{5}H_{10}O_{5}$ $C_{18}H_{34}O_{3}$	150,14 298,47	0,9501 6
647	кислота Родан	(SCN) ₂	116,16	•••
648 649	Ронголит Ротенон	$ ext{CH}_2 ext{ONaHSO}_2 \cdot 2 ext{H}_3 ext{O} \\ ext{C}_{23} ext{H}_{22} ext{O}_6$	153,21 394,42	•••
65 0	Сабинен	C ₁₀ H ₁₆	136,24	0,842 (d) 0,8468 (l)
651	Салицилаль-	$C_7H_7O_2N$	137,13	
652	доксим Салициловая	HOC ₆ H ₄ CO ₂ H	138,12	1,443
653	кислота Салициловый	HOC ₆ H ₄ CHO	122,12	1,167
654	альдегид Салол	HOC ₆ H ₄ COOC ₆ H ₅	214,22	1,250
655	Сангуинарин	$C_{20}H_{15}O_{5}N$	349,35	•••

Температура, °С		тель	Раст	воримость	N
плавления	кипения	Токазатель преломления	в воде	в органических растворителях	n/n
—127	97,2	1,3850	∞	Р. сп., э.	633
-22	141,4	1,3874	∞	Р. сп., э., хл.	634
 81	47,5—49	1,3636	20	Р. сп., э.	635
—106	0,9 (транс);	•••	H.	Р. сп., э.	636
(транс); —139	-3.5 (yuc)				
(цис) —43,8	169,35 224	1,5044 1,4880	Н. Н.	Р сп., э. ∞ сп., э.	637 638
217	Разл.	***	Х. р.	Р. сп.; тр. р.	639
256	Возг.; разл.	***	P.	Р. сп., э.; х. р. гор.	640
118—119 безв.	130 разл.	***	X. p. rop.	укс. к., бз. Р. мет.; тр. р.	641
284—285 110	276,5	• • •	H. 22930	сп. Разл. Р. сп., э.,	642 643
100,5	390	•••	H.	гл., бз. Р. сп., бз.,	644
86—87 4—5	 228 (1,33 кПа)	1,414515	X. p. H.	гор. сп., укс. к. Тр. р. сп. Р. сп., э., хл.	645 646
— 2		***	Х. р.; разл.	•••	647
63—64 163	 210—220 (0,07 кПа)		50 H.	► Н. сп., э. Разл.	648 649
• • •	165	1,4678	н.	∞ сп., э.	650
		-			
 57	***	***	Тр. р.	X. р. сп., э., бз.	651
159	211 (2,67 кПа)	***	0,18.	Р. сп., э., ац.,	652
 7	196,5	1,5735	Tp. p.	хл. Р. сп., э., бз.	6 53
43	173 (1,6 кПа)	•••	0,01524	Р. мет., сп.,	654 :
266	(1,0 Mia)	•••	H.	э., бз., хл. Р. сп., э.	655

№ п/п	Название	Формула	Молекуляр- ная масса	Плотность
656 657	Сантонин Сафранин	C ₁₅ H ₁₈ O ₃ C ₂₀ H ₁₉ N ₄ Cl	246,31 350,85	1,187
65 8	Сафрол	CH_2 $C_6H_3CH_2CH=CH_2$	162,19	1,100
659	Сахарин	C ₈ H ₄ SO ₂ NHCO	183,19	•••
660	Сахарная кислота	$(CHOH)_4(CO_2H)_2$	210,14	•••
661 662	(dl) Сахароза Себациновая	${^{\rm C_{12}H_{22}O_{11}}_{{\rm CO_2H(CH_2)_8CO_2H}}}$	342,30 202,25	1,588 ¹⁵ 1,207 ²⁵
663	кислота 2-Селененоилаце-	C ₈ H ₈ O ₂ Se	215,11	•••
664	тон 2-Селененоилтри-	$C_8H_5O_2F_3Se$	269,08	•••
665	фторацетон Селенофен	C ₄ H ₄ Se	131,03	1,5358
666 667 668	Семикарбазид <i>l</i> -Серин Сильван	H ₂ NCONHNH ₃ HOCH ₂ CH(NH ₂)CO ₂ H C ₄ H ₃ OCH ₃	75,07 105,08 82,11	 {α0,9159 {β0,9406
669 670	Синэстрол Сквален	$C_{18}H_{22}O_{2}$ $C_{30}H_{50}$	270,37 410,73	 0,85 62
671	Сорбиновая	CH ₃ CH=CHCH=CHCO ₂ H	112,13	•••
672	кислота Сорбоза	$C_6H_{12}O_6$	180,16	1,612
673 674	<i>d</i> -Сорбит Стеариновая	$\mathrm{CH_2OH(CHOH)_4CH_2OH}$ $\mathrm{CH_3(CH_2)_{18}CO_2H}$	182,17 284,49	0,848 ⁷⁰
675	кислота Стильбен	$C_6H_5CH=CHC_6H_5$	180,25	1,1640 0,970 ¹²⁵
676	(трансизомер) Стирол	$C_6H_5CH=CH_2$	104,15	0,906
677	Стефниновая	$(NO_2)_3C_6H(OH)_2$	245,11	1,829
678	кислота Стрептоцид белый	$H_2NC_6H_4SO_2NH_2$	172,21	•••
679	Стрептоцид красный (хлор- гидрат)	$\begin{array}{l} \text{H}_2\text{NO}_2\text{SC}_6\text{H}_4\text{N}\!=\!\text{NC}_6\text{H}_8(\text{NH}_2)_2\times\\ \times \text{HCl} \end{array}$	327,79	•••

Температура, °С		гель пения	Раст	воримость	₩
плавления	кипения	Показатель преломления	в воде	в органических растворителях	п/п
170	Возг.	• • •	0,4 ¹⁰⁰ P.	37 ⁸⁰ сп., хл. Р. сп.; н. э.	656 657
11	234.5	•••	Н.	X. р. сп., э.; ∞ хл.	658
225 разл.	Возг. 300	•••	0,4	Тр. р. сп., бз.	659
206 разл.	в вакууме 255	•••	0,3314	Тр. р. сп.; э.	660
186 разл. 134,5	Разл. 294,5	•••	204 0,1 ¹⁷	Р. мет. Р. сп., э.	663 663
33—33,5	(13,3 кПа) 146—146,5	•••	Tp. p.	Х. р.	663
3233	(0,8 кПа) 118—119	• • •	Р.	X. p.	664
38	(1,46 кПа) 110,5—111	•••	Н.	∞ бз., тол., хл., э., СЅ ₂ ; н. сп. ац., гл.,	668
96	•••	•••	<u>P</u> .	мет. Р. сп.	660
22 8 разл.	Разл. 62,5—63,0 78,5—79	• • •	Р. Н. Н.	P. cn., 9. } P. cn., 9. }	66 66
184—186	(5,59 кПа) 242 (0,53 кПа)	1,4961	H. H.	X. р. сп., хл. X. р. э., ац., CCl ₄	669 670
134,5	228 разл.	•••	X. p. rop.	Х. р. сп., э.	67
165	•••	•••	5517	X. р. гор. сп.; н. э.	67
110—112 70	 287 (13,3 кПа)	1,433570	P. 0,034 ²⁵	Р. гор. сп. Р. гор. сп. хл.,	67- 67-
124	305	1,626417	Н.	Р. э., бз., сп.	67
-30,63	(96 кПа) 145,2	1,5462	Tp. p.	P. сп., мет., э., ац.	67
180	Возг.	•••	0,614	Р. сп.; тр. р. э.	67
160—167	•••	•••	0,4	Р. мет., сп.,	67
247 —251	•••	•••	P. rop.	ац., э. Р. мет.	679

№ п/п	Название	Формула	Молекуляр. ная масса	Плотность
680	Стрихнин	$C_{21}H_{22}O_2N_2$	334,42	1,359
681	Сукцинимид	(CH ₂ CO) ₂ NH	99,09	1,412
682	Сульфадимизин	$C_{12}H_{14}O_{2}N_{4}S$	278,34	•••
683	Сульфиниловая кислота	$H_2NC_6H_4SO_3H \cdot 2H_2O$	209,24	•••
584	Сульфарсазен	.C ₁₈ H ₁₄ O ₈ N ₆ SAsNa	572,32	•••
585	Сульфатиазол (норсульфазол)	H ₂ NC ₆ H ₄ SO ₂ NH – C CH	255,32	•••
86	Сульфидин	$H_2NC_6H_4SO_2NH$	249,29	•••
87	Сульфосалицило- вая кислота	HO ₃ SC ₆ H ₃ (OH)CO ₂ H	218,18	•••
88	Табун	$(CH_3)_2N$ O	162,13	1,082
89	Таурин	C ₂ H ₅ O CN H ₂ NCH ₂ CH ₂ SO ₃ H	125,15	• • • •
90	α-Теноилтрифтор- ацетон	C-CH ₂ -C-CF ₃	222,14	•••
91 92	Теобромин Теофиллин	$C_7H_8O_2N_4 \\ C_7H_8O_2N_4$	180,17 180,17	•••
93	Терефталевая кислота (<i>n</i> -фта-	HO ₂ CC ₆ H ₄ CO ₂ H	166,13	• • •
94	левая) α-Терпинеол (dl)	C ₁₀ H ₁₈ O		0,933
95	β-Терпинеод ∫		154,25	0,818
96	Терпинолен	$C_{10}H_{16}$ $C_{6}H_{4}CH_{2}(CH_{2})_{2}CH_{2}$	136,24	0,8633
	Тетрагидронаф- талин (тетралин)	1	132,21	0,97318
98	Тетрагидрофуран	OCH ₂ CH ₂ CH ₂ CH ₂	72,11	0,88821
99	Тетранитрометан	$C(NO_2)_4$	196,03	1,638
00	Тетранитропента- эритрит	(CH ₂ ONO ₂) ₄ C	316,15	1,773
01 '	Тетрафторэтилен —	CF ₂ =CF ₂	100,02	

	Температура, °С		гель	Расти	воримость	№
	плавления	кипения	Показатель	в воде	в органических растворителях	π/π
	286288	270 (0.67, v.Ha)	•••	0,01625	Р. хл., гор. сп.	680
	124—126	(0,67 кПа) 287,5	***	23; 152 ⁷⁰	16 ⁵⁰ сп.; тр. р.	681
	196—200	• • •	•••	Tp. p.	Р. гор. сп., _ 50 % ац.	682
	—H ₂ O 100; безв. 280	•••	• •••	1,08; 6,67	Тр. р. сп., э.	683
	разл.	•••	•••	Р.	Тр. р. сп.	684
	202—202,5	•••	•••	0,0625	Тр. р. сп.	685
	190—192	•••	•••	0,03	Тр. р. сп.	686
	120 разл.	•••	•••	P.	Р. сп., э.	687
•	50	~220	1,424	Р.	Х. р.	688
•	329 разл.	Разл.		6,512	Тр. р. сп.; н. э.	689
	42,5—43,2	. •••	•••	• • •	Разл.	690
	351 264	Возг.	•••	Tp. p. 1,337	Тр. р. сп. 1,25 сп.; тр. р. э.	691 692
	• • •	Возг. 300	•••	Tp. p.	P. rop. cn.	693
	35	219 (0.1003 MIZe)	1,4819	0,2	Р. сп., э., хл.	694
	33 —31	(0,1003 ΜΠa) 210,3 185 206—207	1,4747 1,480	0,2 H. H.	Р. сп., э. ∞ сп., э. Р. сп., э.	695 696 697
	65	65—66	1,407621	Р.	Р. сп., э.	698
: !	13 140—141	125,7 разл.	•••	H. Tp. p.	P. cn., 9. Tp. p. cn., 9.;	699 700
Y Y	-142,5	 78,4	· •••	H.	р. ац.	701

_				
) n/	√2 Уп Название	Формула	Молекуляр- ная масса	Плотность
702	2 Тетрахлорэтан симметричный	CHCl ₂ CHCl ₂	167,84	1,600
70 3	несимметричны З Тетраэтилпиро- фосфат	¹ CH ₂ CICCI ₃ (C ₂ H ₅ O) ₄ P ₂ O ₃	167,84 290,19	1,588 1,184
7 04 7 05	Тетраэтилсвинец Тетраэтоксиси-	Pb(C2H5)4(C2H5O)4Si	323,44 208,25	1,653 0,933
7 06	лан Тетрил	$(NO_2)_3C_6H_2N(CH_3)NO_2$	287,15	1,570
7 07	тегроловая	CH ₃ C≡CCO ₂ H	84,07	1,139
708	теттурам	$C_{10}H_{20}N_2S_4$	296,54	
7 09	(анабус) Тиазол	HC=CHN=CHS	85,12	1,998
710	Тимол	CH ₃ (C ₃ H ₇)C ₆ H ₃ OH "	150,22	0,969
711 712 713	Тимолфталеин Тиоацетамид Тиоглеколевая	C ₂₈ H ₃₀ O ₄ CH ₃ CSNH ₂ HSCH ₂ CO ₂ H	430,52 75,13 92,11	 1,32 53
714 715	кислота Тиоглицерин Тиокарбанилид (дифенилтиомочевина)	$HSCH_2C_2H_3(OH)_2$ $C_6H_5NHCSNHC_6H_5$	108,15 228,32	1,295 ^{14,4} 1,321 ⁴
716 717	Тиомочевинс Тионин	$ \begin{array}{l} \text{NH}_2\text{CSNH}_2\\ \text{C}_{12}\text{H}_9\text{N}_3\text{S} \cdot \text{HCl} \cdot 2\text{H}_2\text{O} \end{array} $	76,12 299,77	1,405
718	Тиоуксусная	CH₃COSH	76,11	1,07410
719	кислота Тиофен	SCH=CHCH=CH	84,14	1,064
720	Тиофенол	C_8H_5SH	110,18	1,0780
721	Тиоциановая	HSC <u></u> N,	59,09	• • •
722	кислота <i>l</i> -Тирозин	HOC ₆ H ₄ CH ₂ CH(NH ₂)CO ₂ H	181,19	1,45629
723	Тиурам [бис-(ди- метилтиокарба-	$(CH_3)_2N(=S)CS_2C(=S)N(CH_3)_2$	240,43	1,29
724 725	мил)-дисульфид] о-Толидин м-Толуидин	$H_2NC_6H_3(CH_3)C_6H_3(CH_3) \cdot NH_2$	212,30	0.000
726	<i>о</i> -Толуидин <i>п</i> -Толуидин	CH ₃ C ₆ H ₄ NH ₂	107,16	0,989 0,999 1,046
	•			

400 ON	Темпер	атура, °С	тель ления	Pac	творимость	№
	плавления	кипения	Показатель преломления	в воде	в органических растворителях	n/n
	-43,8	146,3	1,49678	H.	∞ сп., э.	702
	-70,21 Разл. >170	130,5 144	1,48211 1,4222	H. Tp. p.	∞ сп., э.	7 03
	•••	(0,4 кПа) 200 разл. 165,5	1,5198	Н. Разл.	Р. э. Р. сп., э.	704 705
	129	Взр. 187	• • •	H.	Р. ац., бз.,	706
	77—78	203	1,431515	X. p.	гор. сп. Х. р. сп., э.;	707
	69—71	•••	•••	H.	р. хл., CS ₂ Тр. р. сп., CS ₂	708
	••:	116,8	• • •	Tp. p.	Р. сп., э.	709
	51,5	233,5	1,518924	0,085	Р. сп., э., хл.,	710
	252—253 108,5 —16,5	 104—106 (1,46 кПа)	• • • •	H. X. p. P.	бз. Р. сп., ац. Р. сп., э. Р. сп., э.	711 712 713
	154—155	Разл. Разл. Разл.	•••	Тр. р. Н.	∞ сп.; н. э. Р. сп., э.	714 715
	182	Разл. •••	•••	9,18 ¹³ P. rop.	Р. сп. Тр. р. сп.; р. э., хл.	716 717
, ,	<-17	93	•••	Р.	∞ сп., э.	718
	-38,2	84	1,5246	н.	Р. сп., бз., э.	719
	. •••	169,5	1,587	H.	Х. р. сп.; ∞ э.	7 20
6	5	Разл.	•••		Р. сп., э., бз.	721
	Разл. 29 0—295	• • •	•••	0,04825	• • •	722
	146		•••	•,• •	Р. хл.; тр. р. сп.	72 3
	129 —31,5 —16,3 44—45	203,3 199,7 200,3	1,5686 1,5688 1,5532 ⁵⁹	Tp. p. Tp. p. 1,50 ²⁵ 0,74	Р. сп., э. Р. сп., э. Р. сп., э. Р. сп., э., мет.,	724 725 726 727

№ n/n		Формула	Молекуляр. ная масса	Плотность
728	м-Толуилендиа-)		
729	мин п-Толуилендиа- мин	$\begin{array}{c} \text{CH}_3\text{C}_6\text{H}_3(\text{NH}_2)_2 \end{array}$	122,17	•••
730	Толуол	C ₆ H ₅ CH ₃	92,14	0,867
731	п-Толуолсульфа-	CH ₃ C ₆ H ₄ SO ₂ NH ₂	171,22	•••
732	мид n-Толуолсульфо-	CH ₃ C ₆ H ₄ SO ₃ H	172,20	•••
733	кислота n-Толуолсульфо-	CH3C6H4SO2OCH8	186,23	
73̃4	метиловый эфир п-Толуолсульфо-	CH ₃ C ₆ H ₄ SO ₂ Cl	190,65	•••
735	хлорид n-Толуолсульфо-	$CH_3C_6H_4SO_2OC_2H_5$	200,26	1,16648
736 737	этиловый эфир Торон Триацетин	$C_{16}H_{10}O_{10}N_2S_2AsNa_3$ (CH ₃ COO) ₃ C ₃ H ₅	598,29 218,21	: 1,161 ¹⁷
7 38 7 39	Трибензиламин 2, 4, 6-Трибром-	$(C_6H_5CH_2)_3N$ $C_6H_2(OH)Br_3$	287,41 330,82	0,991 ⁹⁵ 2,545
740	фенол Трибутил бор	$(\mathcal{H} - C_4 H_9)_3 B$	182,17	·
741 742	Трибутилфосфат Трикрезилфосфат	(C ₄ H ₉ O) ₃ PO (CH ₃ C ₆ H ₄ O) ₃ PO	266,33 368,37	0,973 1,179 ²⁵
743 744	Триметиламин Триметилен	$(CH_3)_3N$ $CH_2CH_2CH_2$	59,11 42,08	0,671° 0,720 ⁻⁷⁹
745	(циклопропан) Тринитробензой-	$(NO_2)_3C_6H_2CO_2H$	257,12	
746	ная кислота 1, 3, 5-Тринитро- бензол	$C_6H_3(NO_2)_3$	213,11	1,688
747	2, 4, 6-Тринитро-	$(CH_3)_2C_6H(NO_2)_3$	241,16	1,60419
748	бензол 2, 4, 6-Тринитро- толуол (тротил	$CH_3C_6H_2(NO_2)_8$	227,13	1,654
749	TNT) Триолеин	(C ₁₇ H ₅₃ COO) ₃ C ₃ H ₅	885,46	0,91515
750	Трипальмитин	$(C_{15}H_{81}COO)_3C_3H_5$	807,34	0,96680
751 752	Триптан <i>I-</i> Триптофан	$CH_3CH(CH_3)C(CH_3)_3$ $C_6H_4NHCH=CCH_2CH(NH_2)$	100,21 204,23	0,690
		CO ₂ H		

	Темпер	атура, °С	тель	Раст	воримость	No.
	пл авления	кипения	Показатель преломления	в воде	в органических растворителях	п/п
	99	283—285	•••	P. rop.	Р. сп., э.	728
	64	273—274	• • •	Ρ.	Р. сп., э., гор.	729
) 1	 95	110,6	1,4969	0,04716	бз. Р. сп., э., бз.,	730
	137,5	•••	•••	0,20	хл. Р. сп.	731
-	92	140 (2,67 кПа)		P.	Р. сп., э.	732
. 1	28	(2,01 KI1a)	•••	H.	Р. сп., э., бз.	733
	71	145—146 (2 кПа)	• • •	H.	Р. сп., э., бз.	734
	33—34	173 (2 κΠa)	•••		•••	735
i.	 78	258—260	1,4306	P. 7,17	Тр. р. сп. Р. сп., э., бэ., хл.	736 737
	92 96	380—390 Возг.	•••	Tp. p. 0,007	Р. э., гор. сп. Р. сп., э., хл.,	738 739
	•••	108 (1,6 кПа)	1,4230	, H.	гл. Х. р.	740
	 80	289 разл. 275 (2,67 кПа)	1,4226	Р. Н.	Х. р. Р. сп., э., бз.	741 742
)	—117,2 —126,6	3,5 —34	•••	Р. Н.	Р. сп., э. Р. сп., э.	743 744
	228,7	Разл.	•••	4,1850	Х. р. сп., э.	745
	122,5	Разл.; взр.	***	0,0416	Р. мет., хл., бз.;	746
	182	•••	•••	H,	тр. р. сп., э. Тр. р. э., сп.	747
	81—82	Взр. 280	•••	0,0215	Р. бз., э.; тр. р. сп.	74 8
	. —4	234—240 (2,4 кПа)	1,456160	Н.	Р. бз., э.;	749
	65,5	310—320 (0,013 кПа)	1,4381**	H.	тр. р. сп. Р. э. хл.;	7 50
	25,0 289	80,9	1,3900	H. 1,14 ²⁵	тр. р. сп. Р. сп., э. Р. гор. сп.	751 752
<u> </u>						

№ п/п	Название	Формула	Молекуляр- ная масса	Плотность
753	Тристеарин	$(C_{17}H_{35}COO)_3C_3H_5$	891,50	0,86280
754	Трифениламин	$(C_6H_5)_3N$	245,33	0,774
755	Трифенилметан	$(C_6H_5)_3CH$	244,34	1,01499
756	Трифенилфосфат	$(C_6H_5O)_3PO$	326,29	•••
757	Трифторуксусная	CF ₃ CO ₂ H	114,03	1,489
758	кислота Трифторуксус-	(CF ₃ CO) ₂ O	210,04	1,4951
759	ный ангидрид Трифторхлорэти-	F ₂ C=CFCl	116,8	•••
760	лен 1, 2, 4-Трихлор-	C ₆ H ₃ Cl ₃	181,45	1,44626
761 762	бензол α-Трихлортолуол Трихлоруксусная	C ₆ H ₅ CCl ₃ CCl ₃ CO ₂ H	195,48 163,39	1,372 1,588 ⁷⁰
763	кислота Трихлорфенокси-	C ₆ H ₂ Cl ₃ OCH ₂ CO ₂ H	255,49	•••
764	уксусная кислота Трихлорэтан	CICH ₂ CHCl ₂	133,41	1,441 ^{25,5}
76 5	(1, 1, 2) Трихлорэтан (1, 1, 1-метил-	CH ₃ CCl ₃	133,41	1,32526
766 76 7	хлороформ) Трихлорэтилен Триэтаноламин	CHCl=CCl ₂ N(CH ₂ CH ₂ OH) ₃	131,38 149,19	1,4397 1,124
768 769 770 771 772	Триэтилфосфат Тропон Туйан α-Туйон Углерод четырех-	$(C_{2}H_{5})_{3}PO_{3}$ $C_{7}H_{6}O$ $C_{10}H_{18}$ $C_{10}H_{16}O$ CBr_{4}	182,16 106,12 138,25 152,24 331,65	1,0686 1,095 0,8139 0,913 3,420
773		CF ₄	88,00	
74	фтористый Углерод четырех-	CCl ₄	153,82	1,595
75	•	CH ₃ CO ₂ H	60,05	1,049
76	эфир (амилаце-	CH ₃ (CH ₂) ₄ OCOCH ₃	130,19	0,875
77	тат) Уксуснобензило- вый эфир	CH ₃ COOCH ₂ C ₆ H ₅	150,18	1,05918,5

	Темпер	атура, °С	тель	Раст	воримость	N _e
	плавления	кипения	Показатель преломления	в воде	в органических растворителях	п/п
	72	• • •	1,4385	Н.	Р. хл., бз.,	7 53
	126	348	•••	Н.	гор. Х. р. бз.; р. э., ац.;	754
	94	359,2	•••	H.	тр. р. сп. Р. э., хл.,	755
	49	245	•••	H.	гор. сп. Р. э., хл., бз.	756
	15,25	(1,47 кПа) 72,4	1,2850	X. p.	X. p.	757
	65	38,5	1,495125	Разл	Х. р.	758
	157,9	26,8	•••	Разл.	Разл.	759
,	17	213	•••	H.	•••	760
	4,75 57,5	220,7 197 , 5	1,5584	Н.; разл. Х. р.	Р. сп., э., бз. Р. сп., э.	761 762
ć	154—155	•••	•••	0,018	Р. сп., бз.	763
	-36-37	113,5		0,44	∞ сп., э.	764
		74,1		Н.	∞ сп., э.	765
	86,4;73 21,2	88—90 277—279	1,4852	0,1 ∞	∞ сп., э. Р. сп., хл.;	766 767
	 -5 α48,4; 90,1	216 113 (2 кПа) 157 200 189,5 разл.	.1,4067 ^{17,1} 1,6070 ²⁵ 1,43759 1,4490 ¹⁵ 1,5942 ⁹⁹	100 ²⁵ разл. Х. р. Н. Тр. р. Н.	тр. р. э., бз. Р. сп., э. X. р. неполярн. ∞ сп., э. Р. сп., э., хл.	768 769 770 771 772
	—187	-128		Tp. p.	• • •	773
	-23,0	76,8	1,463115	0,08	Р. сп., э., хл.,	774
	16.6	118,1	1,369825	∞	бз. Р. сп., э., др.	775
	—75,0	149,2	1,4023	H.	Р. сп., э., ац., бз.	776
A COLOR OF THE PARTY OF THE PAR	—51.5	214,9	1,5032	Тр. р.	Р. сп., э.	777

№ п/п	Название	Формула	Молекуляр- ная масса	Плотность
778	Уксусноизоами- ловый эфир	(CH ₃) ₂ CHCH ₂ CH ₂ OCOCH ₃	130,19	0,872
779	эфир (этилаце-	CH ₃ CO ₂ C ₂ H ₅	88,11	0,901
780	тат) Уксусный аль-	CH₃CHO	44,05	0,78318
7 81	дегид Уксусный анги-	(CH ₃ CO) ₂ O	102,09	1,082
782	дрид Умбеллиферон	HOC ₆ H ₃ OCOCH=CH	162,15	•••
783 784	Ундекан Унотродии	СН ₃ (СН ₂) ₉ СН ₃ см. № 199 Гексаметилентетрамин	156,31	0,740
785	Уротропин Феназин	C ₆ H ₄ NC ₆ H ₄ N	180,21	•••
'78 6	Фенантрен	$C_{14}H_{10}$	178,24	1,182
787 788 789 790 791 792	о-Фенантролин Фенацетин п-Фенетидин Фенетол І-Фенилаланин Фенил-п-амино-фенол (п-оксиди-	C ₁₂ H ₈ N ₂ CH ₃ CONHC ₆ H ₄ OC ₂ H ₅ H ₂ NC ₆ H ₄ OC ₂ H ₅ C ₆ H ₅ CC ₂ H ₅ C ₆ H ₅ CH ₂ CH(NH ₂)CO ₂ H C ₆ H ₅ NHC ₆ H ₄ OH	180,21 179,22 137,18 122,17 165,19 185,23	1,065 ¹⁶ 0,967
7 93	фениламин) Фенилантранило-	C ₆ H ₅ NHC ₆ H ₄ CO ₂ H	213,24	•••
794	вая кислота Фенилацетилен	$C_6H_5C\equiv CH$	102,14 .	0,9295
795	(этинилбензол) Фенилгидразин	C ₆ H ₅ NHNH ₂	108,14	1,098
79 6	Фенилгидрокси-	C ₆ H ₅ NHOH	109,13	• • •
797 798	ламин Фенилглицин Фенилдихлорар-	$C_6H_5NHCH_2CO_2H$ $C_6H_5AsCl_2$	151,17 222,93	1,625
799 800 801	син м-Фенилендиамин о-Фенилендиамин п-Фенилендиамин	$C_6H_4(NH_2)_2$	108,14	1,14210
802	Фенилметилпира-	$C_6H_5NN=C(CH_3)CH_2CO$	174,20	•••
803	Фенил-β-нафти- ламин	C ₆ H ₅ NHC ₁₀ H ₇	219,29	•••
804		C ₆ H ₅ CH ₂ NO ₂	137,13	1,154

	Темпера	атура, °С	тель ления	Расте	воримость	№
	плавления	кипения	Показатель преломления	в воде	в органических растворителях	n/n
	—78,5	142	1,4054	Н.	Р. сп., э., ац., бз.	778
	-82,4	77,15	1,372219	8,6	Разл.	779
	123,5	20,8	1,3316	00	Р. сп., э., бз.	780
	73,1	140,0	1,3901	Разл.	Р. э., бз.	781
	223-224	Bosr.	• • •	I 100	Х. р. хл.; р.	782
	-25,7	195,8	1,4172	H.	еп., укс. к. Р. сп., э.	783 784
	171	>360	4	Tp. p.	X. р. хл., ац., гор. сп.; тр. р.	785
	100	340,2	1,6567129	Н.	Р. э., бз., хл.,	786
•	117 137—138 2,4 —30,2 Разл. >275 70	Разл. 254,2—254,7 172 330	1,5084 ¹⁹	0,3 0,006 H. H. 3 ²⁵ Tp. p.	ац. Р. сп.; н. э. Р. ац., сп., хл. Р. сп., э. Р. сп., э. Р. сп., э., хл., гор. бз.	787 788 789 790 791 792
	182—183	>184 разл.	•••	Tp. p. rop.	Х. р. гор. сп.;	7 93
	-44,8	142,4	1,5489	Н.	p. э. ∞ cn., э.	794
:	23	241 разл.	1,6081	12,6	Р. сп., э., хл., бз.	795
	81—82	•••	•••	2	Р. сп., э., хл., гор. бз.	796
	127 —20	257 разл.	1,6386 ^{15,3}	P. H.	Р. сп.; тр. р. э. Х. р.	797 798
	63—64 102—103 140 127	284—287 256—258 267 287 (27,3 кПа) 395,5	1,633958	35,125 4,235 3,824 P. rop.	P. cn., 9. P. cn., 9., xn. P. cn., 9., xn. P. rop. cn.	799 800 801 802 803
		135 (3,33 кПа)	1,5323	•••	бэ. Разл.	804

п/п	Название	Формула	Молекуляр- ная масса	Плотность	
805	Фенилтиосеми- карбазид	C ₈ H ₅ NHNHCSNH ₂	167,23	•••	
806	Фенилуксусная	$C_8H_5CH_2CO_2H$	136,15	1,228	
807 808	кислота Фенилфлуорон β-Фенилэтило- вый спирт	${C_{19}H_{12}O_5}\atop{C_6H_5CH_2CH_2OH}$	320,29 122,17	1,02313	
809 810	Фенол Фенолфталенн	$ C_{6}H_{5}OH $ $ C_{20}H_{14}O_{4} $	94,11 318,33	1,071 ²⁵ 1,300	
811	Фентиазин (тио- дифениламин)	C_6H_{1}	199,26		
	<i>d</i> -Фенхон Флавон	$C_{10}H_{16}O \\ C_{6}H_{4}OC(C_{6}H_{5}) = CHCO$	152,24 222,25	0,9465	
814	Флавопурпурин	HOC_6H_3 $C_6H_2(OH)_2$	256,22	•••	
815	Флороглюцин (1, 3, 5-триокси-	CO C ₆ H ₃ (OH) ₃	126,11	•••	
816	бензол) Флуорен	C ₆ H ₄ CH ₂ C ₆ H ₄	166,22	1,203°	
817	Флуоресцеин	$C_{20}H_{12}O_5$	332,22	•••	
818	Формальдегид	НСНО	30,03	Ж. 0,815 ⁻²⁰	
819	Формамид	HCONH ₂	45,04	1,139	
820	Форон	$[(CH_3)_2C=CH]_2CO$	138,21	0,885	
821	Фосген	COCI ₂	98,92	1,39219	
	Фруктоза о-Фталевая	$C_6H_{12}O_6$ $C_6H_4(CO_2H)_2$	180,16 166,14	1,669 ^{17,5} 1,593	
824	кислота Фталевый	$C_6H_4(CO)_2O$	148,12	1,5274	
825	ангидрид Фталимид	C ₆ H ₄ (CO) ₂ NH	147,13		
	о-Фталоилхлорид	C ₂ H ₄ (COCI) _a	203,02	1,4089	
	м-Фталонитрил	$C_6^*H_4^*(CO(C_1)_2$ $C_6^*H_4^*(CN)_2$	128,13		
828	Фторотан	CF ₃ CHB _r Ci	197,43	1,872	

	Темпер	атура, °С	тель	Pac	творимость	N₂
	плавления	кипения	Показатель преломления	в воде	в органических растворителях	п/п
	201 разл.	•••	•••	Тр. р.	X. р. гор. сп., укс. к.; тр.	805
	76—76,5	265,5	•••	1,66	р. э., хл., бз. Р. сп., э., хл.	806
	27	 219—221 (0,1 МПа)	1,533717	H. 1,6	Тр. р. Р. э., сп.	80 7 80 8
	43 261	182	1,540345	8,2 ¹⁵ 0,18	Р. сп., э., хл. Р. сп., э.	809 810
	182	371 разл.	•••	Н.	Р. бз.; тр. р. сп., э.	811
	5—6 99—100	193—195	1,4623	н.	X. р. сп., э. Р. сп., э.	812 813
	330	459 возг.	•••	Тр. р.	Р. бз., гор. сп.; тр. р. э.	814
•	217—219	Возг., разл.	•••	1,1325	Р. сп., э.	815
	116	293—295	•••	H.	Р. бз., гор. сп.	816
	314—316	•••	•••	Tp. p.	Р. ац.; тр. р.	817
	-92	-21	* 4 •	Х. р.	сп. Р. э.	818
	2,55	111 (2.67, vHe)	1,4472	•	Р. сп.	819
	28	(2,67 кПа) 197,2	•••	Tp. p.	Р. сп., э.	820
	104	(99 кПа) 8,3	•••	Разл.	Р. бз., укс. к.,	821
	102—104 191 разл.	Разл.	•••	X. p. 0,54 ¹⁴	тол., э. Р. сп., ац. Р. сп.	822 823
	131,6	285 возг.	•••	Tp. p.	Р. сп.	824
	238 16 161,5	Возг. 281 Возг.	1,5709 ^{15,5}	0,06 ²⁵ Разл. Тр. р.	Р. гор. укс. к. Р. бз., э. Р. сп., э., хл.,	825 826 827
·	•••	49—51	1,3700	Тр. р.	бз. Х. р.	828

	i	T	1	
№ 11/11	Название	Формула	Молекуляр- ная масса	Плотность
829	Фумаровая кис-	CO ₂ HCH=CHCO ₂ H	116,07	1,635
830	лота Фуран	CH=CHCH=CHO	68,08	0,940
831 832 833 834 835	α-Фурилдиоксим Фурфурол Хинализарин Хинальдин Хинальдиновая	$C_{10}H_8O_4N_2$ C_4H_3OCHO $(HO)_2C_6H_2(CO)_2C_6H_2(OH)_2$ $CH_3(C_6H_4C_3H_2N)$ $C_9H_6NCO_2H$	220,20 96,09 272,22 143,19 173,18	1,159 1,059
836 837 838	кислота Хингидрон Хинин Хининсульфат	$\begin{array}{l} C_6H_4O_2C_6H_4(OH)_2 \\ C_{20H_{24}O_2N_2} \\ (C_{20H_{24}O_2N_2)_2 \cdot H_2SO_4 \cdot 2H_2O} \end{array}$	218,21 324,43 782,95	1,401
	Хинозол Хинолин	$C_9H_7ON \cdot \frac{1}{2}H_2SO_4$ $C_6H_4N=CHCH=CH$	194,20 129,16	1,095
342 343 344 345 346	п-Хинон Хлоразон Хлораль Хлоральгидрат Хлорамин Б Хлорамин Т Хлоранил (тет- рахлор- п-бензо-	$\begin{array}{l} OC = (CH - CH)_2 = CO \\ C_{10}H_8ON_3CI \\ CCI_3CHO \\ CCI_3CH(OH)_2 \\ C_6H_5SO_2NCINa \\ CH_3C_6H_4SO_2NCINa \cdot H_2O \\ O = C_6CI_4 = O \end{array}$	108,10 207,64 147,39 165,40 213,62 245,66 245,88	1,318 1,512 1,908
848	хинон) Хлораниловая	$C_6Cl_2(OH)_2O_2$	208,99	•••
50	кислота Хлорацетон Хлорацетофенон Хлорбензол	CH ₃ COCH ₂ CI C ₆ H ₅ COCH ₂ CI C ₆ H ₅ CI	92,53 154,60 112,56	1,162 ¹⁶ 1,324 ¹⁵ 1,107
52	Хлорекс (β, β'- дихлордиэтило-	(CICH ₂ CH ₂) ₂ O	143,01	1,220
54 .	вый эфир) а-Хлорнафталин Хлоропрен Хлороформ	C ₁₀ H ₇ Cl CH ₂ =CHCCl=CH ₂ CHCl ₃	162,62 88,54 119,38	1,194 0,956 1,498
	Хлорпикрин э-Хлортолуол ү	CCl ₃ NO ₂	164,38	1,651 ^{22,8} 1,082
	г-Хлортолуол	ClC ₈ H ₄ CH ₃	126,59	1,070
59 d 60 d	р-Хлорфенол } п-Хлорфенол } Колестерин	CIC_6H_4OH $C_{27}H_{45}OH$	128,56 386,67	1,240 ¹⁸ 1,306 1,067

	Темпер	ат у ра, °С	тель	Pac	творимость	№
	плавления	кипения	Показатель преломления	в воде	в органических растворителях	n/13
	287	290		0,725	Р. сп.	829
	•••	32	1,4216	H.	Р. сп., э.	830
	168—169 —38,7 >275 —2 156	161,7 Bosr. 247	1,5261 1,6116	H. 9,1 ¹³ H. Tp. p. P. rop.	Р. сп., э. Р. сп., э. Тр. р. сп., э. Р. сп., э., хл. Х. р. гор. бз.,	831 832 833 834 835
	171 разл. 175 205	Возг. Возг.	1,4216	H. 0,057 0,139	еп. Р. сп., э. Р. сп., э., хл. 1,16 сп.; р.	836 837 838
	175—178 —15	237,7	1,6268	X. p.	гл.; тр. р. э. Тр. р. сп. Р. сп., э., ац.	839 840
-	115,7 202 —57,5 57 Разл. Безв. взр. 175—180 290 давл.	Возг. 98 разл. 96 Разл. Возг.	1,4557	P. rop. Tp. p. X. p. 47017 5 P. H.	Р. сп., э. Р. мет. Р. сп., э., хл. Р. сп., э., хл. Р. сп. Р. гор. э.; тр. р. гор. сп.,	841 842 843 844 845 846 847
	283—284	•••	•••	Tp. p.	хл. Р. сп., ац., э.,	848
	-44,5 58-59 -45,2	121 245—247 132,1	 1,5248	∞ Н. сп. 0,0488³⁰	укс. к. Р. сп., э., хл. Р. сп., э., бз. Р. сп., э., хл.,	849 850 851
	- 51,7	178,5	1,4571	1,07	Р. сп., э.	852
	—17 —63,5	259,3 59,4 61,2	1,6332 1,4583 1,4464 ¹⁸	H. Tp. p. 1,0 ¹⁵	Р. сп., э., бз. Разл. Р. сп., э., бз., ац.	853 854 855
-	64 34	112 159,5	1,4608 ²² 1,5238	H. H.	Р. сп., э. Р. сп., э., бз.,	856 857
	7,5	162,2	1,519919	H.	Р. сп., э., бз.,	858
	7 43 148	175,6 217 360 разл.	•••	Тр. р. Н. Н.	хл. Р. сп., э. Р. сп., э. Р. бз., э., хл., гор. сп.	859 86 0 861

				<u> </u>
№ п/п	Название	Формула	Молекуляр- ная масса	Плотность
862	Хризен	C ₁₈ H ₁₂	228,30	•••
863	Целлосольв	$C_2H_5O(CH_2)_2OH$	90,12	0,931
864	(2-этоксиэтанол) Цетан (гекса-	$CH_3(CH_2)_{14}CH_3$	226,45	0,774
865 866	декан) Цетен Цетиловый спирт	$CH_2 = CH - (CH_2)_{13}CH_3$ $CH_3(CH_2)_{14}CH_2OH$	224,43 242,45	0,782 0,8176
867	Циан (дициан)	NC-CN	52,04	2,335
869 870	Циан бромистый Циан иодистый Циан хлористый Цианамид	BrC≡N IC≡N CIC≡N H ₂ NC≡N	105,93 152,92 61,47 42,04	кг/м ³ 2,015 1,222 1,073 ⁴⁸
872 873	Циановая кислота Циклобутан	$HOC \equiv N$ $CH_2CH_2CH_2CH_2$	43,03 56,11	1,140° 0,703°
874	Циклогексан	$CH_2(CH_2)_4CH_2$	84,16	0,779
875	Циклогексанол	CH ₂ (CH ₂) ₄ CHOH	100,16	0,962
876	Циклогексанон	CH ₂ (CH ₂) ₄ CO	98,15	0,947
877	Циклогексен	CH ₂ (CH ₂) ₃ CH=CH	82,15	0,810
878	Циклогептан	CH ₂ (CH ₂) ₅ CH ₂	98,19	0,810
879	Циклооктан	CH ₂ (CH ₂) ₆ CH ₂	112,22	0,839
880	Циклопентадиен	CH=CHCH=CHCH ₂	66,10	0,805
881	Циклопентан	CH ₂ (CH ₂) ₃ CH ₂	70,14	0,745
882	Циклопентен	CH=CHCH ₂ CH ₂ CH ₂	68,12	0,776
883	Циклопропанкар- боновая кислота	CH2CH2CHCO2H	86,09	1,089
885 886 887	п-Цимол Цинеол L-Цистеин Цитраль	LOOH COOH COOH COOH	134,22 154,25 121,16 152,24 90,04	0,857 0,9267 0,890 ¹³ 1,900
889		O=CH-CH=O	58,04	1,140

Темпер	ратура, °C	ель	Раст	воримость	N∘
плавления	кипения	Показатель	в воде	в органических растворителях	п/п
254	448		H.	Р. гор. бз.,	862
— 70	135,1	1,4080	∞	тол.; тр. р. сп. Р. сп., э., хл., ац.	863
18,5	287,5	1,4345	Н.	Р. сп., э.	864
4,0	274	1,4410	Н.	•••	865
49,3	344	1,4283 ^{78,8}	Н.	102 сп.; р. э., мет., бз.	866
-34,4	—21	•••	450 см ³	Р. сп., э.	867
52 146,5	61,6 Boar.	* •••	Р. Р.	Р. сп., э.	868 869
 6,5	12,6	• • •	2500 см ³	Р. сп., э. Р. сп., э.	870
44—45	140 (2,53 кПа)	1,441848	X. p.	Х. р. сп., э.	871
_50	Разл. 11,3	1,3752°	Тр. р. Н.	Р. э., бз., хл. Р. сп., ац., э.	872 873
6,5	81	1,429015	H.	Р, сп., э.	874
23,9	160—161	1,461 87	3,6	Р. сп., э.	875
— 45	155—156		P.	Р. сп., э.	876
-103,7	83,3	1,445122	Н.	Р. сп., э.	877
-12	118—120	1,4440	H.	Р. сп., э.	878
14,4	148—149 (0,1 МПа)	1,4586	H.	Р. сп., э.	879
85	41-42	1,4446	Н.	Р. сп., э., бз.	880
93,3	49,3	1,4039	H.	Р. сп., э.	881
•••	45—46	1,421818	H.	Р. сп., э.	882
18—19	184	1,4390	P. rop.	Р. сп., э.	883
67,94 1,5 178	177,25 176—177	1,4904 1,45839	H. 0,2 X. p.	Р. сп., э., хл. ∞ сп., э. Р. укс. к.	884 885 886
189,5	228—229 Возг. >100	1,4875	H. 8,6	Р. сп., э. Р. сп., э.	887 888
15	51 (0,1034 МПа)	1,3828	Р. разл.	Р. абс. сп., абс. э.	889

№ π/π	Название	Формула	Молекуляр- ная масса	Плотность	
890	Эвгенол	CH ₂ =CHCH ₂ C ₆ H ₃ (OCH ₃)OH	164,21	1,06225	
891	Энантовая кис-	$CH_3(CH_2)_5CO_2H$	130,19	0,918	
892	лота Энантовый аль- дегид (энентол, гептиловый аль-	CH ₃ (CH ₂) ₅ CHO	114,19	0,817	
893	дегид) Эозин (тетрабром-	$C_{20}H_8O_5Br_4$	647,92	• • •	
894	флуоресцеин) α-Эпихлоргидрин	OCH ₂ CHCH ₂ C1	92,53	1,18025	
895	Эритрозин	$C_{20}H_8O_5I_4$	835,88	• • •	
896	Этан	CH ₃ CH ₃	30,07	1,357	
897	Этаноламин	H ₂ NCH ₂ CH ₂ OH	61,08	кг/м ³ 1,022	
898	Этил бромистый	CH ₃ CH ₂ Br [*]	108,97	1,461	
899	Этил иодистый	CH ₃ CH ₂ I	155,97	1,933	
900	Этил хлористый	CH ₃ CH ₂ Cl	64,52	0,9210	
901 902 903 904	Этиламин Этилбензол Этилдихлорарсин Этилен	$C_2H_5NH_2$ $C_6H_5C_2H_5$ $C_2H_5AsCl_2$ $CH_2=CH_2$	45,08 106,17 174,89 28,05	0,706° 0,867 1,742¹⁵ 1,260	
905		BrCH ₂ CH ₂ Br	187,87	кг/м ³ 2,179	
906	мистый Этилен хлори- стый (1, 2-ди- хлорэтан)	CICH ₂ CH ₂ CI	98,96	1,252	
9 07	Этилена окись	CH ₂ CH ₂ O	44,05	Ж. 0.88210	
908 909	Этиленгликоль Этилендиамин	см. № 228 Гликоль $H_2NCH_2CH_2NH_2$	60,10	0,90215	
910	Этиленимин (виниламин)	H ₂ C NH H ₂ C	43,07	0,8376	
911	Этиленхлор-	HOCH ₂ CH ₂ CI	80,51	1,202	
912	гидрин Этиленциан-	HOCH ₂ CH ₂ CN	71,08 -	1,059°	
913	гидрин Этилиден иодистый	CH ₃ CHJ ₂	281,86	2,84°	
			 		-

Ī	Темпер	атура, °С	тель ления	Раств	оримость	Nº
-	плавления	кипения	Показатель преломления	в воде	в органических растворителях	n/n
•	•••	254	1,543919	Tp. p.	Р. сп., э., хл., укс. к.	890
	10,5	223	1,4216	$0,24^{15}$	Р. сп., э.	891
	4 3	155	1,4125	0,02	Р. сп., э.	892
		,	•			
	• • •	•••	***	H.	P. cn., rop.	893
	-25-26	117	1,4397 ¹⁶ ,1	<5	укс. к. ∞ сп., ∞ э.	894
	•••	(0,1008 MΠa)	• • •	Н.	Р. сп.; тр. р. э.	895
	-182,81	88,63	•••	4,7 cm ³	Р. сп.	896
	10,5 —119	171 38,4	1,4539 1,4239	∞ 0,9	Р. сп., хл., э. Р. сп., э.	8 97 898
	-108,5	72,4	1,5168	0,4	и др. Р. сп., э., бз.,	899
	-138,7	12,2	• • •	0,574	хл. Р. сп., э. и др.	900
	-80,6 94,4 -169,15	16,6 136,2 156 —103,7	1,4959 	тр. р. Тр. р.; разл 25,6° см³	Р. сп., э. Р. сп., э. ; Р. сп., э., бз. Р. сп., э.	901 902 903 904
	10	131,6	1,5379	0,4330	Р. сп., э., хл.	905
	-35,3	83,7	1,4443	0,87	Р. сп., э., хл.	906
	111,3	10,7	1,35967	∞	Р. сп., э.	907
	8,5	116,5	1,4540	∞	Р. сп.	908 909
	•••	55—56	1,4130	∞	Р. сп.; ∞ э.	910
	67,5	129	1,4419	∞	Разл.	911
	•••	220—222	•••	P.	Р. сп.; тр. р. э.	912
		179	•••	Н.	Р. сп., э.	913

	· · · · · · · · · · · · · · · · · · ·				
№ n/n	Название	Формула	Молекуляр. ная масса	Плотвость	
914	ристый (1, 1-д	CH ₃ CHCl ₂	98,96	1,175	
915	хлорэтан) Этилмеркаптан (этантиол)	CH ₃ CH ₂ SH	62,13	0,839	
916	Этилмеркур- фосфат	$(C_2H_5Hg)_3PO_4$	783,93	•••	
917	Этилмеркур- хлорид	C ₂ H ₅ HgCl	265,11	3,500	
918	Этилнитрат	CH ₃ CH ₂ ONO ₂	91,07	1,100	
919	Этилнитрит	CH ₃ CH ₂ ONO	75,07	0,90015	
920	Этиловый спирт	C_2H_5OH	46,07	0,789	
921	Этиловый эфир (диэтиловый, серный)	$(C_2H_5)_2O$	74,12	0,714	
922	Этилсерная кислота	$C_2H_5OSO_3H$	126,13	1,316	
923	Этилсульфат	$(C_2H_5)_2SO_2$	154,19	1,180	•
924	Этилсульфид	$(C_2H_5)_2S$	90,18	0,837	
925	Этилсульфит	$(C_2H_5)_2SO_3$	138,18	1,077	
926	Этилфосфит	$(C_2H_5)_3PO_3$	166,16	0,9687	
927	Эфирсульфонат	$C_{12}H_8O_3Cl_2S$	303,17	•••	
928	Юглон	$C_{10}H_5O_2(OH)$	174,16	•••	
929	d-Яблочная кислота				
9 30	1-Яблочная	HO2CCH2CHOHCO2H	134,09	1,595	
9 31	кислота dl-Яблочная кислота			1,601	
932	Янтарная кислота	$CO_2H(CH_2)_2CO_2H$	118,09	1,56416	
9 33	Янтарная кисло- та, хлоримид	(CH ₂ CO) ₂ NCI	133,54	1,650	
934	Янтарный альде- гид	CHO(CH ₂) ₂ CHO	86,09	1,064	
935	Янтарный анги- дрид	(CH ₂ CO) ₂ O	100,07	1,234	
		• •			

1	Темпера	тура, •С	гель гения	Раста	оримость	N₂
-	плавления	кипения	Показатель преломления	в воде	в органических растворителях	ה/ם
	96,7	57,3	•••	0,7	Р. сп., э.	914
	-144,4	37	1,435125	1,5	Р. сп., э.	915
	192,5	•••	•••	H.	Р. э., гор. сп.	916
	178	•••	•••	Р.	Р. сп.	917
	-102	87,5	1,3848 ^{21,5}	1,355	Р. сп., э.	918
		17	•••	Н.	Р. сп., э.	919
4	-114,6	78,37	1,3614	. ∞	Разл.	920
	α—117,6	35,6	1,354217	7,5	Р. сп., хл., бз.	921
	• •••	280 разл.	•••	Х. р.	Р. сп., э.	922
	-24,5	280 разл.	1,401018	Н.	Р. сп., э.	923
	-102,1	92	1,4425	0,013	Р. сп., э.	924
		158	1,419811	Р., разл.	Р. сп., э.	925
	•••	156,5	1,41310	H.	Х. р. сп., э.	926
	86,5	•••	•••	H.	X. p. aц., CCi ₄ ,	927
	153—154	Разл.	***	H.	ксил., $C_2H_4Cl_2$ X. р. хл.;	928
	9899	•••	. •••	P.	тр. р. сп., э. Р. сл., э.	929
	100	140 разл.	•••	X. p.	Х. р. сп.; р. э.	930
	130—131	150 разл.	.•••	144 ²⁵ , 411 ⁷⁰	Х. р. сп.	931
	185	235 разл.	•••	6,8	Р. сп., мет., ац.	932
	148	•••	•••	Р., разл.	Р. сп.,; тр. р.	933
	•••	169—170; 201—203	1,426218	P.	Р. сп., э.	934
	119,3—119,6	разл. 261	•••	Р., разл.	р. э., хл.	93 5

4.2.17. Физические константы солей органических кислот

Относительная плотность (плотность вещества, отнесенная к плотности воды при 4° C) приведена при 20° C или температуре (в градусах Цельсия), указанной в верхнем индексе.

Температура плавления в градусах Цельсия приведена для давления 101325 Па.

Растворимость, т. е. масса вещества, насыщающая 100 г растворителя, приведена в граммах (для воды при 20 и 100° С или температуре в градусах Цельсия, указанной в верхнем индексе). Для органических растворителей растворимость характеризуется только качественно.

Если слово «разл.» стоит после цифры (значения температуры), это означает, что вещество при указанной температуре плавится (или кипит) и одновременно разлагается, если слово «разл.» стоит перед цифрой, то при указанной температуре вещество разлагается без плавления (или кипения).

Принятые сокращения

Абс.— абсолютный	Мет.— метиловый спирт
Ам.— аморфный	Н.— не растворяется
Ац. — ацетон	Пл.— пластинчатый
Бв безводный	Пор.— порошок
Бел.— белый	Пр.— призматический
Блест. — блестящий	Р.— растворяется
Бц.— бесцветный	Разб.— разбавленный
Взр. — взрывается	Разл. — разлагается
Води, — водный раствор	Роз.— розовый
Гл.— глицерин	Сер.— серый
Жел.— желтый	Син. — синий
Зел.— зеленый	Сл. — слабо
Иг.— игольчатый	Сп. — этиловый спирт
К кислота	-
Кор коричневый	Тр.— трудно
Кр.— кристаллический	Фиол.— фиолетовый
Красн.— красный	Х.— хорошо
Кс.— ксилол	Щ.— щелочь
Лист. — листики	Э.— этиловый эфир

ì							Растворимость	цесть
		/nap		Температура	Цвет, состояние	в воде	е при	
n∖n •M	п Формула соли Ж	Молеку Молек	Относи квн онтопп	плавления,	при комнатной температуре	20 °C	100 °C	в других растворитеяях
1 4	Ацетаты (уксуснокислые)	ислые)						
	1 AgC ₂ H ₃ O ₂	166,92	3,25915	Разл.	Иr.	$0,72^{\circ}$	2,5280	
	2 A1($C_2H_3O_2$) ₃	204,12	:	Разл.	Бел. пор.	o.;	Разл.	
-	$3 \text{ Al(OH)(C_2H_3O_2)_2}$	162,08	: 6	Разл.	Бел., ам.	Ξ,	: 2	Разл. к.
	$\frac{1}{1} \frac{1}{1} \frac{1}$	255,43	2,468	::	ъ.	28,80	7040,	
		2/3,44	61,2	D20, 41	Бел., кр.	43.60	34.3	C. p. c.
-	(CH,O),	230,49	2.341	256	Bu.	X. p.	:	
•	_	284,54	2,01	$-H_2$ 0, 130	Бц., кр.	Х. р.	:	P. cn.
	_	317,26	:	308 разл.	Бц.	2015	1275	
-	$10 Ce_2(C_2H_8O_2)_6 \cdot 3H_2O$	688,57		_3H ₂ O, 115	Бц., иг.	26,4516	16,27	ָ ב
-	1 $Co(C_2H_3O_2)_2 \cdot 4H_2O$	249,08	1,705.1	-4H ₂ O, 140	Красн.	7.	7,	g
÷	Ì	404 90	;	1	фиол., кр. Зе≖	۵	:	P. MeT.
-	C. C. H. O. J.	181.63	1.930	:		Д.	:	
٠,	$14 Cu(C_2^1H_3O_2)_2 \cdot H_2O$	199,64	1,882	115;	Темно-зел.	7,2	ଛ	Р. сп., э гл.
,	ŗ	416.46	7110	240 разл.	. ~24			
→	15 Er(C2H3C2)3 · 4H2C	946,00	+11,2	Вазп	Kn ur	×	Χ. υ.	
		190,94	:	•••	Kop., am.	Ħ	:	P. cir.
, 		406,45	1,611	:	Ϋ́р.	С <u>л.</u> р.		
_	9 HgC ₂ H ₃ O ₂ '' -	259,64	:	Разл.	Бел. пл.	$0,75^{13}$	Разл.	P. H_2SO_4 ,
Č		318.68	3.270	Разл	Бел. пл.	2510	100	P. CII., YKC. K.
181	21 KC ₂ H ₃ O ₂	98,15	1,8	292	Бел. пор.;	2170	3960	33 сп.; н. э.
'					i l			

IRR				. :			Продол "	Продолжение таблицы	
		٠d	•q				Растворимость	имость	
п/п	Формула соля	олекуля я масса	• носител я	Температура плавления, °C	Цвет, состояние при комнатной температуре	B B()	воде при	в других	•••
W]		оМ вн	sen l			ပ္ ရ	ပ္ 8 —		
ผผ	2 KH(C,H,O,), 3 LiC,H,O, · 2H,O	158,20	:	148, pasar. 200	Кр., иг.	Разд.	;		
20	Mg(C2H3O2)2	142,40	1,42	323	Бел., кр. Бел.	300te	×Χ.	P. cn. P. Mer.	
200	$26 Mn(C_2^2H_3^2O_2^2)^2 Mn(C_2^2H_3O_2^2)^2 \cdot 4H_2O$	173,03 245,09	1.74	: : ;	Блетно-роз	36,2 P	66,4% P.	X. p. cii.	
Ø	28 NH4C2H3O2	77,08	1,073	114	кр. Бел., кр.	1484	<u>:</u>	P. CII.; C.J. D.	٠
ଊଊ୕	9 NaC ₂ H ₃ O ₂ 0 NaC ₂ H ₃ O ₂ · 3H ₂ O	82,03 136,08	1,528	324	Бел., кр.	1190	170	au. P. cn. D. see en	
ကက်က	31 $N1(C_2H_3O_2)_2$ 32 $N1(C_2H_3O_2)_3$ 33 $Pb(C_2H_3O_2)_3$	176,80 248,86 325,28	1,798 1,744 3,251	Разл. Разл. 980	Sen., rp. 3en., rp. 3en.	16,6 P.		H. CII. P. CII.	
34		379,33	2,55	-3H ₂ O, 75	Ben., Kp.	45,6416	200	F. 14., 1P. P. Cit. P. FA.: TD. D.	
గో సౌ	Pb(C,H3O2)2	505,43	1,689	. 23	Бел. кр.	<u>d</u>	م	CII.	
323		608,52 807,69	: : 3	::	Бел., иг.	X. 5.55	18,2	Сл. р. сп. Р. сп.	
%. ₩.ቋ	Sr(C,H ₃ O ₂), TIC,H ₂ O ₂	205,71	2,0 9	• • •	Желт., кр. Бел., кр.	15 25 36,90	36,497	P. Mer.	
44	1 UO2(C2H3O2)2 · 2H2O 2 Yb(C2H3O2)3 · 4H2O	424,15 422,24	2,8915 2,09	110 -2H ₂ O, 110 -4H ₂ O, 100	Иг.' Желт., кр. Кр., пл.	X. p. 9,217 X. p.	Разл. Х. р.	X. р. сп. Р. сп., ац.	
		•		١,		``. ' :	•		
44	$Z_{\Pi}(C_2H_3O_2)_2^2$ $Z_{\Pi}(C_2H_3O_2)_3$ · $2H_2O$	183,46 219,49	1,840 1,735	242 237	Кр. Бел., кр.	3026	44,6 66,6	P. ca. X. p. car.	
Бе	нзоаты (бензойнокис	лые)							
45	Ca(C,H ₅ O ₂) ₂ · 3H ₂ O KC,H ₅ O ₂ · 3H ₂ O	336,36 214,27	1,44	-3H ₂ O, 110 -3H ₂ O, 110	Бел. пор. Бел. пор.	2,67° 5238	8,380 112		
44 48 49	$Mg(C, H_5O_2)_2 \cdot 3H_2O$ $Mn(C, H_5O_2)_3 \cdot 3H_2O$	320,59 351,22		3H ₂ O, 110	Бел. люс. Бел. пор. Кр.		19,6 	. c. c.	•
51	NH ₄ C,H ₅ O ₂ NaC,H ₅ O ₂	139,16 144,11	1,262	198	Бц., кр. Бц., кр.	19,6 ^{14,5} 62,5 ²⁵	83,3 76,9	P. cf.	
Ла	актаты (молочнокислые)	(e)							

		•	,
P. G. X. p. cg.	ទុំ ទុំ ទុំ ទុំ ទុំ ទុំ ទុំ ទុំ ទុំ ទុំ	H. s. H. cr. Cr. p. cr. Cr. p. cr. H. s. P. cr. P. cr.	P. NH ₄ OH, KCN H. cn. H. yrc. r. H. yrc. r. H. cn.
44,6 66,6	8,388 112 40 19,6 83,3 76,9	7,936 45 45 8,5 X. p. X. p. X. p.	0,0024 ²⁴ H. Cn. p.
3028 4028	2,67° 52°8 33°8 6,16°18 6,55°18 19,6°14,5 62,5°28	3,1° 10 16,7 2,1 ¹⁰ X. p. 10 ²⁶ 30	0,003418 0,00168 H. C.r. p. H.
Кр. Бел., кр.	Бел. пор. Бел. пор. Бел. лист. Бел. пор. Кр. Бц., кр.	Би. Кр., иг. Темно-син., кр. Кор., ам. Бледно- красн., кр. Би., ам. Бел. пор.	Бел., кр. Бел., кр. Бел., пор. Бц., кр. Бц., кр. Бц., кр.
242 237	—3H ₂ O, 110 —3H ₂ O, 110 198 	—3H ₂ O, 100 Pasa. Pasa.	Bap. 140 Pasn. —H ₂ O, 200 Pasn. 340
1,840 1,735	1,44		5,0294 2,658 2,2 2,2 3,3218
183,46 219,49	лые) 336,36 214,27 128,06 320,59 351,22 139,16 144,11	a e) 308,29 290,54 277,71 288,04 323,06 287,12 112,06 319,81	303,76 225,34 682,02 128,10 146,11 200,42
43 $Z_{11}(C_2H_3O_2)_2$ 44 $Z_{11}(C_2H_3O_2)_2$. $2H_2O_2$	Бензоаты (бензойнокис 45 Са(С,H ₅ O ₂) ₂ ·3H ₂ O 46 КС,H ₅ O ₂ ·3H ₂ O 47 LiC,H ₅ O ₂) ₂ ·3H ₂ O 49 Mg(C,H ₅ O ₂) ₂ ·3H ₂ O 50 NH ₄ C,H ₅ O ₂ 51 NaC,H ₅ O ₂	Лактаты (молочнокисли 52 Са(С ₃ H ₅ O ₃₎₂ · 5H ₂ O 53 Са(С ₃ H ₅ O ₃₎₂ · 2H ₂ O 54 Сu(С ₃ H ₅ O ₃₎₂ · 2H ₂ O 55 Fe(С ₃ H ₅ O ₃₎₂ · 3H ₂ O 56 Fe(С ₃ H ₅ O ₃₎₂ · 3H ₂ O 57 Mn(С ₃ H ₅ O ₃₎₂ · 3H ₂ O 58 NaC ₃ H ₅ O ₃ · 3H ₂ O 59 Sr(С ₃ H ₅ O ₃₎₂ · 3H ₂ O	Оксалаты (щавелевокис 60 Ag ₂ C ₂ O ₄ 61 BaC ₂ O ₄ 62 Bi ₂ (C ₂ O ₄) ₃ 63 CaC ₂ O ₄ 64 CaC ₂ O ₄ H ₂ O 65 CdC ₂ O ₄

** 57 5

							жиород п	Продолжение таблицы
		-d	-q	-	-		Растворимость	MOCTA
I	Формуна сона	yna sccs	nen atoc	Температура	Цвет, состояние	нди экоя в	при	
ı\n •M		иэпоМ м кви	отно квн онтокп	плавления,	при комнатнои температуре	20 °C	100 °C	в других растворителях
Ø Ø	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	254,47 706,44	• •	Разл. —8Н ₂ О, 110	Би., кр. Бел. пор.	0,00318 77. p.	600,0	P. NHOH P. pas6. rop.
Ø	68 CoC₂O₄	146,95	$3,021^{25}$	Разл.		0,0035	:	P. K., NH ₄ OH
Ö	69 CrC2O4 · H2O	158,03	2,46	:	красн. Желт. пор.,	:	ď	Р. разб. к.
72) $CuC_2O_4 \cdot {}^{1/_2}H_2O$ $FeC_2O_4 \cdot {}^{2}H_2O$	160,57 179,90	2,28	Разл. 160	кр. Син., кр. Светло-	0,002525 0,022	0,026	• •
73	Pe ₂ (C ₂ O ₄) ₃ Fe(NH ₄) ₃ (C ₂ O ₄) ₃ ·4H ₂ O	375,75 446,08	1,77917	Разл. 100 —3H ₂ O, 100;	желт., кр. Ам. Светло	X. p. 42,8º	345	н. сп. Н. сп.
74 75	FeK ₂ (C ₂ O ₄) ₂ · 2H ₂ O FeK(C ₂ O ₄) ₂ · 2 ¹ / ₂ H ₂ O	346,12 316,03	::	разл. 165 Разл. Разл.	зел., кр. Желт., иг. Оливково-	P. 9221	Р. Разл.	
76	FeK ₃ (C_2O_4) $_3 \cdot 3H_2O_4$	491,26	:	-3H ₂ O, 100;	кор. Кр.	4,7°	117,7	Н. сп.
77 78 79 80 81 83	Cd ₂ (C ₂ O ₄) ₃ · 10H ₂ O Hg ₂ C ₂ O ₄ HgC ₂ O ₄ K ₂ C ₂ O ₄ · H ₂ O KHC ₂ O ₄ · 1/ ₂ H ₂ O KHC ₂ O ₄ · 1/ ₂ H ₂ O	758,71 489,20 288,61 184,24 128,13 137,14	2,13 2,0 1,836	Fasar. 250 —6H ₂ O, 110 Pasr. 165 Pasr. Pasr. Pasr.	Кр. Кр. Пор. Бел., кр. Кр. Кр.	H. H. 28.70 23.20 P. P.	Tp. H. 83,2 83,2 51,5	P. HNO ₃ P. HCI, HNO ₃
		21/201	2001	•	• 4	2		•

S. P. R.	Н. сп., э.	:	Р. к.	P. K.	Р. разб. к.	Сл. р. сп.	•	:	Разл. сп.	: 0	Р. HNO ₃ ; н. сп.	ч. ж	OWIT ION	ACI, HINOS	Н. сп. э.	•	:	:	Р. к., щ.				Р. сп.		Р. сп.	Х. р. сп.		
:	Ъ.	:	0,08	Tp. p.	0,08	11,850	:	6,33	:	:	:	:	: u	0.001750	- 100,0 P. G	•	:	:	:			0,0350	:		:	:		
0,000825	œ	817	0,0716	Tp. p.	$0,03^{26}$	2,50	d	3,7	Разл.	0,0003	Tp. p.	0,022	H.	0,0005	P. P.	•	Tp. p.	0.0006^{10}	0,002618	Ï		0,04	10	-	д	Х. р.		
Bear., Kp.	Би., кр.	Бц., кр.	Бел. пор.	:	Бел.	Бц., кр.	Бц., кр.	Бел., кр.	Κp.	:	Бел.	Kp., np.	Б.т., пор.	Du., Kp.	Желт. кр.	IID.	Сер., кр.	:	Бел., пор.	:		:	Бел. пор.		Бел., кр.	Синзел.,	np., ai.	
Разл.	Разл.	Разл.	Разл.	Разл.	Разл. 150	•	Разл.	:	:		Разл. 300	:		-H2C, 130			:	:	Разл. 100	Разл.	•	8384	232—235	i,	-H ₂ O, 120	:	e us	
:	2,12117.5	:	:	2,3421,7	2,453	1,501	1,556	2,27		2,235	5,28	α. Συ	3,504	4 63716	,		2,644	$2,58^{17,5}$:	:	×.	:	•	1 e)	:	:		
704,01	101,20	95,97	148,36	142,96	188,00	142,11	125,08	134,00	538,05	146,73	295,21	720,03	200,71 102,65	40808	540.01		790,29	153,39	189,42	585,76	ы е)	603,01	304,45	овокислые)	350,34	409,83		
84 La ₂ (C ₂ O ₄) ₃ · 9H ₂ O	85 LiCoo	86 LiHC2O4	87 MgC ₂ O ₄ · 2H ₂ O	88 MnC ₂ O ₄	89 MnC ₂ O ₄ · 2 ¹ / ₂ H ₂ O	90 (NH4)2C2O4 · H2O	91 NH4HC204 · H2O	92 Na ₂ C ₂ O ₄	93 Nb(HC ₂ O ₄) ₅				ב ה ה ה	3.E	100 Ti.(C,O,), · 10H,O	N.	$101 \text{ Yb}_2(C_2O_4)_3 \cdot 10H_2O$.,	$103 ZnC_2O_4 \cdot 2H_2O_4$		Олеаты (олеиновокисл	105 Ca(C, H ₃₃ O ₃),	106 NaC18H33O2	Салицилаты (салицило	107 Ca(C,H,O3)2 · 2H2O	Cu(C,H5O3)2		

Продолжение таблицы

							II pood II	и росолжение таолицы
		-đ	-9				Растворимость	имость
ú	Формула соли	yna scca		Температура	Цвет, состояние	в воде	воде при	
∖n •M		нэгоМ м ввн	OTHOC RSH OHTORU	interiorna, oC	при комнатнон температуре	20 °C	100 °C	в других растворителях
109	NH4C,HO3	155,15	:	:	Би., кр.	10325	۵	E d
112	NaC,H ₆ O ₃ Sr(C,H ₆ O ₂), · 2H ₂ O	160,11 397,88	: :	0	Бел., кр.	11116	12526	P. cii.
112		393,65		-2H ₂ O, 100; -3H ₂ O, 150	ри., кр. Кр., игл.	က်ပ	28,0	7. °. E. E.
CTE	Стеараты (стеариновокислые)	ислые)						
113	113 Be(C ₁₈ H ₃₅ O ₂) ₂	575,97	:	45—46	Бел. воско-	Ħ	H.	P. 3., CC14,
114	Be(OH)C ₁₈ H ₃₅ O ₂	309,50	:	174	образный Бел. пор.	Ħ,	H.	кс.; н. сп. Сл. р. ССІ ₄ ;
115	Mg(C ₁₈ H ₃₅ O ₂) ₂	591,27	:	88,5	Бел.	0,00315	0.00850	н. э., сп. Р. абс. сп.
1115	Zu(C	306,47 632,33	::	130	Бел. мыло Бел. пор.	Сл. н.	ďΞ	Ćл. р. сп. Р. сп.
Tat	Тартраты (виннокислые)	•			•			
118	Ag2C4H4O6		3,43216	Разл.	Бел.	0.218	:	P.NH.OH. H. CT.
119	AIK(C4H4O6)2	362,23	:	: 6	Бц.	Þ.	D.	
121	CSHC, H, O,	281,99	: :	Fash.	Бц., кр. Кл	0,037° 9,726	0,2285	Сл. р. сп.
122	CuC4H4O, 3H2O	265,66	:	Разл.	Светло-зел.	0,0215	0.1485	Р. к., КОН
123 124	$K_sC_4H_4O_6$. $^1/_2H_2O$ $KHC_4H_4O_6$	235,28 188,18	1,98 1,956	::	пор. Бц., кр. Бц., кр.	125 ^{17,5} 0,37°	278 6, 1	Сл. р. сп. Н. сп., ац.
					-			

						-	
125 MgC ₄ H ₄ O ₆ · 5H ₂ O 126 (NH ₄) ₂ C ₄ H ₄ O ₆ 127 NH'HC, H.O	262,46 184,15 167 19	1,67 1,60 1,636	Разл. Разл. Разл.	Kp. Bu., kp. Bu., kp.	0,818 450 2,3518	1,490 8760 3.2425	H. cn. Ca. p. cn.
Na ₂ C ₄ H ₄ O ₆ . NaHC ₄ O ₆ . H	230,08 230,08 190,09	1,818	—H ₂ O, 100;	Кр. Бел., кр.	29 ⁶ P.	66 ⁴³ P.	Н. сп.
130 NaKC ₄ H ₄ O ₆ ·4H ₂ O 131 RbHC ₄ H ₄ O ₆ 132 SrC ₄ H ₄ O ₆ ·4H ₂ O	282,23 234,55 307,75	1,790 2,282 1,966	70—80 Pasa.	K K K P D	260 1,1826 0,110	6628 11,7 0,7785	Сл. р. сп. Сл. р. сп.
Формиаты (муравьино	кислые)						
•	227,35	3,21	:	Би., кр.	26,20	51,3	Н. сп., э.
134 Ca(HCO ₂) ₂	130,12	2,015	Разл.	Би., кр.	16,10	18,4	Н. сп., э.
135 $Cd(HCO_2)_2 \cdot 2H_2O$	238,47	2,44	Разл.	Kp.	8,4º 6B.	94,6	•
136 Cu(HCO ₂) ₂	153,58	108,1	:	Син., кр.	12,5	Разл.	Р. сп.
137 Fe(HCO ₂) ₂ · 2H ₂ O	181,91	:	Разл.	•	Ci.	:	•
138 Fe(HCO ₂) ₃ ·H ₂ O	208,92	:	:	Жел., кр.	Ъ.	Разл.	Ca. p. cn.
139 HgHCO ₂	245,61	:	Разл.	Блест. пл.	0,417	Разл.	Н. сп.
140 KHCO ₂	84,12	1,91	167,5	Би., кр.	33118	65790	Ca, p. cn.;
141 LiHCO ₂ ·H ₂ O	26'69	1,46	-H ₂ O, 94	Бц., кр.	24,420	57,64104	н. э. Сл. р. сп., э.
142 Mg(HCO ₂) ₂ · 2H ₂ O	150,38	:	•	Бц., кр.	14º 6B.	24 6B.	Н. сп., э.
143 Mn(HCO ₂) ₂ · 2H ₂ O	181,00	1,953	Разл.	. Kp.	Д.	Д.	
144 NH ₄ HCO ₂	90'89	1,266	116; pasa.180	Бц., кр.	1020	53180	Р. сп.
145 NaHCO ₂	. 68,01	1,92	253	Бел., кр.	440	160	Сл. р. сп.
146 $Ni(HCO_2)_2 \cdot 2H_2O$	184,78	2,154	Разл.	Зел., кр.	귝.	:	•
147 Pb(HCO ₃),	297.23	4 63	Daam 190	Ren vn	1 616	18. 000	5

3
5
3
9
vč
ę
8
_
٩
-
3
8
•
c
Œ
2
. =
c

≃ on	Температура плавления,	
1		
		нтокп
1 :		3,733
71,9		2,695
~~	Разл.	
	Разл. 110	3,6919 Pas
	Разл.	<u>г</u> ,
	Разл. 175	2,207 Pa ₃
	Разл.	Д
	:	•
CQ.	7H,	-7H ₂ O, 150
~~	Разл.	3,458 P
	-2H	-2H ₂ O, 130;
	Pas	Pas
	Разл.	Д
٠.٧	Разл.	<u>Д</u> ,
_	1	1 1 1

4.2.18. Название солей некоторых органических кислот

М — одновалентный металл. Название кислых солей двухосновных кислот образуется посредством присоединения приставки гидро- к названию средней соли. (Устаревшее название солей образуют из названия кислоты с прибавлением прилагательного «кислый», напр. акриловокислый, уксуснокислый и т. п.)

Название соли	Соответствующая кислота	Формула солв
Акрилат	Акриловая	CH ₂ =CHCO ₂ M
Ацетат	Уксусная	CH_3CO_2M
Бензоат	Бензойная	$C_6H_5CO_2M$
Гидрооксалат	Щавелевая	$(C_2O_4)HM$
Гидротартрат	Винная	$(C_4H_4O_6)HM$
Бутират	Масляная	$CH_3(CH_2)_2CO_2M$
Валерат	Валериановая	$CH_3(CH_2)_3CO_2M$
Глицерофо сф ат	Глицеринфосфорная	$[C_3H_5(OH)_2OPO_3]M_3$
Какодилат	Какодиловая	$(CH_3)_2AsO_2M$
Капронат	Капроновая	$CH_3(CH_2)_4CO_2M$
Карбаминат	Карбаминовая	NH ₂ CO ₂ M
Ксантогенаты	Ксантогеновые кислоты (кислые эфиры дитио- угольной кислоты)	
Лактат	Молочная	CH ₃ CH(OH)CO ₂ M
Лаурат	Лауриновая	$C_{11}H_{23}CO_2M$
Линолеат	Линолевая	$C_{17}H_{31}CO_2M$
Малат	Яблочная	(CO ₂ M)CH ₂ CHOH(CO ₂ M
Малеат	Малеиновая	$(CO_2M)CH = CH(CO_2M)$
Малонат	Малоновая	$CH_2(CO_2M)_2$
Метилсульфат	Метилсерная	CH ₃ OSO ₂ OM

Название соли	Соответствующая кислот	а Формула соли
Миристат	Миристиновая	C ₁₃ H ₂₇ CO ₂ M
Монохлорацетат	Монохлоруксусная	CH ₂ Cl(CO ₂ M)
Нафтенат	Нафтеновые кислоты	• • • • • • • • • • • • • • • • • • • •
Нафтионат	Нафтионовая	$NH_2C_{10}H_6SO_3M$
Оксалат	Щавелевая	$C_2O_4M_2$
Олеат	Олеиновая	$C_{17}H_{33}CO_2M$
Пальмитат	Пальмитиновая	$C_{15}H_{31}CO_2M$
Пеларгонат	Пеларгоновая	C ₈ H ₁₇ CO ₂ M
Пикрамат	Пикраминовая	$C_6H_2(NO_2)_2(NH_2)OM$
Пикрат	Пикриновая	C ₆ H ₂ (NO ₂) ₃ OM
Пропионат	Пропионовая	C ₂ H ₅ CO ₂ M
Резинат	Смоляные кислоты канифоли	
Салицилат	Салициловая	C ₆ H ₄ (OH)CO ₂ M
Стеарат	Стеариновая	C ₁₇ H ₃₅ CO ₂ M
Стифнат	Стифниновая (трините рорезорцин)	C ₆ H(NO ₂) ₃ (OH) ₃
Сукцинат	Янтарная	$(CH_2)_2(CO_2M)_2$
Сульфанилат	Сульфаниловая	NH ₂ C ₆ H ₄ SO ₃ M
Сульфонаты	Сульфокислоты	$R(SO_3M)_n$
Гартрат	Винная	(C4H4O8)M2

Название соли	Соответствующая кислота	Формула, соли
Урат	Мочевая	С ₅ H ₃ O ₃ N ₄ М и С ₅ H ₂ O ₃ N ₄ M ₂
Ф орми ат	Муравьиная	HCO ₂ M
Фталат	Фталевая	$C_6H_4(CO_2M)_2$
Фумарат	Фумаровая	$C_2H_2(CO_2M)_2$
Цианат	Циановая	MNCO
Циннамат .	Коричная	C ₆ H ₅ CH=CHCO ₂ M
Цитрат	Лимонная	C ₃ H ₄ (OH) (CO ₂ M) ₃
Эна нтат	Энантовая	C ₆ H ₁₃ CO ₂ M
Этилсульфат	Этилсерная	C ₂ H ₅ OSO ₂ OM

4.2.19. Термодинамические величины для некоторых органических соединений

Обозначения: ΔH^0_{298} — изменение энтальпии (тепловой эффект) при обравовании соединения из простых веществ в стандартных условиях; ΔZ^0_{298} — изменение изобарного потенциала в стандартных условиях; S^0_{298} — стандартное значение энтропии; C_p — теплоемкость при постоянном давлении; \mathbf{r}_r — газообразное состояние; ж. — жидкое состояние; кр. — твердое кристаллическое состояние.

Формулы для вычисления теплоемкостей в указанном диапазоне температур с помощью приведенных в таблице коэффициентов:

$$C_p = 4{,}184 (a + bT + cT^2);$$
 $C_p = 4{,}184 (a + bT + c'T^2);$ $C_p = 4{,}184 (a + bT + cT^2 + dT^3).$

Формула и название	r	Агре- атное состо- яние	∆Н ⁰ кДж/моль	ΔZ ⁰ кДж/моль	S ⁰ 298, кДж/(моль-К
Углеводороды					
СН4, метан С2H2, ацетилен С2H4, этилен С2H4, этилен С2H6, этан С3H4, пропадиен С3H6, пропилен С3H8, пропан С4H8, 1,3-бутадиен С4H8, 1-бутилен С4H8, иис-2-бутилен С4H8, име-2-бутилен С4H8, гометилпропилен н-С4H10, н-бутан изо-С4H10, изо-бутан С5H10, циклопентан н-С5H12, н-пентан С5H12, 2-метилбутан С5H12, 2-метилбутан С5H12, 2-метилбутан С5H12, 2-метилбутан С5H12, 2-метилбутан С6H6, бензол С6H6, бензол С6H6, бензол С6H6, к-тексан н-С6H14, н-гексан н-С6H14, н-гексан н-С7H16, н-гептан н-С7H16, н-гептан н-С7H16, н-гептан н-С7H16, н-гептан н-С7H16, н-гептан н-С7H16, н-гептан п-С6H4(CH3)2, м-ксилол п-С6H4(CH3)2, м-ксилол п-С6H4(CH3)2, п-ксилол		Γ.Γ.Γ.Γ.Γ.Κ.Γ.Κ.Γ.Κ.Γ.Κ.Γ.Κ.Γ.Κ.Γ.Κ.Γ.Κ	226,748 52,283 -84,627 192,13 20,414 -103,847 110,16 -0,13 -6,99 -11,17 -16,90 -126,15 -134,52 -77,24 -105,86 -146,44 -154,47 -179,28	202,38 62,718	186,19 200,819 219,45 229,49 243,93 266,94 269,91 278,74 305,60 300,83 296,48 293,59 310,12 294,64 292,88 204,26 348,95 343,59 261,58 306,39 269,20 172,80 298,24 388,40 295,89 319,74 219,58 427,77 328,53 352,75 246,48 357,69 252,17 352,42 247,36 466,73 166,9 207,6 211,7
Кислородсодержащие НСОН, муравьиный альдегид НСООН, муравьиная кислота НСООН, муравьиная кислота			-362,63 -	-110,0 -335,72 -346,0	220,1 251,0 128,95

Коэффии	ненты урави	ения <i>С</i> р	φ (Т), Дж/(і	моль • К)	Температур-	C ⁰
а	10-8 b	10 ⁸ c'	10-s c	10-• d	ный диапазон, К	P 298
4,171	14,45	• • •	0,267	1 700	009 1500	ዐ፫ ማነሮ
5,6 07	20,499	• • • •	13,944	1,722 3,793	298—1500 298—1500	35,715 43,928
1,003	36,948	•••`	-19,381	4,019	2981500	43,56
1,074	43,561	• • •	—17,891	2,581	298—1500	52,6 50
3,62	36,17	• • •	-12,16		273—1200 298—1500	58,9 9
0,790 —1,147	56,372	• • •	28,107	5,420	298—1500	63,89
 0,707	73,449 81,282	• • •	-38,279 -53,463	7,827	298—1500 298—1500	73,51
0,607	82,440	• • •	55,465 45,718	13,511 9,958	298-1500	79,54
2,097	81,847		-47,161	8,191	298—1500 298—1500	85,65 78,91
2,003	73,504		— 35,434	6.521	298—1500 298—1500	87.82
1,693	76,872		-39,692	8,006	298—1500 298—1500	89,12
0,112	92,107		-47,534	9,552	298-1500	97,45
1,635	97,907		-52,712	10,932	298 - 1500	96,82
⊶ 13,000 30,29	130,450	* * *	- 73,543	15,916	298—1500	82,93
0,345	113,880	4 4 4	50.040	10.046	298	126,73
 2,220	123,739	•••	59,849 70,005	12,246 15,483	298—1500 298—1500	120,21 118,78
39,40	•••	• • •		10,403	298	164,85
 3,610	131,114	• • • •	 77,180	17,577	298—1500	121,63
-8,102 14,22	112,780	•••	—71,306	16,930	298—1500	81,67
► 16,172	60,95 162,393	• • •	01.004	10.044	281—353	135,77
0,737	135,226		-91,004 -71,790	18,644	298—1500 998—1500	106,27
46,59		• • •	/1,/30	14,833	298	143,09 194,93
 8,098	133,137		81,829	19,090	298 1500	103,76
14,25	78,15		•••		281-382	157,11
1,200	156,252	• • •	 83,350	17,286	298—1500	165,98
33,2 -3,540	141,285	• • •	01.104	450.000	298	138,9
44,9	141,200	•••	- 81,164	17,853	298—1500	133,26
- 6,545	148,393	• • • •	— 86,973	19,450	298 298—1500	187,9 127,57
43,8	•••	• • •		15,450	298	183,3
 6,196	145,716		-83,783	18,374	298—1500	126,86
43,9		• • •	• • •	•••	298	183,7
1,651	177,317	• • •	- 94,950	19,752	298-1500	188,87
39,5 47,1	• • •	•••	•••	• • •	298	165,3
49,7	•••	• • •	•••	•••	298	197,1
56,0	***	•••	• • •	•••	298 298	207,9 234.3
•						
4,498	13,953	•••	-3,730	•••	291—1500	35,36
7,33	21,32	•••	-8,255	• • • •	300-700	54,4
23,67					298	99,04

Формула и название	Агре- гатное состо- яние	ΔН ⁰ кДж/моль	∆Z ⁰ кДж/моль	S ⁰ 298, кДж/(моль·К)	
СН ₃ ОН, метиловый спирт СН ₃ ОН, метиловый спирт СН ₃ СОН, уксусный альдегид СН ₃ СООН, уксусная кислота СН ₃ СООН, уксусная кислота С ₂ Н ₅ ОН, этиловый спирт С ₂ Н ₅ ОН, этиловый спирт СН ₃ СОСН ₃ , ацетон СН ₃ СОСН ₃ , ацетон м-С ₃ Н ₇ ОН, м-пропиловый спирт изо-С ₃ Н ₇ ОН, изо-пропиловый	Г. К. Г. Ж. Г. Ж. Г. Ж.	-201,17 -238,57 -166,36 -487,0 -436,4 -277,63 -235,31 -248,283 -216,98 -306,98 -320,29	-161,88 -166,23 -133,72 -392,5 -381,6 -174,47 -168 62 -155,44 -152,44 -152,11	237,7 126,8 265,7 159,8 293,3 160,7 282,0 200,0 295,89 192,9 179,9	
спирт изо-С ₈ Н ₇ ОН, изо-пропиловый спирт СН ₂ ОН-СНОН-СН ₂ ОН, глице-	Г. Ж.``	-268,61 -659,4	-175,35 -469,0	306,3 207,9	
рин $C_2H_5OC_2H_5$, этиловый эфир $C_4H_8O_2$, диоксан $CH_3COOC_2H_5$, уксусноэтиловый	Ж. Ж. Кр.	-273,2 -397,81 -463,2	-116,65 -232,88 -315,5	253,1 196,6 259	
эфир C_6H_5OH , фенол C_6H_4 (OH) $_2$, гидрохинон $C_6H_4O_2$, хинон C_6H_5COOH , бензойная кислота $C_6H_4O_2C_6H_4$ (OH) $_2$, хингидрон $C_{12}H_{22}O_{11}$, тростниковый сахар	Kp. Kp. Kp. Kp. Kp. Kp.	155,90 367,8 190,8 384,55 576,6 2220,70	-40,75 -221,8 -91,2 -245,6 -326 -1529,67	142,3 141,8 165,7 170,7 295,0 359,824	
Галоидсодержащие СН ₃ Сl, клористый метил СН ₂ Сl ₂ , дихлорметан СНСl ₃ , хлороформ СНСl ₃ , клороформ ССl ₄ , четырехклористый углерод ССl ₄ , четырехклористый углерод ССl ₄ , подистый метил	Г. Г. Ж. Г. Ж.	-82,0 -88 -131,8 -100 -139,3 -106,7 20,5	58,6 59 71,5 67 68,6 64,0 22,2	234,18 270,62 202,9 296,48 214,43 309,41 254,60	
С131, иодистый метил С ₆ H ₅ Cl, хлорбензол Азотсодержащие СО(NH ₂) ₂ , мочевина	Ж. Кр.	20,5 116,3 -333,189	-198,3	197,5 104,60	
$NH(CH_3)_2$, диметиламин $CH_2(NH_2)COOH$, аминоуксусная кислота (гликоколь) C_5H_5N ; пиридин $C_6H_5NH_2$, анилин $C_6H_5NO_2$, нитробензол	Г Ж. Ж. Ж.	-27,6 -528,57 78,87 35,31 15,90	59,0 —370,74 159,8 153,22 146,23	273,2 109,2 179,1 191,6 244,3	
Serial O2, unipodenson	/I\.	10,50	1 10,20	211,0	_

	Коэффиц	циенты ураві	нения $C_{p} =$	• φ (Т), Дж/	(моль К)	Температур-	c_{o}^{0}
	а	10-3 b	10 5 c'	10-6 c	10 -9 d	ный диапазон, К	<i>C p</i> 29 8
	4,88	24,78	• • •	5,889	-5,889	300—700	49,4
	19.5	• • •	• • •	• • •	• • •	298	81,6
	7,422	29,029	• • •	8,742	8,742	2981500	62,8
	13,10	55	•••	•••	• • • •	297—353	123,4
	5,20	46,15	• • •	18,35	18,35	300700	72,4
	25,46	39,6	• • •	137,5	137,5	283—348 300—1500 298—320 298—1500	111,46
	4,946	-49,087	•••	23,855	23,855	300—1500	71,1
•	13,29	55,5		15 100		298-320	124,73
	5,371	48,227		-15,182	-15,182	298—1500	75,3
	31,35	• • •	•••	• • •	. • • •	275	
	39,0	• • • •	•••	•••	• • •	293	
					-		
	53,3	•••	•••	•••	52,0	298	223,0
	40,8					290	
	36,5				•••	298	152,7
	40,4	• • •	• • •	•••	•••	293	102,1
	,.						
	5,5	68,8		52,0	• • •	78—296	133,1
	2,0	102,0	• • •	•••	• • •	187—445	139,7
	5,4	89,0		• • •	• • •	73—298	132,6
	37,1	• • •	• • • •	•••	•••	298	155,2
	103	•••	•••	•••	•••	- 298	430,952
					•		
	3,562	23,0		7,541		273800	40.79
	8,00	15,6	•••	-1,011	• • •	273—800	51,38
	• • • •	•••	•••		•••		116,3
,	7.052	35,598	•••	21,680	• • •	273—800	65,81
	23,42	26,70		•••	• • •	273—330	131,75
	23,34	2.30	3,60			298—1000	85,51
	4,105	24,487	3,00	<u>9,733</u>	• • •	298—600	44,14
	34,8	24,401	•••	9,733	• • •	298	145,6
	04,0 _	•••	•••	. •••	•••	230	140,0
	22,26	• • • • •		• • •		298	93,14
	. 16,58	• • •	•••	•••	•••	298	69,37
	4,2	65,5	•••	•••	•••	93—300	99,2
	33,5	•••	•••	•••		293	
	80,85	255,4	• • •	483,3	• • •	278348	199,6
	44,3	•••	****	• • •	• • •	293	

4.3. СИНТЕТИЧЕСКИЕ КРАСИТЕЛИ

Синтетические органические красители являются сложными соединениями, содержащими ядра бензола, нафталина, антрацена и др.

Сырьем для получения этих красителей служат так называемые промежуточные продукты, представляющие собой производные ароматических углеводородов: бензола, толуола, нафталина и др. К промежуточным продуктам относятся: анилин, бензидин, толуидин, нафтиламины, нитроанилины, фенолы, нафтолы, динитрохлорбензолы, антрахинон и многие другие.

Основная масса органических красителей применяется в текстильной промышленности для окраски пряжи и изделий из различных волокон (природных, искусственных, синтетических). Кроме того органические красители применяются для окраски других материалов (кожи, бумаги, резины, дерева, жиров и восков, мыла, пищевых продуктов), для изготовления лаков, чернил, типографских красок.

Окрашенность красителей зависит от наличия в их молекулах особых ненасыщенных групп атомов, называемых хромофорами (-HC=CH-*, C=O, -N=CH-, -N=N-, -N=O и др.); способность окрашивать другие вещества обусловливается присутствием атомных групп, носящих название ауксохромов (-OH, -NH₂, -SH. —NR₂ и др.).

В молекулы красителей для придания им нужных свойств вводят различные заместители, например, кислотные группы - SO₃H,

--СООН, и галогены.

Пример. Азокраситель патентный черный содержит хромофоры -N=N-, ауксохромы -OH, кислотные группы (в виде натрийвамещенных) -SO₂Na:

Для облегчения или проведения процесса кращения требуется ряд вспомогательных веществ:

1. Комплексообразующие вещества, умягчающие воду: натриевая соль нитрилотриуксусной кислоты (трилон А), натриевая соль этилендиаминтетрауксусной кислоты (трилон В) и др.;

2. Смачивающие вещества: натриевая соль изобутилнафталинсульфокислоты (некаль ВХ), натриевая соль сернокислого эфира дибутиламида оксистеариновой кислоты (хюмектол СХ);

3. Моющие вещества, устойчивые к кальциевым солям: натриевая

соль изододецилбензосульфокислоты (накканол) и др.;

4. Диспергирующие, эмульгирующие и эгализирующие вещества. К ним относятся ализариновые масла, получаемые из сульфированного касторового масла, водорастворимые полигликолевые эфиры (например, перегаль О), лигнинсульфокислота (деколь N) и др.

В качестве протрав для закрепления основных красителей на хлопке применяются катанолы или таннин в сочетании с рвотным камнем.

Кроме упомянутых, существует большое число веществ, применяемых при крашении: дезэмульгаторы, загустители, отбеливающие вещества (NaClO₂), защитные средства для волокон, вещества, придающие тканям водоотталкивающие свойства и др.

4.3.1. Классификация красителей по химическому строению

Красители классифицируют в зависимости от их химического строения или от применения для крашения тех или иных материалов. Эти два метода классификации связаны друг с другом, так как в одних случаях крашение некоторыми группами красителей нельзя осуществить без учета их химического строения, в других — для подразделения некоторых больших групп красителей необходимо знать их красящие свойства. При классификации также учитывается метод получения и применения красителей (см. таблицу на стр. 504-519).

4.3.2. Классификация красителей по красящим свойствам

Кислотные красители составляют наиболее важную группу красителей, применяемых для крашения шерсти и других протеиновых волокон из кислой ванны. Этот класс красителей представляет собой главным образом натриевые соли сульфокислот. Практически большинство кислотных красителей принадлежит к азо- и антрахиноновым классам.

Кислотно-протравные красители являются кислотными красителями с дополнительным свойством закрепляться на волокне с помощью

металлических протрав (особенно соединений хрома).

Основные красители, представляющие собой аммониевые, сульфониевые или оксониевые соли, окрашивают шерсть из нейтральной или слабокислой ванны, а также протравленный хлопок. Основные свойства красителю сообщает азот, находящийся в виде первичных или третичных аминогрупп или в составе гетероциклической системы. Основные красители не прочны к свету и поэтому не находят широкого применения.

Прямые красители для хлопка применяются для прямого окрашивания хлопка, а также шерсти и шелка из нейтральной и мыльной ванны. Они представляют собой натриевые соли сульфокислот, но главным образом являются азокрасителями, обладающими специфическими структурными особенностями, вызывающими субстантивность к целлюлозным волокнам. Мало прочны к свету и мытью, но широко применяются в больших количествах ввиду дешевизны и простоты крашения.

Кислотные, основные и прямые красители для хлопка растворимы

Азоидные красители (ледяные, проявляющиеся) представляют собой нерастворимые в воде азокрасители, получающиеся на целлюлозных волокнах путем обработки щелочным раствором азосоставляющей с последующим проявлением диазониевой солью. В качестве азосоставляющей применяются главным образом ариламиды 2-окси-3-нафтойной кислоты или β-нафтол. Для крашения и печати по хлопку в темные тона ледяные красители стоят на втором месте после кубовых, но превосходят их по яркости и прочности окраски.

^{*} Хромофорные свойства группы — НС=СН — проявляются только при достаточно большом числе этих групп (не менее шести).

Ŀ	danudii
Характерные структурные	
Наименование класса красителей	

Нитрокрасители

Нитрофенол или нитро-ариламин

Нафталовый желтый S

Нитрозокрасители

о-Нитрозофенол

Прочно-зеленый О

Продолжение таблицы Пример Характерные структурные признаки Наименование класса красителей

Азокрасители

растворимые моноазо-или полиазокрасители

Ar-N=N-Ar'

$$NH_2$$

$$N=N$$

$$SO_3N_a$$

$$NaO_3S$$

Конго красное

 O_2N NaO3S-

о-Оксиазогруппа

протравные красители

Эриохром черный Т

Продолжение таблицы	Пример	
	Характерные структурные признаки	
	Наименование класса красителей	

Азокрасители

красители, образующие Координативносвязанный металлические комплек- металл

маматиновый прочно-синий GGN

Тертразии

пиразолоновые

1-Фенил-4-фенилазо-5-пиразолон

Продолжение таблицы Пример Характерные структурные признаки Наименование класса красителей

Азокрасители стильбеновые

Стильбеновые и азо- или азоксигруппы

 $-N = N - C_6 H_5$ SO3NaNaO3S -CH=CH-CeHSN II N-

Составная часть дифенилцитронина G

красители для ацетил• Производные целлюлозы

аминоазо-

CH2-CH2OH C_2H_5 -N II N-

Целлитоновый вытравной алый В

азоидные (нерастворимме Производные β-нафтола азокрасители, получаю-щиеся на волокне)

Алый GG - Нафтол As

80			Продолжение таблица
	Наименование класса красителей	Характерные структурные признаки	Пример
	Азокрасители азоидные (нерастворимые Ацетоацетарилиды азокрасители, получаю- щиеся на волокне)	Ацетоацетарилиды	$CH_3 - C = C - CONH$ $OH \prod_{ij} OH$ $OH \prod_{ij} OH$
	Тиазоловые	Аминотиазол, или азотиа- волсульфокислота, или	Алый GG — Нафтол As — G
	•		NaO_3S \square \square \square \square \square \square \square \square \square \square
•	Дифенилметановые	-C- = NH ₂ Cl	$(CH_3)_2N$ CH_3 NH_3 CH_3 CH_3 CI
1			Аурамин О

Наименование класса красителей	Характерные структурные признаки	Пример
Трифенилметановые		
диамины (ряда малахи- См. пример тового зеленого)	. См. пример	(CH ₃) ₂ N N(CH ₃) ₂ CI
		C,H ₅
		Малахитовый зеленый

триамины

См. пример

510

Трифенилметановые фенолы (ряда розоловой См. пример кислоты)

Хромовый фиолетовый

Продолжение таблицы Пример Характерные структурные признаки Наименование класса красителей Ксантеновые

производные трифенил- См. пример метана (фталеиновые)

, (CH₃)₂ ğ .COONa Эозин NaO (CT3)2N См. пример

ᄓ

Азиновые

Акридиновые

См. пример

5 CH₃ Акридиновый оранжевый Сафранин Т C_6H_5 J, H_2N

2			in poorwering maountain
	Наименование класса красителей	Характериме структурные признаки	Пример
	Оксазиновые	См. пример	
			ф — Meльдола синий

Нафтазарин

່ວ

N(CH₃)₂

кубовые 1) производные антра- Замещенный антрахинон хинона

Индантреновый синий RSN

2) производные антрона Бензантрон, пиримидантрон и т. д.

Наименование класса красителей Индигоидные производные и тионафтена

-co-c=c-co-

MARANCOTAH

Продолжение таблицы

Пример

Характерные структурные признаки

17*

Twomhanro and R. R.

производные 2, 3'-индола См. пример и тионафтена

Пример Характерные структурные признаки Наименование класса красителей

Индигоидные конденсации С продукты конденсации С индоксила, тиоиндоксила или изатина с соответствующей составляющей

См. пример

Циба алый G

Растворимые кубовые краси. NaO₃S-O

индигоидные

SO3Na

ŠO₃Na Индигозоль О SO₃Na

антрахиноновые

Продолжение таблицы Пример Характерные структурные признаки Наименование класса красителей

Сернистые красители

Сернистый черный Т динения неопределенного строения, очевидно, серосодержащие гетероциклы и дисульфидные или сульфоксидные группы Высокомолекулярные сое-

Осерненные кубовые краси. См. пример тели

Гидроновый синий

Фталоцианиновые

Кольчатая система из четырех изоиндолов и четырех атомов азота

Монастралевый прочно-синий BS

Цианиновые производные жинолина

Гетероциклические кольпа, соединенные группами = CH(—CH=CH)_n—; одно из колец содержит четвертичный азог

 H_5C_2-N CH-CH=CH

Kpuntounahnn

Наименование класса красителей

Характерные структурные признаки Hy , KH

Пример

Продолжение таблицы

производные других оснований

0=CH-CH=CH-CH

Астрафлоксиновый FF

Разные красители

Протравные красители обладают свойством соединяться с оксидами металлов и солями, с образованием комплексов, иногда называемых лаками. Многие из природных красящих веществ являются протравными красителями (оксиантрахиноны, флавоны, антоцианины). В качестве протравы применяются алюминий, хром, железо и олово. Протравные свойства красителей объясняются наличием групп, способных прочно соединяться с металлом или образовывать хелатные связи.

Эти красители разделяют на четыре основных типа: 1) ализарин и его аналоги (2) о-о-диоксиазосоединения; 3) азосалициловые кислоты;

4) о-нитрофенолы или о-хинонмонооксимы.

Кубовые красители нерастворимы в воде, образуют растворимые натриевые соли при обработке едким натром и восстановителем, обычно $Na_2S_2O_4$. Этот процесс восстановления и растворения носит название «кубования» и выражается схемой

$$C=O \xrightarrow{[H]} C-OH \rightarrow C-ONa.$$

Кубы (натриевые соли продуктов восстановления, лейкосоединения) обладают сродством к текстильным волокнам, в особенности к хлопку. Применяются также для крашения шерсти. Относятся к двум основным химическим классам — к индигоидным и антрахиноновым красителям. Отличаются высокой прочностью.

Небольшая группа сульфированных кубовых красителей получается сульфированием некоторых индофенолов и производных антра-

хинона.

Водорастворимые формы кубовых красителей представляют собой натриевые соли сернокислых эфиров лейкосоединений С—OSO₃Na и обладают меньшим сродством к волокнам, чем натриевые соли лейкосоединений. Волокно пропитывают раствором такого красителя, обрабатывают кислотой и окисляющим агентом (обычно H_2SO_4 и NaNO₂); при этом происходит гидролиз и окисление с образованием исходного кубового красителя. Применяются для крашения хлопка.

Сернистые красители, так же как и кубовые, нерастворимы в воде и образуют натриевые соли при восстановлении в щелочной среде. Крашение производят из горячей ванны в присутствии сульфита натрия (восстановитель); при этом на волокне после выдержки на воздухе образуется исходный краситель.

В особенно больших количествах применяется краситель сернистый черный для крашения хлопка; широко применяются также красители сернистый синий и сернистый зеленый. Сернистые красители обычно применяются для крашения хлопка. Очень прочны к свету и

мытью.

Красящие вещества, получаемые окислением на волокне. Отличаются от азоидных по способу применения. Характерным примером может служить черный анилин; он получается при пропитывании хлопка солянокислым анилином и окислением последнего на волокне с образованием прочного черного красителя, имеющего, по-видимому, строение типа сложного азинового производного. В качестве окислительного агента применяют хлорат натрия вместе с сульфатом меди, являющимся переносчиком кислорода.

Красители для крашения ацетилцеллюлозы. Для крашения ацетилцеллюлозных волокон, не адсорбирующих обычных красителей для хлопка, применяются водные дисперсии красящих веществ, нерастворимых или мало растворимых в воде. С химической точки зрения они представляют собой аминоазосоединения и производные аминоан-

трахинона, содержащие обычно остаток этаноламина (—NHCH $_2$ CH $_2$ OH) или подобные группы, придающие им способность диспергироваться и адсорбироваться на ацетилцеллюлозе. Эти соединения можно также использовать для крашения ацетилцеллюлозы в виде водорастворимых натриевых солей неполных сернокислых эфиров (соединений типа ArNHCH $_2$ CH $_2$ OSO $_3$ Na).

Дисперсные красители. Для поверхностного окрашивания могут быть использованы также тонкодиспергированные в воде пигменты и смолы. Применение водных дисперсий для ацетилцеллюлозы основано на растворимости органических пигментов в волокне. При крашении и печати по хлопку пропитывание происходит механически и пигмент

ватем фиксируется на волокне с помощью смолы.

4.3.3. Номенклатура красителей

Названия красителей составляются таким образом, чтобы отразить их технические свойства, цвет и способ применения. Для большинства красителей они состоят из двух-трех слов, после которых часто следуют буквенные обозначения. Для некоторых красителей сохранены укоренившиеся международные названия, например, ализарин, аурамин, индиго, родамин, сафранин, фуксин, хризофенин и др.

Первое слово в названии красителя обычно указывает группу по технической классификации, к которой он принадлежит, — кислотный, прямой, основный, сернистый, кубовый, пигмент, лак и т. п. Для красителей специального назначения первым словом обозначается цвет, а затем указывается назначение (для меха, для кожи и т. д.). В названиях красителей, образующихся окислением на волокне, первое слово — окисляемый, окрашивающих химические волокна из дисперсий — дисперсный, легкосмываемых — легкосмываемый.

Второе слово обозначает цвет красителя — алый, желтый, красный, синий и т. д. Иногда названию цвета предшествуют приставки или слова, указывающие на характер оттенка или особенности применения красителя: темно-фиолетовый, ярко-красный, чисто-голубой, диазожелтый, хром желтый, однохром коричневый и т. п. Приставка диазо- указывает, что краситель диазотируется на волокне, хром — что краситель хромируется на волокне после крашения, однохром — что хромирование проводится одновременно с крашения. В названиях дисперсных красителей, предназначенных для крашения химических волокон только одной группы, после названия цвета красителя добавляется название группы волокон — полиамидный, полиэфирный и т. д.

Третье слово обозначает прочность окраски (прочный, светопрочный и др.), характеризует структурные группировки (антрахиноновый, трифенилметановый, фталоцианиновый и т. д.) или физикохимическое состояние красителя (кристаллический, в порошке, в

растворе, в пасте и т. п.).

Буквы после названия красителя указывают на его оттенок или другие свойства: Ж — желтоватый, К — красноватый, С — синеватый; буква «О» указывает, что краситель имеет основной оттенок данного цвета. Буквенные обозначения, следующие за буквами, характеризующими оттенок красителя, для разных групп красителей имеют значения, приведенные в таблице.

В тех случаях, когда имеется несколько красителей одного цвета, но разных оттенков, в названиях красителей перед буквами ставятся цифры, показывающие степень отклонения оттенка. Например, оттенок красителя кислотного зеленого 4Ж желтее оттенка красителя кислотного зеленого 2Ж, а последний желтее, чем краситель кислотный зеленый Ж (цифра 3 не ставится).

Букві	13		Группа	красителей		
или их со- чета- ния		е Прямые	Кубовые	Сернисты	е Пигменты и лаки	Активные
Α	•••	•••		•••	Для краше-	
	-				ния ацетат	
-					ного шелка	
Б	•••	•••		•••	B Macce	
_			•••		В состав лака входит	
_ `					барий	
В	•••	•••	В виде по-		Для краше-	**
		•	рошка для	Ī	ния вискозь	1 .
			крашения		в массе	
			вискозы в массе	5		•
Д	•••	•••	Краситель	в лисперс-		
				стоянии		
K	• • •	•••	•••	. *	В состав	
					лака входит	•
M	В состав	молекулы	Для краще		Кальций	
		металл	ния меха		В состав лака	
			mena		входит мар- ганец	•
H	Окраши-	• • •	•••	•••	В состав ла-	
	вает				ка входит	
	шерсть в нейтраль-		•		натрий	
П	ной среде	• • •	Для печати			π
			ANN HOTAIR		•••	Для поли-
_						амидных волокон
P		•••	•••	•••	Только для	•••
У		0			резины	
	• •••	Окраска упрочня-	•••	Окраска		
		ется со-		упрочня- ется со-		
		лями ме-		лями ме-		
		ди		ДИ		
X	• • •	Окраска	Крашение по	• • • •	• • •	Краше-
		упрочня-	холодному			ние по
		ется со-	способу			холод-
		лями хро- ма				ному спо-
Ц	Цинковая	ма	вного красит	- Απα		собу
	Применяет	CS TOJL-	Kpachi			П
		крашения	- • •	•••	•••	Для шер- сти
	шубной	ОВЧИНЫ				СІИ
Бс	Бисульфат	ное соеди	нение красит	еля		
ГΠ	•••	•••	•••	•••	В порошке	
					для глубокой	
					полиграфи-	

ческой печати

Буквы или			Группа к	расителей		
оо жи чета- ния	Кислотные	Прямые	Кубовые	Сернис- тые	Пигменты и лаки	Активные
МП	*,* *	•••	•••	•••	Масляная паста для полиграфии	Металл, содержащий азокраситель для поли-амидного
TΠ	•••	***		•••	Для пиг- ментной пе- чати и крашения	волокна

4.4. ВИТАМИНЫ

Витаминами называют содержащиеся в пище физиологически активные вещества, необходимые для нормальной жизнедеятельности организма.
В 1956 г. комиссия по номенклатуре биохимической секции Международного союза по чистой и прикладной химии предложила классифицировать витамины следующим образом:

Новая номенклатура	Прежние обозначения	Новая номенклатура	Прежние обозначения
Водораствори		Жирораствор	имые
Аскорбиновая кисло та	- Витамин С	Ретинол	Витамин А
Тиамин Рибофлавин Пиридоксин Цианкобаламин Никотиновая кислот и ее амид	$egin{array}{lll} & \mbox{Витамин} & \mbox{B}_1 \\ & \mbox{Витамин} & \mbox{B}_2 \\ & \mbox{Витамин} & \mbox{B}_6 \\ & \mbox{Витамин} & \mbox{B}_{12} \\ & \mbox{Витамин} & \mbox{PP} \\ \end{array}$	Дегидроретинол Эргокальциферол Холекальциферол α, β, γ-токоферолы Филлохинон	Витамин A ₂ Витамин D ₂ Витамин D ₃ Витамин E Витамин K ₁
Пантотеновая кисло та Биотин	- Витамин В ₃ Биотин	Фарнохинон Другие	Витамин К2
Мезоинозит	Витамин В ₈		Витамин F
н-Аминобензойная кислота	Витамин Н _{1)}	KHC/IOTM	
Фолиевая кислота	Витамин ВС	Производные фла-	Витамин Р
Холин	Холин	Карнитин	Витамин $B_{\mathbf{r}}$ Витамин B_{13} Витамин B_{15}

4.4.1. Химическая характеристика витаминов

Отдельные витамины или их группы относятся к различным классам органических соединений.

Витамины алифатического ряда

Высшие ненасыщенные жирные кислоты (витамин F): линолевая $C_{17}H_{31}COOH$, линоленовая $C_{17}H_{29}COOH$ и арахидоновая $C_{19}H_{31}COOH$. Аскорбиновая кислота (витамин C) — производное лактона ненасыщенной полиоксикислоты

Холин — производное β-оксиэтиламина [CH₂(Θ H)CH₂N(CH₃)₃]OH. Пантотеновая кислота (витамин B₃) CH₂(OH)C(CH₃)₂CH(OH)CONHCH₂CH₂COOH.

Витамины алициклического ряда

Мезоинозит — производное циклогексана 1, 2, 3, 5/4, 6 — циклогексангексол $C_6H_{12}O_6$.

Ретинол, дегидроретинол (витамины группы A и каротины, провитамины A) — производные циклогексана с полиеновой изопреноидной цепью. Ретинол (витамин A)

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_4
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_6
 CH_7
 Кальциферолы (витамины группы D) — стероидные соединения.

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_4
 CH_5
 CH_5
 CH_5
 CH_7
 Эргокальциферол (витамин D₂)

Холекальциферол (витамин D₃)

Витамины ароматического ряда

n-Аминобензойная кислота $H_2C_6H_4COOH$. Филлохинон, фарнохинон (витамины группы K) — производные нафтохинона. Филлохинон (витамин K_1).

Фарнахинон (витамин K_2) содержит еще более длинную боковую цепь, состоящую из 30 атомов углерода.

Производные флавонов (эриодиктины, гесперидин, рутин, катежины) (витамины группы Р).

Токоферолы (витамины группы Е) — производные хромана

$$HO$$
 CH_3 CH_2 CH_2 CH_3 C

Символом R обозначена цепь:

Витамины гетероциклического ряда

Никотиновая кислота и ее амид (витамины группы РР). Никотиновая кислота (β-пиридинкарбоновая)

Производные пиридина (витамины группы В6)

$$\begin{array}{c} CH_2NH_2\\ HO-C \\ C\\ C-CH_2OH \\ H_3C-C \\ N\end{array}$$

Пиридоксалин

Тиамин (витамин B_1) — производное бициклической пиримидинотиазольной системы. Соль тиамина

Биотины (витамины группы H) — производные конденсированной бициклической имидазолидо-тиофеновой системы:

Рибофлавин (витамин В2) — производное изоаллоксазина

$$H_3C$$
 N
 CO
 NH

Фолиевая кислота - производное птерина

Цианкобаламин (витамин B_{12}) — кобальтовый комплекс нуклеотида диметилбензимидаэола и порфириноподобной циклической системы. Цианкобаламин содержит около 4,5 % массовых долей кобальта; состав его отвечает формуле $C_{63}H_{90}O_{14}N_{14}PCo$.

4.4.2. Свойства и физиологическое действие витаминов

Принятые сокращения и обозначения

Ац. - ацетон Безв. -- безводный Бесц. -- бесцветный Бз. -- бензол Гл. — глицерин Гор. - горячий Гс. — гексан Ж.- жиры Желт. -- желтый Крист. - кристаллы Мет. - метанол Мол. — молекулярная Н. — не растворяется Орган. — органический Р. — растворяется Разл. — разлагается Сп. —этанол Т. кип. - температура кипения Т. пл. — температура плавления Тр. р. — трудно растворяется Х. р. — хорошо растворяется Хл. - хлороформ Э. — эфир λ_{\max} — максимум в спектре поглощения $[\alpha]_D$ — удельное вращение

528	Наимявование, формула; мол. масса	Состояние и физико-химические свойства	Источника	Физиологическое действие	
	Ретинол (витамин А) С ₂₀ Н ₃₀ О; 286,46	Желт. крист.; т. пл. 63—64 °С, т. кип. 133 °С (10-7 кПа); $\lambda_{\text{max}} = 328$ ни; устойчив к щелочам и к нагреванию без доступа O_2 ; легко окисляется, чувствителен к ультрафиолетовому излучению; р. в. ж. и многих орган. растворителях, н. в воде	Рыбий жир, печень животных, яичный желток, молоко. Каротин (провитамин А) содержится в свежих овощах (моркови, томатах), фруктах и ягодах, ботве огородных растениях и др. Синтезирован	Предупреждает и из- лечивает некоторые заболевания глаз, ды- хательных органов, желез. Способствует росту. Усиливает со- противляемость орга- низма к инфекционным	
	Эргокальциферол (витамин D ₂) С ₂₈ Н ₄₄ O; 396,66 Холекальциферол (витамин D ₃)	Kpucr.; T. na. 115—116 °C; $\lambda_{\text{max}} = 265$ hm (B rc. u э.) [α] _D = 102,5° (B cm.); 81° (B au.); p. B ж., au., cm., 3., B sore T. na. 82—84 °C; [α] _D = 83,8° (B au.); p. B ж., au., cm., 3.; H. B sore	Рыбий жир, печень животных, яичный желток, молоко. В приро- де встречаются провитамины каль- циферолов (эргостерин и др.), под действием ультрафиолетового из- лучения превращающиеся в каль- пиферол	заболеваниям Предупреждают и из- лечивают рахит	
	С ₂₇ Н ₄₄ U; 384,65 α-Токоферол (вита- мин Е) С ₂₈ Н ₆₂ O ₂ ; 430,72	$C_{27}H_{44}$ О; 384,65 α - Токоферол (вита- Бесц. масло; термоустойчив; неустой- мин E) $C_{29}H_{62}O_2$; чив в щелочной среде; р. во многих 430,72 орган. растворителях	летерем, яичный желток, молоко (летнее), зеленые листья овощей, мука грубого помола, плоды ши-повника и др.	Ускоряет заживление ран, применяется при малокровии, общей слабости организма	
•	Филлохинон (вита- Желт. масло; т. мин К ₁) С ₃₁ Н ₄₈ О ₂ ; чив к действию 450,71 в воде; р. в сп., в воде Фарнохинон вита-Т. пл. 51—52 °С мин К ₂) С ₄₁ Н ₆₆ О ₂ ; растворителях 580,90	(вита- Желт. масло; т. пл.— 20 °С; неустой- 14 «О2; чив к действию света и в щелочной среде; р. в сп., ац., бз., хл., гс.; н. в воде воде Т. пл. 51—52 °С; р. во многих орган. 1 «6.02; растворителях	Печень животных, клеб, овощи (особенно их зеленые части)	Способствует свертыванию крови	
	Метил-2-нафтохи- Т. пл. нон-1,4 (витамин в воде К ₃) 'С ₁₁ Н ₈ O ₂ ; 172,19	Т. пл. 160°С; р. в э., бз., сп.; тр. р. тв воде)	Синтетический продукт	То же	18
	<i>I-</i> Аскорбиновая кислота (витамин С) С ₆ Н ₈ О ₆ ; 176,13	новая Крист.; т. $\eta_{\rm J}$. 192 °C; $\lambda_{\rm max}=266$ нм (витамин (в воде), $[\alpha]_{\rm D}^{20}=49^{\circ}$ (в мет.); легко разл. при нагревании с ${\rm O}_{\rm z}$, неустойчив в щелочной среде	Свежие овощи, плоды, ягоды, хвоя, листья некоторых растений и др. Особенно много в пиповнике, черной смородине, перце красном, хрене, укропе, капусте цветной, луке зеленом, клубнике, рябине, томатах. цитруссвых	Специфическое противоцинготное действие. Усиливает сопротивыляемость организма к инфекционным заболеваниям	
	Тиамин (витамин В ₁) С ₁₂ Н ₁₆ ON ₄ Cl ₂ S 335,27	Твамин (витамин Крист.; т. пл. 233—234 °C (из мет.), В ₁) С ₁₂ Н ₁₆ ON ₄ Cl ₂ S; 250 °C (из смесей мет. и сп., сп. и 335,27 воды); $\lambda_{\text{max}} = 235$ нм (в воде), 267 нм (в сп.); термоустойчив в кислой среде, неустойчив в щелочной среде, в воде; р. в сп., мет.; тр. р. в ац.	Печень, дрожжи, хлебные злаки, бобовые, орехи и др. Синтезирован	Предупреждает и из- лечивает полиневриты, укрепляет нервную си- стему	
	Рибофлавин (вита- мин В ₂) С ₁₇ Н ₂₀ О _в N ₄ ; 376,37		Многие пищевые продукты. Син- тезирован	Благоприятно действует при расстройствах нервной системы, желуудочно-кишечного тракта, при поражениях кожных покровов. Усиливает сопротивляемость организма к инфекционным заболеваниям	
529	Пиридоксин С _в Н ₁₁ О ₃ ; 169,18	Основание; т. пл. 160 °C; $\lambda_{\rm max} = 326$, 297 и 252 нм; р. в воде, сп., гор. ац.; образует хлоргидрат с т. пл. 170 °C (разл.); возгоняется	Печень, яичный желток, молоко, дрожжи, хлебные злаки, бобовые, картофель, морковь и др. Синтезированы	Играют важную роль в биологических про- пессах человеческого организма.	
)					

Продолжение таблицы

			И родолжение таблицы
Наименование, формула; мол. масса	Состояние и физико-химические свойства	Источники	Физиологическое действие
Холин С ₅ Н ₁₅ О ₂ N; 121,18	Холин С ₅ Н ₁₅ О ₂ N; Бесц. сильно гигроскопичные крист., 121,18 легко превращающиеся в вязкую жидкость; х. р. в воде, абсолютном сп.	Печень, янчный желток, мясо рыб, хлебные злаки, овощи и др. Син- тезирован	Предупреждает ожирение печени, стимулирует рост некоторых микроорганизмов. Необходим всем животным
Незаменимые жир ные кислоты (вита мин F) Линолевая С ₁₈ Н ₃₂ О ₂ ; 280,45 Линоленовая С ₁₈ Н ₃₀ О ₂ ; 278,44 Арахидоновая С ₂₀ Н ₃₂ О ₂ ; 304,47	Незаменимые жир- Бесц. масла; н. в воде; х. р. в сп., ные кислоты (вита- э., ац., хл. и др.; перегоняются в ва- куме с небольшим разл. Линолевая Т. пл.—5 °С, г. кип. 149,5 °С (0,13 кПа); С ₁₈ Н ₃₂ О ₂ ; 280,45 А _{тах} = 190 нм Т. пл. 11 °С, г. кип. 157—158 °С (о,13 кПа); С ₁₈ Н ₃₀ О ₂ ; 278,44 (0,1—0,2 · 10 ⁻³ кПа); Арахилоновая Т. пл. 49,5 °С, т. кип. 160—165 °С (со,13 кПа); Арахилоновая Т. пл. 49,5 °С, т. кип. 160—165 °С (со,13 кПа); Арахилоновая Т. пл. 49,5 °С, т. кип. 160—165 °С (со,13 кПа); Арахилоновая Т. пл. 49,5 °С, т. кип. 160—165 °С (со,13 кПа); Арахилоновая	Растительные масла — подсолнеч- ное, соевое, льняное, хлопковое и др. Арахидоновая кислота в не- больших количествах обнаружива- ется лишь в животных жирах. Син- тезированы линолевая и ланолено- вая кислоты	Влияют на процесс усвения жиров и жировой обмен, явля-ясь биокатализаторами. Повышают эластичность и устойчивость стенок кровеносных сосудов. Предупреждают и излечивыют дерматиты у человека и животных
Производное флавонов (витамин Р цитрин)	Производное фла-Смесь глюкозилов эриодиктола (т. пл. вонов (витамин Р, 267°С) и гесперетина : (т. пл. 227—цитрин) и 228°С); тр. р в воде	Цитрусовые, перец красный, плоды шиповника, черная смородина, зе- леные листья чая и др.	Повышает устойчи- вость и проницаемость стенок кровеносных сосудов

ГАЗЫ

5.1. ПРИВЕДЕНИЕ ОБЪЕМА ГАЗА К НОРМАЛЬНЫМ УСЛОВИЯМ

Нормальные условия для газов: температура 0 °C, давление 101325 Па или 101,325 кПа (760 мм рт. ст.). При нормальных условиях объем 1 моля газа равен 22,416 дм³.

5.1.1. Расчетные формулы

В случае сухого газа (улавливается над ртутью):

$$\begin{split} V_0 &= \frac{273,2V_tP}{101,325(273,2+t)} = fV_t, \\ V_0 &= \frac{273,2V_tP_1}{760(273,2+t)} = f_1V_t, \end{split}$$

где V_0 — объем газа, приведенный к нормальным условиям; V_t — объем газа, измеренный при температуре t °C и давлении P, P_1 , кПа, мм рг. ст. соответственно, с поправкой на температуру и капиллярную депрессию ртутного столба (рис. 1, 2); f, f_1 — коэффициенты пересчета.

В случае газа, насыщенного водяными парами (собирается над водой):

$$V_0 = \frac{273,2V_t (P-p)}{101,325 (273,2+t)} = fV_t,$$

$$V_0 = \frac{273,2V_t (P_1-p_1)}{760 (273,2+t)} = f_1V_t,$$

где p, p_1 — давление паров воды, к Π а, мм рт. ст., при температуре

В диапазоне температур 6—36 °С и давлений, близких к атмосферному, для расчета можно пользоваться числовыми значениями факторов f, f_1 , приведенными в таблице.

 f_1 , приведенными в таблице. Пример. 500 см 3 газа собрано над водой при температуре 29 °C и давлении 760 мм рт. ст.

Барометр имеет латунную шкалу и трубку диаметром 1 см. Высота мениска 1 мм. Капиллярная депрессия +0,3 мм (рис. 1).

Рис. 1. Поправка на капиллярную депрессию ртутного столба.

Температурная поправка равна —3,6 мм. Для стеклянной шкалы температурная поправка составляет —3,8 мм (рис. 2), давление паров при 29 °C достигает 30 мм рт. ст.

Расчет. Истинное давление газа: $P_1 = 760 + 0.3 - 3.6 - 30 = 726.7$ мм рт. ст. Значение фактора f_1 по табл. 5.1.12 - 0.864. Отсюда $V_0 = 500 \cdot 0.864 = 432$ см³. В таблице кроме температуры указано соответствующее давление насыщенных водяных паров в паскалях или миллиметрах ртутного столба.

При использовании номограмм (рис. 1, 2) для барометров, градуированных в миллибарах, необходимо учитывать, что 1 мм рт. ст. = 133,3 Па.

5.1.1.1. Значение фактора $f = \frac{273,2 \cdot P}{101,325(273,2+t)}$

N₂	t. °C	р,					/ при <i>P</i>	٠,
n/n t, °C	t, °C	10 ² Па	880	900	920	940	960	Ī
1	6	9,3	0,850	0,869	0,888	0,908	0,927	
2	. 8	10,7	0,844	0,863	0,882	0,901	0,920	
2 3		12,3	0,838	0,857	0,876	0,895	0,914	
4 5 6	12	14,0	0,832	0,851	0,870	0,889	0,908	
5	14	16,0	0,826	0.845	0,864	0 882	0,901	
	16	18,1	0,820	0,839	0,858	0,876	0,895	
7	18	20,7	0,815	0,833	0,852	0,870	0,889	
8 9	20	23,3	0,809	0,828	0,846	0,864	0,883	
9	22	26,4	0.804	0,822	0,840	0,859	0,877	
10	24	29,7	0,798	0,816	0,835	0,853	0,871	
11	26	336	0,793	0,811	0,829	0,847	0,865	
12	28	37,7	0,788	0,806	0,824	0.841	0,859	
13	30	42,4	0,783	0,800	0,818	0,836	0,854	
14	32	47,6	0,777	0,795	0,813	0,830	0,848	
15	34	5 3,2	0,772	0,790	0,807	0,825	0,843	
16	36	59,5	0,767	0,785	0,802	0,820	0,837	

5.1.1.2. Значение фактора $f_1 = \frac{273.2 \cdot P_1}{760 \cdot (273.2 + t)}$

N₂	t°, C	p_1 ,					f_1 при P_1 ,
n/n	,,,	мм рт. ст.	670	680	690	700	710
1	6	7,0	0,864	0,875	0,890	0,900	0,914
2 3	8	8,0	0,850	0,868	0,885	0,895	0,906
	10	9,2	0,850	0,862	0,877	0,889	0,901
4 5	12	10,5	0,845	0,855	0.871	0,882	0,895
5	14	12,0	0,840	0,850	0,865	0,876	0,889
6	16	13,6	0,833	0,844	0,860	0,870	0,883
7	18	15,5	0,827	0,838	0,855	0,864	0,876
8	20	17,5	0,821	0,833	0,847	0,858	0,870

0≇ Па	•					
980	1000	1020	1040	1060	1080	N≥ 17/1
0,846	0,966	0,985	1,004	1,024	1,043	1
0,940	0,959	0,978	0,997	1,016	1,036	2
0,933	0,952	0,971	0,990	1,009	1,028	. 3
0,926	0,945	0,964	0.983	1,002	1.021	4
0,920	0,939	0,958	0.976	0.995	1,014	4 5 6 7 8 9
0,914	0,932	0,951	0,970	0,988	1,007	6
0,907	0,926	0,944	0,963	0,981	1,000	7
0.901	0,920	0,938	0,956	0,975	0,993	. 8
0,895	0,913	0,932	0,950	0,968	0,986	
0,889	0,907	0,925	0,944	0,962	0,980	10
0,883	0.901	0,919	0,937	0,955	0,973	11
0,877	0,895	0,913	0,931	0,949	0,967	12
0,871	0,879	0,907	0,925	0,943	0,960	13
0,866	0,883	0,901	0,919	0,936	0,954	14
0,860	0,878	0,895	0,913	0,930	0,948	15
0,855	0,872	0,889	0,907	0,924	0,942	16

ым рт. ст.						
720	730	740	750	760	770	N₂ п/п
0,925	0.939	0.953	0,965	0,978	0,990	1.
0.918	0.930	0.946	0.959	0,971	0,984	2
0.914	0.927	0,939	0.952	0,965	0,977	3
0.908	0.920	0,933	0,945	0,958	0,971	4
0,901	0,914	0.926	0,939	0,951	0,964	5
0.895	0.907	0,920	0,932	0,945	0,957	6
0.889	0.901	0.914	0.926	0,938	0,951	7
0.883	0.895	0,907	0,920	0,932	0,944	8

N₂	t°. C	p_1					f_1 при P_1 ,		
п/п	1,0	мм рт. ст.	670	680	690	700	710		
9 10 11 12 13 14 15 16	22 24 26 28 30 32 34 36	19,8 22,4 25,2 28,3 31,8 35,7 39,9 44,6	0,816 0,811 0,805 0,800 0,795 0,790 0,785 0,780	0,828 0,827 0,815 0,810 0,805 0,800 0,795 0,790	0,841 0,835 0,830 0,825 0,820 0,815 0,810 0,803	0,852 0,847 0,841 0,835 0,830 0,824 0,819 0,816	0,865 0,859 0,853 0,847 0,842 0,836 0,831		

5.2. КОНЦЕНТРАЦИЯ ГАЗОВ

5.2.1. Способы определения концентрации

Для определения содержания газа в газовой смеси обычно пользуются массовой концентрацией — отношение массы газа к объему газовой смеси $(\kappa r/m^3)$ и объемными долями — отношение объема газа к объему смеси $(\%, \ ^{\circ}/_{\circ \circ}, \ mлh^{-1}, \ cm. \ n. \ 9.1)$.

5.2.2. Формулы пересчета концентраций

Принятые обозначения: M — молярная масса газа, г/моль; p — давление газа, Па (мм рт. ст.); p_0 — нормальное давление газа, 101325 Па (760 мм рт. ст.); V_t — объем газа при температуре t.

Искомое содержа	Заданное содержание газа в смеси		
Новый способ выраже- ния	Прежний способ выражения	C _M	. c _o
Массовая концентра- ция, г/м³ — С _м	Весовая концент- рация, г/м ³	C _M .	$\frac{10C_0M_{\mu}}{22,4V_tp_0}$
Объемная доля, %—	Объемная концентрация, об. %	$\frac{22,4C_{\rm M}V_tp_{\rm O}}{10Mp}$	· C o

5.3. ВЫЧИСЛЕНИЕ МАССЫ И ОБЪЕМА ГАЗОВ

Масса газа в данном объеме и объем, занимаемый массой газа:

$$G = \frac{273,2MpV}{101,325 \cdot 22,4(273,1+t)} = \frac{0,1204pMV}{273,2+t},$$

мм рт. ст.							
720	7 30	740	750	760	770	№ n/n	
0,877 0,871 0,865 0,859 0,854 0,848 0,842 0,840	0,889 0,883 0,877 0,871 0,865 0,860 0,854 0,851	0,901 0,895 0,889 0,883 0,877 0,872 0,866 0,863	0,913 0,907 0,901 0,895 0,889 0,883 0,878 0,875	0,925 0,919 0,913 0,907 0,901 0,895 0,889 0,886	0,938 0,931 0,925 0,919 0,913 0,907 0,901 0,898	9 10 11 12 13 14 15	

$$G = \frac{273,2Mp_1V}{760 \cdot 22,4(273,2+t)} = \frac{0,01605p_1MV}{273,2+t},$$

$$V = \frac{101,325 \cdot 22,4G(273,2+t)}{273,2Mp} = \frac{8,31G(273,2+t)}{Mp},$$

$$V = \frac{760 \cdot 22,4G(273,2+t)}{273,2Mp_1} = \frac{62,36G(273,2+t)}{Mp_1},$$

где M — молярная масса газа, г/моль; p, p_1 — давление газа, кПа, мм рт. ст. соответственно; t — температура газа, °C; G — масса газа, г: V — объем газа, дм³.

Относительная плотность газа d по отношению к другому газу при одинаковых давлениях и температурах

$$d = \rho_1 : \rho_2 \approx M_1 : M_2.$$

Относительная плотность газа по воздуху: $d \approx \frac{M}{29}$; по отношению к водороду: $d \approx \frac{M}{2}$, где ρ_1 и ρ_2 — плотности газов; M, M_1 и M_2 — молярные массы газов; 29 и 2 — округленные значения молярной массы воздуха и водорода.

5.4. ИДЕАЛЬНЫЕ ГАЗЫ

5.4.1. Уравнение состояния идеальных газов (уравнение Менделеева)

$$pV = nRT, \ pV = \frac{G}{M}RT,$$

где p, V, n, G, M и T — давление, объем, число молей, масса, молекулярная масса и температура газа; $R=\frac{p_0V_0}{273,2}$ — униве рсальная газовая постоянная (p_0 — нормальное давление, V_0 — объем 1 моля газа при нормальных условиях).

Физический смысл газовой постоянной — работа расширения 1 моля идеального газа при повышении температуры на 1° при постоян-

ном давлении.

5.4.2. Универсальная газовая постоянная

p	. v	R
Па	м ³	8,314 Дж/(моль · К)
мм рт. ст.	CM ³	6,236 · 104 мм рт. ст. · см ³ /(моль · K)
мм рт. ст.	Л	62,36 мм рт. ст л/(моль - К)
атм	CM ³	82,05 атм · см ³ /(моль · К)
атм	Л	0,08205 л - атм/(моль - К)
дин/см ²	CM ³	8,314 · 10 ⁷ эрг/(моль · K) = = 1,987 кал/(моль · K)
кгс/см²	см ³	84,8 кгс · см/(моль · К)
Krc/m²	M ³	0,848 кгс · м/(моль · К)

5.4.3. Кинетическая теория газов

Основное уравнение кинетической теории газов:

$$pV = \frac{1}{3} N_0 m \tilde{u}^2,$$

средняя кинетическая энергия поступательного движения молекул газа:

$$\varepsilon = \frac{m\overline{u}^2}{2} = \frac{3}{2} kT,$$

среднее число столкновений одной молекулы в секунду:

$$z = 4\sqrt{2} N\pi r^2 \overline{u}_a,$$

средний свободный пробег молекулы:

$$\lambda = \frac{\overline{u}_a}{z} = \frac{1}{4 \sqrt{2} N \pi r^2},$$

коэффициент вязкости газа (при средних давлениях)

$$\eta = \frac{Nm\overline{u}_a\lambda}{3}.$$

где m — масса•молекулы; r — газокинетический раднус молекулы; $N_0 = 6,022 \cdot 10^{23}$ — число молекул в 1 моле газа (число Авогадро); $N = 2,69 \cdot 10^{19}~(2,69 \cdot 10^{29}~{\rm m}^{-3})$ число молекул в 1 см 3 газа при нормальных условиях (число Лошмидта);

$$k = \frac{R}{N_0} = 1,38066 \cdot 10^{-16} \text{ эрг/моль} \cdot \text{K} =$$

= 1,38066 · 10⁻²³ Дж/моль · K

- постоянная Больцмана;

$$\overline{u} = \sqrt{\frac{3RT}{M}}$$

- среднеквадратичная скорость молекул;

$$\overline{u}_{a} = \sqrt{\frac{8RT}{\pi M}} = 0.817\overline{u}$$

— среднеарифметическая скорость молекул. Наиболее вероятная скорость молекул:

$$u_m = \sqrt{\frac{2RT}{M}} = 921\overline{u}.$$

Соотношение между этими скоростями:

$$u_m : \overline{u}_a : \overline{u} = 1 : 1,128 : 1,224.$$

5.4.4. Молекулярные данные для некоторых газов

Газ	М, кг/моль	<i>г</i> , нм	и _а , м/с, при 0°C	λ, нм	z · 10-9,	η·10-7, Па·с, при 20°С
Ar.	39,948	0,146	394,66	62,2	6,35	222
Cl ₂	70,906	0,145	285,60	28,7	9,97	133
ČÖ	28,011	0.160	471,30	59,0	7,99	177
CO ₂	44,010	0.166	375.99	38,9	9,67	147
H_2^{-2}	2,016	0,1235	1756,70	111,6	15,74	88
$H_2^{\prime}O$	18,015	0,1345	566,50	40,4	14,02	97
HČI	36,461	• • •	412,56	42,6	9,69	143
He	4,003	0,098	1246,60	175,3	7,14	196
Kr	83,800		272,64	47,2	5,78	246
N_2	28,013	0,159	471,25	59,2	7,97	175
NH,	17,031	0,1485	582,70	44,1	13,20	. 98
Ne	20,183		5 55,21	123,8	4,48	310
SO,	64,063	0,169	300,40	29,0	10,30	126
Xe	131,300	•••	217,68	34,5	6,31	226

5.4.5. Энергия диссоциации $\{E\}$ молекул газов

Газ	Е, кДж/моль	Газ	Е, кДж/моль	Газ	Е, кДж/моль
Br ₂ CO Cl ₂ D ₂ F ₂	193,0 880,5 242,0 440,0 272,1	H,O HBr HCl HF HI	432,5 365,5 429,6 617,6 298,9	$\begin{matrix} I_2 \\ N_2 \\ NO \\ O_2 \end{matrix}$	151,6 712,6 510,0 491,1

5.5. КОЭФФИЦИЕНТЫ ПРЕЛОМЛЕНИЯ ГАЗОВ И ПАРОВ

При нормальных условиях для желтой линии натрия (n_D) $n_D = 589.3$ нм.

Газ или пар	ⁿ D	Газ или пар	n _D	Газ или пар	n _D
Воздух Ar CCI CO CO ₂ CH ₄ C ₂ H ₄ C ₂ H ₉ C ₆ H ₆ CH ₃ C CH ₃ CI CHCI ₃	1,000292 284 1125 1768 334 450 441 696 606 788 449 865 1455	CH ₃ OH H-C ₅ H ₁₂ Cl ₂ CS ₂ F ₂ He He Hg HBr HCl HI H ₂ O H ₂ S	1,000586 1701 768 1476 195 138 035 933 570 444 906 252 619	Kr. N ₂ Ne NH ₃ N ₂ O NO O P PCI ₃ S SO ₂ SO ₃ Xe	1,0004 27 297 067 375 515 297 272 1212 1780 1111 660 737 702

5.6. ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ ГАЗОВ И ПАРОВ ПРИ НОРМАЛЬНОМ ДАВЛЕНИИ

Значения диэлектрической проницаемости ϵ применимы для всех частот менее 10^6 Гц.

Газ или пар	<i>t,</i> °C	104 · (ε—1)	Газ или пар	t °C	104 · (e1)	Газ или пар	t °C	104 • (ε—1)
Воз- дух (су- хой) Ar CO CO_2 C_2H_4 C_6H_6	0 20 0 25 0 25 100	5,76 5,36 5,36 6,4 9,88 13,20 32,70	$\begin{array}{c} \mathrm{CH_3OH} \\ \mathrm{C_2H_5OH} \\ \mathrm{CS_2} \\ \mathrm{D_2} \\ \mathrm{H_2} \\ \mathrm{He} \\ \mathrm{H_2O} \end{array}$	100 100 29 0 0 0	57 78 29,0 2,70 2,72 7,0	N ₂ , Ne NH ₃ N ₂ O O ₂ SO ₂ O ₃	0 0 1 25 0 22 0	5,88 12,7 1,71 10,3 5,31 82 19,0

Пример. Для сухого воздуха при 0 °C $\epsilon = 1 + 5.76 \cdot 10^{-2} = 1.660576$.

5.7. РЕАЛЬНЫЕ ГАЗЫ

5.7.1. Уравнение состояния реальных газов (уравнение Ван-дер-Ваальса)

$$(p + a/V_2)(V - b) = RT$$
,

где a/V_2 — поправка на взаимное притяжение молекул газа (внутреннее давление); b — поправка на собственный объем молекул.

5.7.2. Коэффициенты сжимаемости газов

Истинный коэффициент сжимаемости газа или жидкости является пределом, к которому стремится значение среднего коэффициента сжимаемости ρ (см. 7.1 и 8.2), когда Δp стремится к нулю.

В случае сжатия при постоянной температуре коэффициент сжимаемости называется изотермическим (β_f). Если же сжатие происходит без обмена теплом с окружающей средой, то он называется адиабатическим (β_{ag}).

Величины $eta_t = -\frac{1}{V} \left(\frac{dV}{dp} \right)_t$ и $eta_{\rm ag} = \frac{1}{V} \left(\frac{dV}{dp} \right)_{\rm \delta Q=0}$ связаны соотношением $eta_t = eta_{\rm ag} \frac{C_p}{C_v}$, где C_p — удельная теплоемкость при постоянном давлении и C_v — удельная теплоемкость при постоянном объеме.

В таблице приведены значения β_{ag} · 10^6 , мм рт. ст. -1

	В _{ад}			β _{a,z}	τ		β _{ад}		
Газ	рт. ст1	гПа−1	Газ	мм рт. ст1	гПа−1	Газ	рт. ст1	гПа−1	
Boз- дух (су- хой) Ar Cl ₂ CO CO ₂ H ₂	0,8 1,3 0,57 0,6 9,2 0,8	0,6 1,0 0,430 0,45 6,9 0,6	HBr HCl HI H ₂ O (nap) H ₂ S H ₃ As	15 9,8 24 45,9 13,7 1,8	11 7,4 18 34,4 10,3 1,4	He N ₂ NH ₃ N ₂ O NO NO NO Ne O ₃ Xe	0,7 0,6 20,3 9,5 1,5 0,6 60 9,1	0,5 0,45 15,2 7,1 1,1 0,45 45 6,8	

5.7.3. Основные физические константы некоторых газов

Принятые обозначения: M — молярная масса газа; V_0 — объем, занимаемый одним молем газа при нормальных условиях; ρ — плотность при нормальных условиях; d — относительная плотность по воздуху; $t_{\rm пл}$ и $t_{\rm кип}$ — температуры плавления и кипения при давлении 101325 Па; критические параметры: $t_{\rm k}$ — температура; $\rho_{\rm k}$ — давление; $V_{\rm k}$ — объем; константы Ван-дер-Ваальса: a — Па \cdot см²/моль; b — см³/моль (см. таблицу на с. 542—543).

	26,0												_		9 31,8					
10,76	6,59	:	0,24	3,70	5,52	4,47	0,03		2,34	1,36	1,35	3,82	4,24	0,21	1,379	:	65,50	9,860	8,310	4,130
	3,64							•	2,95	3,42	3,91	3,70	4,124	3,37	3,42	2,63	:	3,69	3,82	3,61
221,6	124,2	:	64,3	86,8	56,8	:	9,09		_						74,3			•		
40,1	77,1	55,7	13,0	82,7	220,6	90,1	2,3								50,4					
111,5	144,0	-129	-239,9	51,4	374,0	100,4	-267,9		63	-147,1	- 94	36,5	-132,4	-228,7	-118,8	5	104	157,2	218,3	16,6
28	-34	-187	-252,7	-84	100,0	7,09—	-268,9		-153,0	-195,8	-151,8	-88,5	-33,35	-245,9	-182,9	-111,5	61,8	-10,08	44,8	-108,1
-160	-102	223	-259,2	-112	Ô	-85,6	-272,2	(2,6 M∏a)	-156,6	-210	-163,7	7,06—	7,77—	-248,9	-218,4	-251,5	-71	— 72,7	16,8	-112
4,262	2,468	1,311	0,070	1,268	0,594	1,190	0,138		2,868	296,0	1,037	1,530	0,597	969'0	1,105	1,658	7,526	2,264	2,780	4,510
5,510	3,214	1,695	0,090	1,639	0,768	1,539	0,178		3,739	1,251	1,340	1,980	0,771	006'0	1,429	2,114	9,730	2,927	3,600	5,890
21,95	22,02	22,42	22,43	22,25	22,45	22,14	22,42		22,38	22,40	22,39	22,25	22,08	22,43	22,39	21,60	22,89	21,89	22,49	22,29
120,914	20,906	37,997	2,016	36,461	18,015	34,080	4,003		83,80	28,013	30,006	44,013	17,031	20,183	31,999	47,998	222	64,063	80,062	131,30
CC1,F,	CI,	Ľ,	H,	HCI	H_2O	H ₂ S	He	·	Κr	ž	NO.	O ₈ N	NH	Ne	°o	်ီ	Rn	SO ₂	so³	Xe

5.8. ВЯЗКОСТЬ, ДИФФУЗИЯ И ТЕПЛОПРОВОДНОСТЬ ГАЗОВ И ПАРОВ

Принятые обозначения: μ — коэффициент вязкости при давлении 0,1 МПа и температуре 20 °C; k — коэффициент диффузии в воздухе при давлении 0,1 МПа и температуре 0 °C; λ — коэффициент теплопроводности при температуре 0 °C.

Газ или пар	µ • 10−², Па • с	k · 10−4, м/с	λ·10-2, Вт/ (м·К)		μ· 10-7, Πα· c	k • 10-4, M/C	λ·10-2, Βτ/(м·K)
Воздух	181	•••	2,4	Cl_2	133		0,8
Ar	222	•••	1,7	$(CN)_2$	107	• • •	• • •
Br_2	154	• • •	• • •	CS ₂	96	0,0883	0,7
CO	175	• • •	2,3	H_2^-	88	0,0634	16,7
CO ₂	148	0,139	1,4	Hē	194	• • •	14,1
CH ₄	109	0,196	3,1	Hg	532(300°C)	. • • •	0,8
-							(203°C)
C_2H_6	92(17°C)	• • •	1,8	HCl	141 (17°C)	• • •	•••
C_3H_8	79(18°C)	• • •	• • •	H_2O	.97	0,198	1,6
$H-C_5H_{12}$	62(0°C)	• • •	1,3	H_2S	125	• • •	1,3
C ₂ H ₄	101	• • • .	1,7	Kr	246(15°C)	• • •	. 0,9
C_2H_2	102	0,194	1,8	N_2	175	0,172	2,4
C_6H_6	74	0,0751	0,9	Ne	312	• • •	4,6
CH ₃ COCH ₃	7 8	• • •	1,0	NH_3	- 98	0,198	2,2
$(C_2H_5)_2O$	74	0,0775	1,3	N₂Ŏ	146		1,5
CH ₃ OH	• • •	0.1325	1,4	ΝÕ	188		2,3
C₂H¸OH	90	0,1016	1,5(20°C)	O_2	203	0,178	2,4
CH ₃ ČI	• • •	•••	···′ 0,9	SŐ ₂	126		0,8
CHCI	100		0,6	Xe	226		0,5

5.9. ТЕПЛОЕМКОСТЬ ГАЗОВ

Теплоем кость — отношение количества теплоты, сообщаемой системе в каком-либо процессе, к соответствующему изменению температуры. Различают теплоемкость удельную (отнесенную к единице массы вещества, $Дж/(r \cdot K)$) и молярную (отнесенную к 1 молю вещества, $Дж/(моль \cdot K)$).

В расчетах применяют изохорную теплоемкость (при постоянном объеме) — C_v и изобарную теплоемкость (при постоянном давлении) — C_v

Молярная теплоемкость:

$$C_p = c_p M$$
, $C_v = c_v M$,

Рис. 4. Теплоемкость газов и паров при давлении 0,1 МПа.

A COMPANY OF THE PARTY.

где M — молярная масса газа; c_p и c_v — удельные теплоемкости. $C_p - C_v = R = 8,314$ Дж/(моль · K) = 1,987 кал/(моль · K); $\frac{C_p}{C_v} = \frac{c_p}{c_v} = k$.

$$\frac{C_p}{C_p} = \frac{c_p}{c_p} = k$$

Пля одноатомных газов:

$$C_v = \frac{3}{2} R = 12.5 \text{ Дж/(моль · K)} \approx 3 \text{ кал/(моль · K)}; h = 1.67.$$

Для двухатомных газов:

$$C_v = \frac{5}{2} R = 20.8 \text{ Дж/(моль · K)} \approx 5 \text{ кал/(моль · K)};$$
 $k = 1.40.$

Пля многоатомных газов:

$$C_v = \frac{6}{2} \; R = 24,9 \; \text{Дж/(моль · K)} \approx 6 \; \text{кал/(моль · K)}; \; \; k = 1,33.$$

Средняя удельная теплоемкость:

$$c_{p(cp)} = \frac{c_{p_2}t_2 - c_{p_1}t_1}{t_2 - t_1}.$$

5.9.1. Теплоемкость газов при давлении 0,1 МПа

Газ или пар	t, °C	с _р , кДж/ (кг∙К)	с _р , кДж/ (кмоль.К)	<i>k</i> (при 15 °C)
He	• • •	5,23	20,9	1,67
Ar	• • •	0,523	20,9	1,67
H_2	0-200	14,23	28,76	1,41
Воздух сухой	15	1,006	29,15	1,40
CO	26 - 198	1,017	28,47	1,40
N_2	0-200	1,051	29,43	1,40
O_2^2	20-440	0,92	29,3	1,40
HČ1	22 - 214	0,783	28,55	1,41
HBr	11-100	0,343	27,80	1,42
Cl_2	13-202	0,519	36,80	1,36
\mathbf{Br}_2	18-388	0,230	37,7	. 1,29
H ₂ S	20-206	1,026	34,96	1,34
$\overset{\mathbf{CO}_{2}}{\mathbf{CO}_{2}}$	0-600	1,026	45,2	1,30
N_2 O	15	1,110	36,89	1,30
SO ₂	16-202	0,645	41,32	1,29
CS ₂	86—190	0,670	51,1	1,19
H_2^{0}	100-500	2.010	36,26	1,324 (100° C)
NH ₃	27—200	2,244	38,1	1,31
C_2H_2	18	1,67	43,80	1,26
$C_{2}^{2}H_{4}$	10102	1,691	47,44	1,25
C_2^{114}	15	1,72	51,9	1,21
CH ₄	18-208	2,483	39,82	1,31
C_6H_6	35—115	1,256	98,0	1,10 (100 °C)
C_{6}^{6116}	15	1,616	131,5	1,08
CH ₃ OH	101—223	1,918	61,5	1,20 (77 °C)
C_2H_5OH	40—110	1,21	56,02	1,13 (58 °C)
CH ₃ COCH ₃	27—179	1,566	90,8	•••
CH ₃ CO ₂ C ₂ H ₅	35—189	1,553	136,9	1,22
(CH) C	27—189	1,934	143,2	1.08 (35 °C)
$(C_2H_5)_2O$ CHCl ₃	27—118	0,603	72,0	1,15 (100 °C)

5.10. СЖАТЫЕ И СЖИЖЕННЫЕ ГАЗЫ

5.10.1. Плотность газов $\{ \rho \}$ в жидком состоянии

Газ	t, °C	ρ·10 ³ , KΓ/M ³	Газ	t, °C	ρ • 10 ³ , KF/m ³	Газ	t, °C	р · 10³, кг/м³
Воз-	— 192*	0,96	CH ₄	-82,5**	0,16	HCI	—85*	1,19
дух			_	+9,4**	0,22	H_2	253*	0,07
	140,7**		C_2H_4	-21	0,41	He	2 68 ,9*	0,12
Ar	186*	0,41	C_2H_2	23,5	0,52	HI	+13,6	0,99
	122**	0,53	- 4	+20	0,40	Kr	-146,0	2,16
CO	-192*	0,80		- -36**	1,23	H ₂ S	60	0,96
	139**	0,31	Cl.	-34*	1,56	N_2	195,8*	0,81
CO_2	60	1,19	-	+20	1,41		-147,1**	0,31
4	+20	0.77		+144,5**	0,58			
	+31,1**	0,47	F_2	—188*	1,11	SO ₂	-10,1*	1,46
N_2O	-20	1,00	O_2	183*	1,14	-	+20	1,38
2 -	+20	0,80	- 4	-118,8*	0,43		+157,5	0,52
NH_3	-10	0,65	O_3	-183,7	1,71	Xe	-108*	3,06
3	+20	0,61	PH ₃	-87,4*	0,76		+16,6**	1,16
Ne	-245,9*	1,20	3		,		1 7-	

^{*} Температура кипения при давлении 101325 На; ** критическая температура.

5.10.2. Давление паров сжиженных газов

_	р, 0,1 МПа, при t, °C								
Газ	-30	-20	-10	0	10	20	30		
NH_3	1,20	1,90	2,91	4,30	6,15	8,57	11.66		
SO,	0,37	0,64	1,01	1,55	2,33	3,27	4,56		
CO ₂	14,29	19.70	26,49	34,86	45,00	57,27	72,10		
Cl,	1,25	1,86	2,64	3,70	5,03	6,66	8,71		

5.10.3. Теплота парообразования (Q) сжиженных газов при нормальном атмосферном давлении

Газ	Q ₁ , кДж/кг	Q ₂ , кДж/молн	Газ	Q ₁ , кДж/кг	Q ₂ , кДж/моль
Bоздух Ar CO Cl ₂ H ₂ He	205,1 157,4 215,6 259,6 471,0 23,1	6,07 6,70 6,03 18,42 0,94 0,09	H ₂ S N ₂ NH ₃ O ₂ SO ₂	552,7 199,3 1369,5 213,6 414,1	18,84 5,57 23,61 6,83 26,46

5.10.4. Удельная теплота парообразования (Q) сжиженных газов при различных температурах

CO ₂	<i>t</i> °,С Q, кДж/кг	—55 342,4	-40 320,7	20 283,9	—10 261,7	0 234,9	10 . 201,2	20 155,3	30 63,2
NH ₃	кдж/кг t, °C Q, кДж/кг	-40 1393,8	—20 1328,5	-10 1296,6	0 1263,6	20 1189	40 1101	55 1026	
SO ₂	<i>t,</i> °C <i>Q,</i> кДж/кг	-40 414,1	0 399,8	10 385,6	20 371,6	30 349,6	40 338,3	50 326,2	60 394,3

5.10.5. Удельная теплоемкость сжиженных газов

Газ	t, °C	<i>c_p</i> , кДж/кг	Газ	t, °C	<i>с</i> _р , кДж/кг
Воздух	—192	1,88	Cl2	0-24	1,114
Ar	-172,2	1,114	•	8015	0,934
H_2	-255,6	0,221	O_2	216	1,675
$N_2^ NH_3$	-195,5	2,05	-	200	1,650
NĤ,	40	4,413	SO ₂	-180	1,700
•	0	4,601	-	20	1,310
	40	4,865		0	1,331
				. 20	1,369

5.10.6. Баллоны для сжатых и сжиженных газов

Газ	Цвет баллона	Цвет надписи	Цвет полосы под надписью	Тип бал- лона
Азот	Черный	Желтый	Коричневый	A
Аммиак	Желтый	Черный	·	Ε
Аргон сырой	Сверху — желтый, снизу — черный	Черный (надпись «сырой аргон»)		A
Аргон очищен-	Черный	Синий (надпись «аргон»)	Белый	A
Ацетилен	Белый	Красный		В
Блаугаз	Серый	Красный		Б
Водород	Темно-зеленый	Красный		. A
Воздух сжатый	Черный	Белый	-	A
Гелий	Коричневый	Белый		A
Горючие газы	Красный	Белый		E
Кислород	Голубой	Черный	_	Α
М ет а н	Красный	Белый	_	A
Бутилен	Красный	Желтый (надпись «бутилен»)	Черный	E

Продолжение таблицы

Газ	Цвет баллона	Цвет надписи	Цвет полосы под надписью	Тип бал- лона
Сероводород	Белый	Красный	Красный	Е
Серы диоксид	Черный	Белый (надпись «се- рнистый ангидрид»)		Γ
Углерода ди- оксид	Че рный	Желтый (надпись «углекислота»		В
Фостен	Защитный	——————————————————————————————————————	Красный	Е
Хлор	Защитный	-	Зеленый	Ē
	•	•		

Примечание. Тип баллона АБВГ Е Рабочее давление, МПа 15,0 12,5 3,0 0,6 3,0

5.11. ТЕПЛОВОЕ РАСШИРЕНИЕ И ВЛАЖНОСТЬ ГАЗОВ

5.11.1. Тепловое расширение газов

При постоянном давлении $V_t=V_0$ $(1+\alpha t)$, где V_t и V_0 — объемы газа при температуре t и 0 °C; α — коэффициент расширения. В диапазоне температур 0—100 °C и при давлении 101325 Па коэф

В диапазоне температур 0—100 °С и при давлении 101325 Па коэффициент расширения равен для воздуха, O_2 , N_2 , CO — 0,00367; для CO_2 — 0,00371; для Ne, He, H_2 — 0,00366; для Cl_2 — 0,00383; для SO_2 — 0,00390.

5.11.2. Влажность газа (f), насыщенного водяными парами

t, °C	f, r/m³	t, °C	f, r/m ⁸	ŧ, °C	f, r/m ⁸	<i>t</i> , °C	f, r/m³
-15 -10 -5	1,4	15	13	45	65	75	242
 10	2,2	20	17	50	83	80	293
 5	3,2	25	23	55	104	85	353
0 5	4, 8	30	30	60	130	90	423
5	6,8	35	39	65	161	95	504
10	9,4	40	51	70	198	100	597

3.12. ГОРЮЧИЕ ГАЗЫ

5.12.1. Индивидуальные газы

Тепловой эффект реакции (Q, кДж/моль) можно выразить в килоджоулях, деленных на метр кубический с помощью следующего соотношения: Q кДж/м 3 (объем приведен к нормальным условиям) $= 44.6 \ Q$ кДж/моль

	Суммарное уравнение процесса горевия	Низшая температура самовоспламене- ния при нормальном	aa Typa amene- ph bhom a, °C	Пределы горючести в смеси с воздухом (по объемной доле газа в смеси, %) при нормальном давлении и температуре	ределы горючести смести с воздухом (по объемной доле газа в смеси, %) пря нормальном двяления и температуре	Требуемое для сгорания одного объема газа число объемов	Требуемое для сторания удного обтема газа число объемов	Макси- мальная темпера-	1.3
		в воз-	в кисло- роде	15—	высший	кисло-	воздука	тура пламени, °С	
Ацетилен	$2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O + 2604 \text{ k/J/k}$	335	300	2,5	80	2,5	11,90	2300	
Бутан	$2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O + 5761 \text{ кДж}$	490	I	1,9	8,5	6,5	30,95	2000	
Бутилен	$2C_4H_8 + 12O_2 \rightarrow 8CO_2 + 8H_2O + 5418 \text{ kJ}$	445	l	1,7	0,6	0'9	28,58	2000	
Водород	$2H_2 + O_2 \rightarrow 2H_2O + 573 \text{ кДж}$	510	450	4,0	74,2	0,5	2,38	2660	
Метан	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + 892$ кДж	645	550	5,0	15,0	2,0	9,52	2000	
Оксид угле- рода (П)	- $2CO_2 + O_2 \rightarrow 2CO_2 + 565 \text{ кДж}$	610	200	12,5	74,2	. ເວ	2,38	2100	
Пропан	$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O + 2221$ кДж	510	490	2,4	9,5	5,0	23,80	2000	
Пости	""H" 1017 OJ9 OO II J0	755		0	-	4	91.42	0006	

Этилен

Этан

2000 2000 2000

> 16,67 14,29

3,5

12,5 28,6

3,2

28

530 540

 $2H_2S + 3O_2 \rightarrow 2H_2O + 2SO_2 + 1122$ кДж $2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O + 3123$ кДж $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O + 1411$ кДж

45,5

220

290

 $2H_2S + O_2 \rightarrow 2H_2O + 2S + 527 \text{ KL}*$

Сероводород

ra3bi}
(промышленные
rasob
CMech
5.12.2.

Воздушный газ ЗЗ,5 1,0 64,5 0,5 СН, Воздушный газ 38—40 47—50 5 5—7 0,5—0,8 Двойной водяной газ 33 48 5,5 6 7 Полуводяной (генератор-ный) газ 43 45—52 5—8 1—3 ня мелковериистого 20—22 7—11 56—62 7—10 1—2	N ₂ N ₂ O 64,5 O 5 O 5 O 5 O 5 O 5 O 5 O 5 O 5 O 5 O	0,5 5-7 6	CH,	сгорания сухого газа, кДж/м³	Способ получения
гор- тива		0,5 5-7 6	0,5		
тор- тива		5-7		4540	Углерод взаимодействует с сухим
тор- тива		9	0,5	10300-10885	воздухом Углерод взаимодействует с водя-
			0,0	12270	ным паром Смесь водяного газа, полученного
					из коксового остатка битумного топлива, и газообразных продуктов сухой перегонки этого же топ-
кового топлива					лива
	-15 45—52	5-8	<u>1</u>	5020—6490	Углерод взаимодействует со смесью
топлива (до 6 мм)	-11 56—62	7—10	1-2	4190—4815	воздума и водиного пара То же
Оксиводяной газ 33,5 54	1,7	10	0,5	10425	Углерод взаимодействует со смесью
Газ доменных печей 27 8 древесноугольных 28 2,7 коксовых 28 2,7	51,4	12	0,3	4860	кислорода и водяного пара
Газ подземной газифика- 10—18 11—15 ции	າດັ	10	1,8	3600—4190	
Газ коксовых печей 6,8 57	7,7	2,3	22,5	16750	

3.12.3. Состав промышленных углеводородных газов (очищенных от 1123), опесмина Ноли, до	WEILIN	CHEPIX	углево	дород	HDIX LB	130B (Of	ищень	11 TO X	20), 00		TO E	2
Газы	H	CH,	C,H,	C ₂ H ₄	C ₂ H ₃	C,H,	H ₂ CH ₄ C ₂ H ₆ C ₂ H ₄ C ₂ H ₇ C ₃ H ₈ C ₃ H ₆ C ₄ H ₁₀ C ₄ H ₉ C ₄ H ₆ C ₄ H ₆ R _{BMIDE}	C4H10	C,H,	C4He	С _в и выше	N; 0;;
Природные метановые 85—98		85—98		:	:			:	÷	:	$C_n M_{2n+2}$	до 15
Попутные нефтяные Термического жидко-	4-6	40—85 3—20 · · · · 32—36 16—30 5—7	$\frac{3-20}{16-30}$	5—7	::	$^{2}_{10-15}$	9	$\frac{1-12}{4-7}$	÷4	::	0,5-8	до 15 до 2
фазного крекинга 12 43 8 16 Пиролиза керосина 12—20 8—16 2—6 2—4	$12 \\ 12 \\ -20$	43 8—16	8 2—6	16 2—4		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{10}{12-24}$	0,5	$^{3,5}_{10-13}$		$1.2 2-3 \dots 2-3 \dots$	2-3 go 10
кинта Пиролиза этанола Гидрирования углей Синтеза углеводородов	26—42 6 1 1	4—7 20 0,5	$\frac{13-17}{22}$	30—38	до 0,5 	0,3—10 21 21	26—42 4—7 13—17 30—38 no 0,5 0,3—10 0,5—1,5 6 20 22 21 4,5 1 0,5 21 4,5	до 0,5 16 21	. : 5	:::	до 0,1 3 19	1—3* 12 до 10
(газоль)						ר						

^{*} При окислительном пиролизе до 17 %.

5.12.4. Средний состав попутных нефтяных газов некоторых месторождений СССР, объемные доли,

Азот и	инертиме газы	9,4	11,5	0,6	:	:	9,3
Углекис.	मधाप्ते एवउ	0,2	0,1	:	0,77	:	9,0
049	водород	:	:	:	1,09	:	8,0
Пецтац	и выше	3.3	4,7	3,5	:	8.61	6,0
Бутан	в том числе изобутан	2.2	2:0	2,2	:	66	•
	всего	7.9	8,2	8,0	8,32	20,4	2,3
	Пропан	17.3	18,5	20,0	7,54	21,5	5.2
	Этан	20.0	20,0	21,0	9,79	7.5	14,4
	Метан	.41.90	37,0	38,5	72,49	30.8	67,1
Относительная	по воздуху (dвозд=1,000)	1.035	.:	1,065	0,812	1,482	0,764
	Месторождение	Туймазинское	Ромашкинское	Бавлинское	Бугурусланское	Грозненское	Андижанское

5.12.5. Средний состав природных газов некоторых газовых месторождений СССР, объемные доли, %

Месторождение	Метан	Этан	Пропан	Бутаны	Пен- таны и выше	Диок- сид угле- рода	Серо- водо- род	Азот и ред- кие газы
РСФСР	<u>-</u> .			,,,,				
Саратовский район Елшанка Курдюм Волгоградский район	93,2 92,2	0,7 0,8	0,6 Нет	0,6 Her	0,5 Нет	0,3 Нет	Следы Нет	4,1 6,0
район Арчеда Ставропольский район	95,5 97 , 7	1,0 0,2	0,2 0,1	0,1 Нет	Следы Нет	0,1	Нет 2,0	3,1
УССР						-\		
Дашава Угерско Шебелинка	97,8 97,51 91,8	0,5 0,37 2,7	0,2 0,07 0,8	0,1 0,22 0,3	0,05 0,43 0,5	0,05 Нет 0,4	Нет Нет	1,3 1,4 2,5
Коми АССР								
Ухтинское Бугурусланское	88,0 76,8	1,9 4,4	0,2 1,7	0,3 0,8	Нет 0,6	0,3 0,2	Нет 1,0	9 ,3 13 ,5

5.13. НЕСОВМЕСТИМЫЕ ГАЗЫ

Аммиак и галогены Аммиак и галогеноводороды Аммиак и оксиды хлора Ацетон и хлор Водород и оксиды хлора* Водород и хлор* Оксид азота (II) и кислород Оксид азота (II) и хлор**

Оксид углерода (II) и клор *
Сероводород и кислород**
Селеноводород и кислород**
Сероводород и оксид серы (IV) **
Теллуроводород и кислород**
Углеводороды (алифатические)
и хлор*
Этилен и хлор

5.14. ЗАТВОРНЫЕ ЖИДКОСТИ ДЛЯ ГАЗОВ

В качестве затворных жидкостей применяют ртуть, насыщенные растворы солей (Na_2SO_4 , NaCl и др.), воду, серную кислоту, кереби и др.

Ртуть в обычных условиях реагирует с галогенами и сероводородом. Воду предварительно насыщают исследуемым газом.

* Реагирует при освещении.

воздух

6.1. АТМОСФЕРНЫЙ ВОЗДУХ

6.1.1. Состав сухого атмосферного воздуха

По современным данным, состав воздуха постоянен до высоты 60 км. Объемная доля водяных паров в воздухе составляет 0,1—2,8 %. Максимум озона наблюдается на высоте 20 км. С высоты около 40 км увеличивается содержание атомарного кислорода. Выше 120—150 км кислород практически полностью диссоциирует. Диссоциация азота начинается на высоте около 200 км, полностью азот диссоциирует на высоте 300 км.

	Содержа	ание, %		Содерж	ание, %
Газ	по объему	по массе	Газ	по объему	по массе
$egin{array}{c} N_2 \\ O_2 \\ Ar \\ CO_2 \\ Ne \\ He. \end{array}$	78,09 20,95 0,932 0,030 1,8 · 10 ⁻³ 4,6 · 10 ⁻⁴	75,50 23,10 1,286 0,046 1,3 · 10 ⁻³ 7,2 · 10 ⁻⁵	Kr H ₂ N ₂ O Xe O ₃ Rn	$ \begin{array}{r} 1,1 \cdot 10^{-4} \\ 5 \cdot 10^{-5} \\ 5 \cdot 10^{-5} \\ 8 \cdot 10^{-6} \\ 2 \cdot 10^{-6} \\ 6 \cdot 10^{-5} \end{array} $	$\begin{array}{c} 2.9 \cdot 10^{-4} \\ 3.5 \cdot 10^{-6} \\ 7.6 \cdot 10^{-5} \\ 3.6 \cdot 10^{-6} \\ 3.3 \cdot 10^{-6} \\ 7.6 \cdot 10^{-5} \end{array}$

6.1.2. Изменение давления, температуры и плотности воздуха в зависимости от высоты над уровнем моря

При вычислении параметров стандартной атмосферы воздух рассматривается как идеальный газ, считается сухим и имеющим постоянный состав: давление на уровне моря (нулевая высота) принимается равным нормальному атмосферному давлению 101325 Па и температура 15 °C; в тропосфере изменение температуры с высотой dT/dH=0,0065 °C/м; в стратосфере температура постоянна.

Принятые обозначения: $H_{\rm n.~y.~m}$ — высота над уровнем моря; ρ — плотность воздуха; ρ — атмосферное давление; t — тем-

пература.

^{**} Реагирует в присутствии паров воды.

Н. у. м. ч	р, 10º Па	p. Kľ/m³	t, °C	На. у. м. м	р, 102 Па	p, Kr/M³	7° '1
-25 50 75 100 150 200 300 400 500	0 1013,2 0 983,6 0 954,6 0 926,3 0 898,7 0 845,6 0 794,9 0 701,1 0 616,4	1,255 1,225 1,196 1,167 1,139 1,112 1,058 1,006 0,909 0,819 0,736	16,6 15,0 13,4 11,7 10,1 8,5 5,2 2,0 -4,5 -11,0 -17,5	600 7000 8000 9000 10000 11000 12000 14000 16000 18000 20000	471,8 410,6 356,0 307,4 264,4 226,3 193,3 141,0 102,9 75,0 54,7	0,666 0,590 0,525 0,466 0,413 0,364 0,311 0,227 0,165 0,121 0,088	-24,0 -30,5 -37,0 -43,5 -50,0 -56,5 -56,5 -56,5 -56,5 -56,5

6.1.3. Физические константы воздуха

,Параметр	Значение	Параметр	Значение
Средняя молекулярная	28,98	Удельная теплоемкость,	
масса		кДж/(кг · К)	
Критические константы	140.7	<i>c_p</i> (0—100 °С) при	1,00
температура, °С	-140,7	101325 Па	0.0000
давление, МПа	3,77 350	<i>c_v</i> (0—1500°С) при 101325 Па	0,8382
плотность, кг/дм ³ Плотность сухого воздуха	200	$c_p c_v (0-100 ^{\circ}\text{C})$	1,4
(давление 101325 Па),		Вязкость, мПа \cdot с (сП)	1,1
кг/м ³		при 0°С	1,7 - 10=4
при 0 °C	1,2929	20 °C	1,81.10-4
20 °C	1,2047	Показатель преломления	1,00029
225 °C	0,7083	(по отношению к пусто-	
Плотность жидкого воз-	960	те)	
духа (—192 °C), кг/м ³		•	
Температура кипения .	 192,0	Диэлектрическая прони-	
жидкого воздуха, °C		цаемость	
Скрытая теплота парооб-	· 210	при 0° С, 101325 Па	1,00059
разования		19 °С, 101325 Па	1,00057
(—192°С), кДж/кг	0.000070	19 °С, 2,03 МПа	1,0108
Коэффициент теплового	0,003670	—192°С, 101325 Па	1,43
расширения (0—100°C)		(жидкий воздух)	

6.2. ПРОИЗВЕДЕНИЕ $_{\mathcal{O}}V$ для воздуха

Приведены значения для воздуха, не содержащего оксида углерода (IV), и отнесенные к значению pV при нормальных условиях (t=0 °C, p=101325 Па).

6.2.1. Произведение pV при температурах ниже нуля

			<i>pV</i> при <i>t</i> , °С	•	
р, атм	140	130	103,5	78,5	-35
0	0,488	0,524	0,621	0,713	0,872
ĭ	0,486	0,523	0,620	0,712	0,872
20	0.381	0,441	0,570	0,678	0,857
40	0,113	0,338	0,512	0,642	0.839
60	• • •	0,201	0,457	0,609	0,822
80	• • •	0,204	0,410	0,580	0,810
100		• • •	0,388	0,560	0,802

6.2.2. Произведение $p\,V$ при температурах выше нуля

			рV при t, °С		
р, атм	0	50	100	150	200
0	1.0006	1,1838	1,3669	1,5501	1,7332
ĭ	1,0000	1,1836	1,3671	1,5505	1,7338
10	0,9948	1,1826	1,3687	1,5540	1,7388
20	0,9896	1,1818	1,3709	1,5583	1,7446
30	0,9812	1,1817	1,3762	1,5675	1,7567
40	0,9753	1,1833	1,3830	1,5778	1,7697
50	0,9718	1,1867	1,3911	1,5893	1,7636
100	0,9710	1,1919	1,4006	1,6018	1,7984
150	0,984	, •••	1,432	• • •	1,841
200	1,010	• • •	1,469	. • • •	1,884
300	1,098	• • •	1,561	• • •	1,984
400	1,214	• • •	1,665	• • •	2,094
600	1,470		1,908	• • •	2,328
800	1,734		2,158	• • •	2,573
1000	1,992	• • •	2,417	•••	2,826
<i>y</i>					

6.3. ДИНАМИЧЕСКАЯ И КИНЕМАТИЧЕСКАЯ ВЯЗКОСТЬ ВОЗДУХА

6.3.1. Вязкость воздуха при температуре от —200 до 1000°C и давления 0,1 МПа

Принятые обозначения: η — динамическая вязкость, 10^{-7} Па · с; ν — кинематическая вязкость, 10^{-1} м 2 /с; t — температура, $^{\circ}$ С; p — давление, МПа.

t	η	v	t .	η	v
200	51,5	10,7	160	243,0	298,0
-180	64,7	17,1	180	250.8	321,6
-160	77,6	24,9	200	258,6	346,5
-140	90,4	34,0	250	277,7	411,2
-120	102,8	44,6	300	296	480
-100	115,0	55,2	350	313	552
80	126,9	69,4	400	330	629
60	138,6	8 3,6	450	347	711
-40	150,0	98,9	500	362	792
20	161,0	115,3	550	378	881
0	171,7	132,8	600	394	974
10	176,8	141,8	650	409	1070
20	181,9	151,0	700	425	1172
30	186,7	160,3	750	430	• • •
40	191,5	169,8	800	443	• • •
60	200,8	189,2	850	456	• • •
80	209,7	209,2	900	469	• • •
100	218,4	230,4	950	481	• • •
120	226,7	252,2	1000	493	•••
140	234,9	274,5			

6.3.2. Вязкость воздуха при температуре 14 °C и давлении 0,1 — 20 МПа

Принятые обозначения: см. п. 6.3.1.

p	η	v	p	'n	ν
0,1	1771	148	11,35	198,7	1,51
3,48	179,4	4,37	11,70	198,9	1,45
5,00	182,0	3,02	12,40	200,6	1,39
5,90	184,0	2,59	12,80	202,1	1,36
7,00	185,6	2,21	15,40	211,0	1,8
8,02	190,5	2,01	17,00	215,7	1,2
10,03	195,0	1,67	18,70	221,1	1,04
11,05	198,7	1,54	20,00	224,2	1,00

6.4. СВОЙСТВА СЖИЖЕННОГО ВОЗДУХА

6.4.1. Плотность воздука в жидкой и газовой фазах, находящихся в равновесии

Принятые обозначения: $\rho_{\mathbf{m}}$ и $\rho_{\mathbf{r}}$ — плотность жидкой и газовой фазы, кг/м³; t — температура, °С; курсивом выделены значения критической температуры и плотности.

t	ρ _ж	$ ho_\Gamma$	t	, рж	$\rho_{\mathbf{r}}$
-146,0 -145 -144 -143	520 510 500 480	175 195	—142 —141 —140,63	450 385	220 250 350

6.4.2. Поверхностное натяжение жидкого воздуха на границе раздела с собственным паром при температуре —190,3°C

Принятые обозначения: O_2 — объемная доля кислорода в жидком воздухе; σ — поверхностное натяжение:

6.5. ПЛОТНОСТЬ ВОЗДУХА

6.5.1. Сухой воздух

$$\rho = \frac{1,293B}{(1+0,00367t)\,1013,25}$$

или

$$\rho = \frac{1,293B_1}{(1+0,00367t)\ 760}$$

где ρ — плотность воздуха, кг/м³; B, B_1 — давление, кПа, мм рт. ст. соответственно; t — температура, °C.

	ρ	при B ,	мм рт.	ст.		ρ при В, мм рт. ст.				
t	720	740	760	770	t	720	740	760	770	
0	1.225	1,263	1,293	1,314	18	1,149	1,185	1,213	1,233	
$\tilde{2}$	1.216	1,254	1.284	1,305	20	1,141	1,177	1,205	1,224	
4	1.208	1,245	1,275	1,295	22	1,134	1,169	1,197	1,216	
6	1,199	1,236	1,266 -	1,286	24	1,126	1,161	1,189	1,208	
8	1,190	1,227	1,257	1,277	26	1,118	1,153	1,181	1,200	
10	1,182	1,219	1,247	1,268	28	1,111	1,146	1,173	1,192	
12	1,173	1,210	1,239	1,259	-30	1,104	1,138	1,165	1,184	
14	1,165	1,212	1,230	1,250	32	1,096	1,131	1,157	1,176	
16	1,157	1,193	1,221	1,241	35	1,086	1,119	1,146	1,165	

6.5.2. Влажный воздух

$$\rho = 1,293 \frac{273,2 (B - 0,3783p)}{101325T},$$

или

$$\rho = 1,293 \frac{273,2 \left(B_1 - 0,3783 p_1 \right)}{760 T},$$

где ρ — плотность воздуха, кг/м³; T — температура воздуха, К; B_1 — барометрическое давление, кПа, мм рт. ст. соответственно; ρ , ρ_1 — давление паров воды в воздухе, Па, мм рт. ст. соответственно (см. пп. 5.1.1.1 и 5.1.1.2).

Точка росы,	0.	,3783p	Точка	- 0,	3783p	Точка росы, °С	0,3783p		
росы, ° С	102 Па	мм рт. ст	росы, °С	102 Па.	мм рт. ст.		102 Па	мм рт. ст.	
0 2 4 6 8 10	2,31 2,67 3,08 3,54 4,06 3,64 5,31	1,73 2,00 2,31 2,65 3,04 3,48 3,98	14 16 18 20 22 24 26	6,05 6,87 7,81 8,85 10,00 11,29 12,71	4,54 5,16 5,86 6,64 7,51 8,47 9,55	28 30 32 34 36 38 40	14,30 16,05 17,99 20,12 22,47 25,06 27,90	10,74 12,05 13,51 15,11 16,88 18,82 20,96	

Примечание. О точке росы см. в п. 6.7.3.

6.6. ТЕПЛОТЕХНИЧЕСКИЕ СВОЙСТВА ВОЗДУХА

6.6.1. Теплопроводность

Принятое обозначение: λ — коэффициент теплопроводности t, °C —191,1 —78,4 0 100 212,5 $\lambda \cdot 10^4$ Вт/(м · K) 75 178 243 301 368

6.6.2. Удельная теплоемкость при постоянном давлении (c_p)

		•						
t, °C	р, 10-1 МПа	^с р, кДж/(кг · К)	t, °C	р, 10-1 МПа	<i>ср,</i> кДж/(кг · K)	t, °C	р, 10 ⁻¹ МПа	^с р, кДж/(кг · К)
-120 -50	1 10 20 40 10 20	1,0048 1,1384 1,3486 2,0017 1,0216 1,0555	-50 +50	40 70 1 20 100 1 20	1,1476 1,3109 1,0069 1,0383 1,1313 1,0174 1,0346	100 0—100 0—400 0—800 0—1000 0—1400	100 220 1 1 1 1	1,0886 1,1895 1,0111 1,0228 1,0387 1,0467 1,0626

Б7. ВЛАЖНОСТЬ ВОЗДУХА

Различают абсолютную и относительную влажность воздуха.

Абсолютная влажность — это масса или объем водяного пара, фактически содержащегося в единице объема воздуха; выражается она в граммах, деленных на метр кубический, или в процентах. Абсолютную влажность характеризуют также давлением водяных паров, находящихся в воздухе (см. пп. 5.1.1.1 и 5.1.1.2).. Иногда абсолютную влажность выражают в килограммах, деленных на килограмм сухого воздуха.

Относительная влажность — это отношение массы водяного пара, фактически содержащегося в единице объема воздуха, к массе водяного пара, насыщающего данный объем при данной температуре, или отношение давления находящегося в воздухе водяных паров к давлению водяных паров, насыщающих воздух при той же температуре.

Пересчет абсолютной влажности воздуха в относительную и нао-

$$P = 126 (1 + 0.00367t) q, q = 0.794P/(1 + 0.00367t),$$

$$P_1 = 0.495 (1 + 0.00367t) q, q = 1.058P_1/(1 + 0.00367t);$$

$$f = 100P/p,$$

где P, P_1 — давление паров воды в воздухе при температуре t, Π а, мм рт. ст. соответственно; q — абсолютная влажность воздуха при температуре t, Γ/M^3 ; p — давление насыщенного водяного пара при температуре t, Π a, или мм рт. ст. (см. пп. 5.1.1.1 и 5.1.1.2); f — относительная влажность, %.

Точка росы — температура, при которой в воздухе с данным содержанием водяных паров начинается конденсация воды.

6.7.1. Содержание водяного пара в воздухе при насыщении (давление 99,3 кПа = 993 мбар = 745 мм рт. ст.)

Тем рату	ypa,	Содержа- ние водяного пара, г/м ⁸	Темпе- ратура, °С	Содержа- ние водяного пара, г/м ³	Темпе- ратура, °С	Содержа- ние водяного пара, г/м ³	Темпе- ратура, °С	Содержа- ние водяного пара, г/м³
-1		1,39	55	104,28	140	525,58	280	389,56
- 1		$\frac{2,14}{3,24}$	60 65	130,09 161,05	150 160	512,64 500,36	290 300	382,55 375,79
-	0	4,84	70	197,95	170	488,67	350	345,32
	5 0	6,80 9,40	75 80	241,65 292,99	180 190	477,55 466,94	400 450	319,47 297,25
1	5	12,82	85	353,23	200	456,81	500	277,94 261,00
2		17,29 23,03	90 95	423,07 501,11	$\frac{210}{220}$	447,13 437,86	550 600	246,02
3	0	30,36	99,4	586,25	230 240	428,97 420,45	650 700	232,67 220,69
3. 4		39,59 5 1,13	100 110	585,24 568,98	250 250	420,45	750	209,11
4. 5	5	65,42 82,94	120 130	553,67 539,23	260 270	404,40 396,84	800	200,11
٠	-	,	,	,		,		

6.7.2. Содержание водяного пара в сжатом воздухе при насыщении

		Содержание г	одя но го пара		
Давление,	при 50	°C	пря 70	°C	
МПа	объемная доля, %	г/м³	объемная доля, %	г/м ⁸	
2,0	0,6356	86,4	1,6830	21,2	
4,0	0,3349	91,1	0,8912	22,4	
6,0	0,1914	95,7	0,5149	23,8	
8,0	0,1852	100,2	0,4899	24,4	
10,0	0,1559	104,8	0,4000	25,3	
12,0	0,1394	109,4	0,3507	26,0	
14,0	0,1221	114,0	0,3078	26,7	
16,0	0,1115	118,6	0,2762	27,4	
18,0	0,1045	123,4	0,2148	28,6	
20,0	0,0987	128,0	•••		

6.7.3. Определение влажности воздуха по точке росы при барометрическом давлении 101325 Па, или 760 мм рт. ст.

Принятые обозначения: τ — точка росы; t — температура, q — абсолютная влажность, f — относительная влажность.

6.7.3.1. Абсолютная влажность

τ, °C	<i>ц</i> , г/м³	τ, °C	q. г/м³	τ, °C	q, г/м³	τ, °C	ζ', Γ/M³	τ, °C	q, г/м³	τ, °C	д, г/м³
_19	1,0	-10	2,2	-1	4,5	8	8,2	17	14,3	26	24,0
-18	1,1	 9	2,3	0	4,8	9	8,7	18	15,2	27	25,5
- 17	1,2	— 8	2,5	1	5,2	10	9,4	19	16,1	28	27,0
-16	1,3	— 7	2,8	2	5,6	11	10,0	20	17,0	29	28,5
-15	1,4	6	3,0	3	5,9	12	10,6	21	18,0	30	30,0
-14	1,5	— 5	3,2	4	6,3	13	11,3	22	19,2	31	32,0
— 13	1,7	-4	3,5	5	6,8	14	12,0	23	20,3	32	33,5
-12	1,8	— 3	3,8	6	7,2	15	13,4	24	21,5	33	35,3
11	2,0	 2	4,1	7	7,7	16	13,5	2 5	23,0	34	37,2

6.7.3.2. Отоносительная влажность

		f.	%, при	τ, °C			1.	%, п	ри τ, °	С
. <i>t</i> —τ, °C	10	0	10	20	30	t-τ, °C	-10	0	10	20
0	100	100	100	100	100	16	31	34	37	39
1	92	93	94	94	94	17	29	3 2	3 5	3 7
2	86	87	88	88	89	18	27	30	33	35
3	79	81	82	83	84	19	25	28	31	33
4	73	7 5	77	78	80	20	24	26	29	- 32
- 5	68	7 0	72	74	75	21	22	25	27	
6	63	66	68	70	71	22	21	23	26	
. 7	59	61	63	66	68	23	19	22	24	
8	54	57	60	62	64	24	18	21	23	
9	51	53	56	58	61	25	17	19	22	
10	47	50	53	55	57	2 6	16	18	21	
11 .	44	47	49	52		27	15	17	20	
12	41	44	47	49		28	14	16	19	
13	38	41	44	46		29	13	.15	18	
14	35	38	41	44		30	12	14	17	
15	33	36	39	42		•				

6.7.4. Определение влажности воздуха по показаниям психрометра

Психрометр простой (Августа) — воздух около шариков термометров относительно неподвижен:

$$P = p - A (t - t_1) B$$
.

Психрометр аспирационный (Ассманна) → поток всасываемого воздуха обтекает шарики термометров:

$$P = p - 0.00066B (t - t_1) [1 + 0.00115) (t - t_1)$$

где P — давление паров воды в воздухе при температуре t, Па (мм рт. ст.); p — давление насыщенного водяного пара при температуре t_1 , Па (мм рт. ст.) (см. п. 5.1.1.1 и 5.1.1.2); t — температура по показаниям сухого термометра, °C; t_1 — температура по показаниям увлажненного термометра, °C; B — барометрическое давление, Па (мм рт. ст.); A — коэффициент, зависящий от скорости потока воздуха (v), обтекающего шарик термометра:

r, ∘C							f. %.	при t	$-t_i$					
, °C	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6	83	70	56	41	28									
9 ′	87	73	61	48	36	24	13.							
12	88	76	65	54	43	33	23	13						
15	-89	78	68	58	49	39	30	21	13					
18	90	80	71	62	53	45	36	29	21	13				
21	91	82	73	65	57	50	42	35	28	21	14			
24	91	83	75	68	60	53	46	40	33	27	21	15		
27	92	84	77	70	63	56	50	44	38	32	26	21	16	
30	- 93	85	78	72	65	59	53	47	42	36	31	26	21	17
33			80	73	67	61	. 56	50	45	40	35	30	26	2
36		• • •		75	68	63	57	52	47	42	38	33	30	2
39					70	65	59	55	50	45	41	37	33	2

5.7.4.2. Относительная влажность воздуха (f) по показаниям аспирационного психрометра ($v_{{ m BO3Д}} > 2$ м/с: B = 101325 Па)

4 00						f, %, i	$t-t_1$					
f, ° C	1	2	3	4	5	6	7	8	9	10	11	12
0	81	64	46	29	13							
0 3 6 9	84	69	54	40	25	12						
6.	87	73	60	47	35	23	11					
9	88	76	65	53	42	32	22	12	3			
12	89	78	. 68	58	48	38	30	21	12	4		
15	90	80	71	62	53	44	36	28	20	13	4	
18	90	82	73	65	57 ·	49	42	35	27	20	13	6
21	91	83	75	67	60	53	46	39	32	26	19	13
24	92	85	77	70	63	56	49	43	37	31	26	21
27	93	86	. 79	72	65	59	53	47	41	36	31	26
30	93	86	79	73	67	61	55	50	44	39	35	30
33	93	86	80	74	68	63	57	52	47	42	37	33
36	93	87	81	75	-70	64	57	54	50	45	41	36
39	94	88	82	76	71	66	61	56	52	47	43	39

6.8. СВОЙСТВА ВОЗДУХА, НАСЫЩЕННОГО ВОДЯНЫМ ПАРОМ

Темпе- рату- ра, °C	Содержание водяного пара, кг/кг сухого еоздуха	Энтальпия смеси водяного пара и воздуха, кДж/кг сухого воздуха	Темпе- рату- ра, °С	Содержание водяного пара, кг/кг сухого воздуха	Энтальпия смеси водяного пара и воздуха, кДж/кг сухого воздуха
-20	0,000654	—18,51	-17 -16 -15	0,000870	14,95
-19	0,000720	—17,38		0,000955	13,73
-18	0,000792	—16,16		0,001048	12,48

r				11 p00025K	thue muonanos
темпе- рату- ра, °C	Содержание водяного пара, кг/кг сухого гоздуха	Энтальпия смеси водяного пара и создуха, кДж/кг сухого воздуха	Температу- рату- ра, °С	Содержание водяного пара, кг/кг сухого воздуха	Энтальпия смеси водяного пага и воздуха, кДж/кг сухого гоздуха
	0.0044#0		0.5	0.0000	101.00
-14	0,001150	-11,22	35	0,0379	131,88
-13	0 001200	9,92	36	0,0401	139,00
12	0,001379	8,50	37	0,0425	146,12
11	0.001509	— 7,33	38	0,0451	153,66
-10	0:001650	—5, 99	39	0.0478	161,61
– 9	0,001801	-4 ,61	40	0.0506	169,08
<u>~</u> 8	0,001969	<u>_3,18</u>	41	0,0536	178,78
7	0,001303	<u></u>	42	0,0508	188,41
<u></u> 6			43	0,0601	198,04
	0,002343	-0,21			
- 5	0,002552	1,30	44	0,0637	208,50
-4	0,002781	2,89	45	0,0674	218,55
3	0,003030	4,52	46	0,0714	230,27
-2	0,00330	6,20	47	0,0755	242,42
<u>1</u>	0,00359	7, 91	48	0,0799	254,56
0	0,00390	9,71	49	0,0846	267,96
1	0,00420	11,47	50	0,0895	281,77
	0,00451	12,90	51	0,0947	296,43
2 3	0,00485	15,11	52	0,1003	312,34
4	0,00520	17,00	53	0.1061	328,25
5	0.00558	18.84	54	0,1123	345,83
6			55		364,25
7	0,00598	20,98		0,1189	
1	0,00642	23,11	56	0,1259	384,77
8	0,00688	25,29	57	0,1333	404,03
9	0,00736	27,51	58	0,1412	425,80
10	0,00788	29,85	59	0,1495	448,82
11	0,00844	32,24	- 60	0,1585	473,11
12	0,00902	34,33	61	0,1680	499,07
13	0,00964	37,30	62	0.1783	527,54
14	0,01030	40,03	63	0,1888	556,01
15	0,01100	42.71	64	0,2005	588,66
16	0,01174	45,64	65	0,2129	622,16
17	0,01254	48,57	66	0,2260	657,33
18	0,01337	51,92	67	0,2403	696,68
19	0.01425	55,27	68	0,2559	738,97
20	0,01425	58,62	69	0,2721	783,7 7
20 21		61,96	70	0,2897	830,66
	0,01618			0,2097	
22	0,01724	65,73	71	0,3086	883,41
23	0,01833	69,50	72	0,329	937,84
24	0,01951	73,69	73	0,352	996,46
25	0,02077	77,87	74	0,376	1067,63
26	0,02209	82,06	75	0,403	1138,81
27	0,02347	86,67	76	0,432	1214,17
2 8	0,02493	91,69	77	0,463	1302,09
29	0,02649	96,72	78	0,499	1394,20
30	0.02814	101,74	79	0,538	1498,37
3 1	0.02988	107,18	80	0,580	1616,10
32	0,03169	113,04	81	0,628	1745,90
33	0,03364	118,91	82	0,683	1892,43
34					2055,72
34	0,03569	125,19	83	0,744	2000,12
p å:			 		

Темпе- рату- ра, °С	Содержавие водяного пара, кг/кг сухого воздуха	Энтальния смеси водяного пара н воздуха, кДж/кг сухого воздуха	Темпе- рату- ра, °С	Содержание водяного пара, кг/кг сухого воздуха	Энтальпия смеси водяного пара и воздуха, кДж/кг сухого воздуха
84	0 ,813	2239,94	92	2,092	5673,11
85	0,894	245 7,65	93	2,491	6740,75
86	0 ,986	2704 ,67	94	3.05	8248,00
87	1,093	29 93,56	95	3,88	10467,0
88	1,219	3328,51	96	5,25	14151.4
89	1,373	37 43,00	97	7,94	21352.7
90	1,559	4245,42	98	15,60	41909,9
91	1,794	4873,44	99	198,20	53130,9

6.9. ПОСТОЯННАЯ ВЛАЖНОСТЬ

В замкнутом пространстве можно поддерживать постоянную влажность, применяя различные соли и их насыщенные растворы, указанные в таблице.

Принятые обозначения: f — относительная влажность, %; p_1 , p_2 — упругость водяного пара над солью или раствором, 10^2 Па, мм рт. ст. соответственно.

	Прі	a t = 20	o∘c		При	°C	
Твердая фаза	<i>p</i> ₁	p ₂	f	Твердая фаза	p4.	p ₂	f
Ca(NO ₃) ₂ · 4H ₂ O CaCl ₂ · 6H ₃ O CaBr ₂ · 6H ₃ O CuSO ₄ · 5H ₂ O CrO ₃ K ₂ SO ₄ KNO ₃ K ₂ HPO ₄ K ₂ CrO ₄ KHSO ₄ KCl KBr	12,8 7,5 4,4 22,7 8,1 23,1 22,2 21,3 20,4 19,9 20,1 19,5	9,7 5,6 3,3 17,0 6,1 17,3 16,7 16,0 15,3 14,9 15,1 14,6	55 32 19 98 35 99 95 92 88 86 86 86	Na ₂ SO ₃ · 7H ₂ O Na ₂ SO ₄ · 10H ₂ O NaBrO ₃ Na ₂ CO ₃ · 10H ₂ O Na ₂ S ₂ O ₃ · 5H ₂ O NaC ₂ H ₃ O ₂ · 2H ₂ O NaNO ₃ NaCl NaClO ₈ NaNO ₂ NaBr · 2H ₂ O Na ₂ Cr ₂ O ₇ · 2H ₂ O	22,0 21,5 21,3 21,3 18,0 17,6 17,5 17,5 17,5 13,5 12,0	16,5 16,1 16,0 16,0 13,5 13,2 13,0 13,0 11,6 10,1 9,0	95 93 92 91 78 76 75 75 75 66 58 52
$KSCN$ KNO_2 $K_2CO_3 \cdot 2H_2O$ $KC_2H_3O_2$	10,9 10,4 10,0	8,2 7,8 7,0	47 45 44 20	NaHSO ₄ · H ₂ O NH ₄ H ₂ PO ₄ (NH ₄) ₂ SO ₄	12,0 21,6 18,8 18,4	9,0 16,2 14,1 13,8	52 93 81 79
$M_{\rm g}(C_2H_3O_2)_2 \cdot 4H_2O$ $M_{\rm g}(NO_3)_2 \cdot 6H_2O$ $L_{\rm i}C_1 \cdot H_2O$ $Na_2HPO_4 \cdot 12H_2O$	4,6 15,1 12,8 3,5 22,0	3,5 11,3 9,7 2,6 16,5	65 55 15 95	$ \begin{array}{l} NH_4CI\\ NH_4NO_3\\ Pb(NO_3)_2\\ Zn(NO_3)_2 \cdot 6H_2O\\ ZnCl_2 \end{array} $	14,7 22,7 9,7 2,4	11,0 17,0 7,3 1,8	63 98 42 10

6.10. ОСУШКА ВОЗДУХА

Приведены значения абсолютной влажности, остающейся при сушке воздуха указанными в таблице веществами.

Вещество	Содержание водяного пара, г/м³	Вещество	Содержание водяного пара, г/м³
P ₂ O ₅ Mg(ClO ₄) ₂ Mg(ClO ₄) ₂ · 3H ₂ O KOH (плавленный) CaSO ₄ MgO CaBr ₂ при 72 °C CaBr ₂ при —21 °C	2 · 10 ⁻⁵ 5 · 10 ⁻⁴ 0,002 0,002 0,004 0,008 0,12 0,019	CaBr ₂ при 25 °C NaOH (плавленный) CaO H ₂ SO ₄ (95,1 %) CaCl ₂ (плавленный) ZnCl ₂ ZnBr ₂ CuSO ₄	0,14 0,16 0,2 0,3 0,36 0,8 1,1

6.11. РАСТВОРИМОСТЬ ВОЗДУХА В ВОДЕ

6.11.1. Растворимость при нормальных условиях

6.11.2. Растворимость при 10 МПа

t, °C	Растворимость в 1 дм ³ воды, см ³				Растворимость в 1 г воды, см ³			
		в том числе	t, °C-		в том числе			
	воздуха	азота	кислор ода		воздуха	азота	кисло ро	
0	28,64	18,45	10,19	0	1,90	1,24	0,66	
10	22,37	14,50	7,87	25	1,52	1,01	0,51	
20	18,26	11,91	6,35	30	1,32	0,88	0,44	
3 0	15,59	10,35	5,24	50	1,12	0,78	0,34	
40	13,15	8,67	4,48	100	1,04	0,71	0,33	
50	11,40	7,55	3,85	125	1,11	0,77	0,34	
60	9,78	6,50	3,28	150	1,40	0,99	0,41	
10 20 30 40 50 60 80	6,00	4,03	1,97	200	1,97	1,46	0,51	
100	0,00	0,00	0,00	240	2,23	1,66	0,57	

ТВЕРДЫЕ ВЕЩЕСТВА И ЖИДКОСТИ

7.1. КОЭФФИЦИЕНТЫ СЖИМАЕМОСТИ

Коэффициенты сжимаемости воды см. п. 8.7. Средний коэффициент сжимаемости

$$\beta_t = \frac{V_1 - V_2}{p_2 - p_1} \frac{1}{V_1},$$

где V_1 — объем при давлении p_1 и температуре t, °C; V_2 — объем при давлении p_2 и той же температуре; β_t выражается в Πa^{-1} .

7.1.1. Средний коэффициент сжимаемости ртути (β_t)

р₁—р₂, 0,1 МПа			β _t · 10 ⁵ , ΜΠ	a-1, при <i>t</i> ,	°C	
U,I MIIa	22,8	52,8	84,8	110	150,3	191,8
1—500 500—1000 1000—1500 1500—2000 2000—2500 2500—3000	3,8 3,8 3,7 3,6 3,5 3,4	3,9 3,9 3,9 3,8 3,8 3,8	4,0 4,0 4,0 3,9 3,8 3,7	4,1 4,0 4,0 3,9 3,8 3,7	4,4 4,4 4,4 4,3 4,3 4,3	4,6 4,6 4,5 4,4 4,4 4,3

7.1.2. Средние коэффициенты сжимаемости различных веществ

Принятое обозначение: к. т.— комнатная температура

Вещество	р, 0,1 МПа	t, °C	β _t · 10 ⁻⁵ , ΜΠα ⁻¹
Алюминий	100—500	К. т.	1,3
Амиловый спирт	8	17,7	89,4
Бензол	8	17,9	90,8
Бром	100—500	К. т.	51,8
Бутиловый спирт (изо)	8	17,9	96,8
Бутиловый спирт (н)	8	17,4	88,9

	1 1		1
	1		ţ
Вещество	р, 0,1 МПа	t, °C	$\beta_t \cdot 10^{-5}$,
		. ,, ,	МПа-1
Висмут	100—500	К, т.	2,8
Железо	100500	К. т.	0,40
Золото	100500	К. т.	0,47
Иод	100500	К. т.	13
Кадмий	100500	К. т.	1,9
Калий	100-500	К. т.	31,5
Кальций	100—500	К. т.	5,5
Кремний	100—500	К. т.	0,16
Литий	100500	• • •	8,8
Магний	100—500	К. т.	2,7
Марганец	100-500	К. т.	0,67
Медь	100-500	К. т.	0,54
Метилацетат	8-37	14,3	95,8
Метиловый спирт	8-37	14,7	102.7
Молибден	100-500	К. т.	0,26
Мышьяк	100-500	К. т.	4,3
Натрий	100500	К. т.	15,4
Никель	100—500 100—500	К. т.	0,27
Олово	100—500	К. т.	1,7 0,38
Палладий	100-500	К. т.	0,38
Платина	8	К. т. 17,8	101,7
Пропиловый спирт (изо)	. 8	17,7	95,8
Пропиловый спирт (н)	100-500	К. т.	3,8
Ртуть Dygunuë	100—500	К. т.	40
Рубидий Свинец	100-500	К. т.	2,2
Свинец Селен	100-500	К. т.	11,8
Cenen Cepa	100-500	К. т.	12,5
Сера	100-500	К. т.	0,84
Сероуглерод Сероуглерод	8-37	15,6	85,9
Сурьма	100-500	К. т.	2,2
Таллий .	100500	К. т.	2,6
Углерод (алмаз)	100-500	К. т.	0,5
Углерод (графит)	100—500	К. т.	3,0
Фосфор (красный)	100500	К. т.	9,0
Фосфор (желтый)	100500	К. т.	20,3
Хлор	100-500	К. т.	95
Хлороформ	100-200	20	9,4
Хром	100500	К. т.	0,7
Цезий	100-500	К. т.	61
Цинк	100500	К. т.	1,5
Четыреххлористый углерод	100—200	-20	89, 6
Этилацетат	8—37	13,3	102,7
Этилбромид	837	99,3	291,3
Этиловый спирт	1-500	0	76
Этилхлорид	8—37	15,2	151,1
Эфир диэтиловый	1-50	0	145,2

7.2. ПЛОТНОСТЬ ВЕЩЕСТВ ПРИ ДАВЛЕНИИ 0,1 МПа И РАЗЛИЧНЫХ ТЕМПЕРАТУРАХ

Плотность воды см. п. 8.11.

7.2.1. Плотность ртути (ρ)

• •				t	, r/cm ⁸					
P ∘C	0	1	2	3	4	5	6	7	8	9
0	13,5951	5926	5901	5876	5852	5827	5802	5778	5753	5728
10	13,5704	56 79	5654	5630	5605	5580	5556	5531	5507	5482
20	13,5457	5433	5408	5384	5359	5335	5310	5286	5261	5237
30	13,5212	5177	516 3	5138	5114	5090	5065	5041	5016	4992
40	13,4967	4943	4918	4894	4869	4845	4821	4796	4772	4747
50	13,4723	4699	4674	4650	4626	4601	4577	4553		
6 0	13,4480	4455	4431	4407	4382	4358	4334	4310	4285	426
70	13,4287	4213	4188	4164	4140	4116	4091	4067		
80	13,3995	3971	3946	3922	3898	3874	3850	3826	3802	3777
90	13,3753	3729	3705	3681	3657	3633	3509	'3585	3561	3527

7.2.2. Плотность жидких органических веществ (d)

- Вещество			ρ, τ	/см ³ , пр	a t, °C		
- вещество	0	10	20	30	40	50	60
Аллиловый спирт	0,8681			0,8421	•••		
Анилин	1,0390	1,0303	1,0218	1,0131	1.0045	0.9958	0,9872
Ацетон	0,8125	0,8014	0,7905		0.7682	0,7560	
Ацетонитрил	0,8035	0,7926				••••	
Ацетофенон			• • •	1,0194	1.0106	1 0021	0,9757
Бензиловый спирт	1,0608	1,0532	1,0454			1.0219	
Бензол		0,8895	0,8790	0,8685	0,8576		0,8357
Бромбензол	1,5218	1,5083	1,4952	1,4815		1,4546	
Гексан	0,6770	0,6683	0,6593	0,6505			0,6229
Глицерин	1,2734	1,2671	1,1613	1,2552			1,2359
Диэтиловый эфир	0,7363	0,7250	0,7135	0,7018			0,6650
Метиловый спирт	0,8067		0,7915	0,7825		0,7650	
Метилформиат	1,0032	0,9886	0,9742		0,1110	0,1000	0,7000
Нитробензол	1,2231	1,2131	1,2033	1,1936	1,1837	1,1740	1,1638
Пиридин	1,0030	0,9935	0,9826	0.9729	0,9629		
Сероуглерод	1,2927	1,2778	1,2632	1.2482	0,5025	0,3020	0,3141
Тиофен	• • •	•••	1,0647	1,0564			
Толуол	0,8855	0,8782	0,8670	0,8580			
Уксусная кислота			1,0491	1,0392	1,0282	1,0175	1,0060
Уксусный ангидрид	1,1053	1,0930	1,0810	1,0690	1,0567	1,0443	1,0000
Фенилгидразин		•••	1.0981	1,0899	1,0817	1,0737	1,0653
Хлорбензол	1,1277	1,1171	1,1062	1,0954	1.0846	1,0742	1,0636
Хлороформ	1,5264	1,5077	1,4890	1,4700	1,4509	1,4334	1,4114
Четыреххлористый	1,6326	1,6135	1,5941	1,5748	1,5557	1,5361	1.5163
углерод		-,0.00	2,0011	1,0170	1,0007	1,0001	1,0100
Этиловый спирт	0,8063	0,7979	0,7895	0,7810	0,7720	0,7632	0,7544

7.3. КРИТИЧЕСКИЕ СВОЙСТВА ВЕЩЕСТВ

7.3.1. Критические свойства простых веществ и неорганических соединений

Принятые обозначения: $t_{\rm K}$ — критическая температура; $p_{\rm K}$ — критическое давление; ρ — критическая плотность.

Вещество	t _K , °C	р _К , 0,1 МПа	ρ, r/cm³	Вещество	t _K , ∘G	р _К , 0,1 МПа	р, г/см³
Ar Br ₂ Cl ₂ H ₂ He Mg I ₂ Kr N ₂ Ne O ₂ Rn S Xe	1 е веще —122 —302 —144,0 —239,9 —267,9 —1155 —553 —63 —147,1 —228,7 —118,8 —104 —16,6 ые вещ —139 —31,1	49 77,1 13,0 22,9 200 55 33,9 26,2 50,4 63 59,0	0,531 0,573 0,0310 0,0693 4—5 0,78 0,3110 0,484 0,430 1,155	HBr HCI HI H ₂ O H ₂ Se NH ₃ Se NH ₃ N ₂ H ₄ N ₂ O NO NO NO NO PH ₃ CI SO ₂ SO ₃ SiH ₄ SnCl ₄ Bo ₃ gyx	90 51,4 151 374,15 100,4 138 132,4 380 36,5 —94 158 51 49 157,2 218,3 —3,5 —1,5 318,7 —140,7	85 82,7 83 221,43 90,1 89 113,0 147 72,7 66 100 65 74 78,7 84,7 49 51 37,5 37,7	0,867 0,42 0,325 0,235 0,46 0,52 0,524 0,630 0,742 0,35

7.3.2. Критические свойства солей (значения вычислены на основе правила соответственных состояний расплавленных солей)

Принятые обозначения: см. п. 7.3.1.

Соль	t _K , ∘C	ρ, r/cm³	Соль	t _K , °C	ρ, r/cm ³
LiF	2772	0,577	NaWO₄	1925	1,250
LiCl	2313		KF	2505	0,611
Li ₂ SO ₄ LiNO ₈	2300 904	0,479 0,644 0,570	KCI KI	2368 2231	0,490 0,785
NaF	2802	0,626	K ₂ SO ₄	2772	0,606
NaCl	2402	0,496	K ₂ Cr ₂ O ₇	1248	0,733
NaI	2185.	0,877	$K_2CI_2C_7$ K_2MnO_4 K_2WO_4	2436	0,759
Na ₂ SO ₄	2357	0,663		2440	1,019
Na ₂ MoO ₄	1909	0,898	$K_2 WO_4$ KNO_3	1118	0,599

						
Соль	t _k , ∘C	р, г/см³	Соль	t _K , ∘C	ρ, г/cm³	
KPO ₃ RbF RbC! RbBr RbI Rb ₂ SO ₄ RbNO ₃	2188 2357 2315 2263 2187 2188 1043	0,675 0,941 0,676 0,868 0,917 0,816 0,797	CsF CsCl CsBr CsI Cs ₂ SO ₄ CsNO ₃ T1NO ₃	2108 2190 2185 2154 2663 1288 813	1,165 0,894 1,008 1,025 0,977 0,900 1,572	

7.3.3. Критические свойства органических соединений

Принятые обозначения: $t_{\rm K}$ — критическая температура; $p_{\rm K}$ — критическое давление; ρ — критическая плотность.

Вещество	t _K , °C	р _К , 0,1 МПа	ρ, г/см8
Аллилен	127,9		
Аллил сернистый	380		• • • •
Амилмеркаптан (изо)	321		• • • •
Анизол	368.5	41,8	• • • •
Анилин	426	53,1	
Ацетилен	35.7	62,4	0,231
Ацетон	235,0	48	0,268
Ацетонитрил	274,7	48,3	0,240
Бе нзол	288 ,6	48,3	0,304
Бензонитрил	426	42,2	•••
Бромбензол	397,0	45.2	0,486
Бутан <i>(изо)</i>	133,7	37,0	•,100
Бутан <i>(н)</i>	152,0	35,0	0,225
Гексан (н)	234,8	29,9	0.234
ептан (н)	266,8	27,2	0,234
Циизобутил	277,0	24,8	0,237
Циизопропил	227,4	31,0	0,241
Циметиламин	164,6	52,4	• • • •
Циметиланилин	415	36,3	
Циметилтолуидин `	395	31,2	• • •
Ципропиламин	277,0	31,4	• • •
Циэтоксиметан	254	• • •	• • •
(ислота валериановая (изо)	360,68		
валериановая (н)	378,87	• • •	• • •
капроновая, нитрил	349	32,6	
масляная (изо)	336,25	• • •	0,304
масляная (н)	354,74		0,302
пропионовая	339,5	53,8	0,315
уксусная	321,6	58,0	0,351
уксусная, ангидрид	296	46,8	• • •

· · · · · · · · · · · · · · · · · · ·		Продолжение табли			
Вещество	<i>t</i> _K , °C	_{Ек} , 0,1 МПа	р, г/см ⁸		
м-Крезол	432	45,6	•••		
о-Крезол	422,3	59,1	•••		
п-Крезол	426	51,3	•••		
Метан	82,5	46,4	0,162		
Метиламин	156,9	· 74,6	• • •		
Метиланилин	429	52,0	• • •		
Метилмеркаптан	196,8	72,3	0,323		
Метил сернистый	229,9	55,3	0,306		
фтористый	44,9	62,8	• • •		
хлористый	143,1	66,7	0,37		
Метилэтилсульфид	259,7	42,5	• • •,		
Нафталин	46 8 ,2	39,7			
Октан (н)	296	24,9	0,234		
Паральдегид	290	• • •	• • •		
Пентан (изо)	187,8	33,2	0,234		
Пентан (н)	197,2	33,4	0,232		
Пиридин	344	60,8	•••		
Пропан (н)	96,81	42,57	0,226		
Пропил хлористый	230,5	45,78	• • •		
Пропиламин	92,3	45,6	• • •		
Пропилен	€2,3	45,6	• • •		
Пропилонитрил	291,2	41,8	0,241		
Сероуглерод	273	77	• • •		
Спирт аллиловый	271,9	• • •	• • •,		
амиловый (изо)	307	• • •			
амиловый (трет.)	272	• • • •			
бутиловый (втор.)	265	• • •	• • •		
бутиловый (изо)	265	49			
бутиловый (н)	287	49,0	• • •		
бутиловый (трет.)	235	• • •	• • •		
гептиловый (н)	365	-11-	•••		
метиловый	240	79,7	0,272		
октиловый (втор.)	364	• • •	• • •		
октиловый (н)	385	<u> </u>	• • •		
пропиловый <i>(изо)</i>	235	54			
пропиловый <i>(н)</i>	263,7	450,61	0,273		
этиловый	243,1	63,9	0,2755		
Тимол	425	• • •	• • •		
Тиофен	317	49	• • •		
Толунитрил	450	• • •			
Толуол .	320,6	42,2	0,292		
Триметиламин	161	42			
Триэтиламин	262	30	0,251		
Углерода оксид (IV)	31,1	74,0	0,460		
оксид (II)	-139	35.	0,311		
сульфоксид	105	62			
Углерод четыреххлористый	283,1	45,6	0,558		
Фенетол	374	34,2	• • •		
Фенол	419	61,3			
Фосген	182	57	0.52		
Фторбензол	286	45,2	0,354		

		прообижение п		
Вещество	t _K , °C	р _к , 0,1 МПа	ρ, г/см³	
Хинолин	520	• • •		
Хлорбензол	359,2	45,2	0,365	
Хлороформ	263	• • •	•••	
Циан	128	60	• • •	
Циклогексан	281,0	40,9	0,270	
Этан Этиламин	32,1 183,2	49,4	0,21	
Этиламин Этилен	9,7	56,2 51,6	0.00	
Этилена оксид	192,0	01,0	0,22	
Этил бромистый	230,8	62,3	0,513	
Этил двусернистый	369		0,010	
меркаптан	225,5	54,9	0.301	
сернистый	238,8	39,6	0,279	
хлористый	187,2	53	0,33	
Эфир валериановопропи-	336	• • •		
ловый (изо)	914.07		• • •	
валериановоэтиловый (изо)	314,87 386	•••		
каприловоэтиловый кротоновоэтиловый	326	•••	•••	
масляноамиловый	345,68	•••	• • •	
маслянобутиловый	329		•••	
маслянобутиловый (изо)	338,25	• • •	•••	
маслянометиловый	281,5	34,73	0,300	
маслянометиловый (изо)	267,55	34,32	0,301	
маслянопропиловый	326,6	• • •	• • •	
маслянопропиловый (изо)	316	~~~		
метиловый метилэтиловый	126,9	57,2	0,271	
_	164,7 302,4	44,0 34,57	0,270	
муравьиноамиловый муравьинобутиловый <i>(изо)</i>	278,2	38,80	0,282 0,288	
муравьинометиловый (изо)	214,0	60,04	0,200	
муравьинопропиловый	264,85	40,6	0,309	
муравьиноэтиловый	233,1	49.81	0,32	
пропионовоамиловый (изо)	338		•••	
пропионовобутиловый (изо)	34 8			
пропионовобутиловый	305	•••		
пропионовоэтиловый	272,4	35,10	0,286	
уксусноамиловый (изо)	326		•••	
уксуснобутиловый	306	•••	•••	
_ ·	233,7			
уксуснометиловый	•	46,9	0,325	
уксуснопропиловый	276,2	33,3	0,296	
уксусноэтиловый	250,1	38,3	0,308	
хлормуравьиноэтиловый	235	• • •		
щавелевометиловый	260	9,61	• • •	
этилаллиловый	245			
этилпропиловый	227,4	32,5	0,258	
этиловый	183,8	36,0		
O : III-IODDIN	100,0	90;0	0,2625	

7.4. ВЯЗКОСТЬ ОРГАНИЧЕСКИХ ЖИДКОСТЕЙ [ŋ]

	η·10 ⁻³ , Па с, при <i>t</i> , °C					
Веществ о	0	10	20	50	100	
Альдегид уксусный	0,267	0,244	0,222	•••		
Анизол	1,78	1,51	1,32	1,04	•••	
Анилин	10,2	6,5	4,40	1,80	0,80	
Ацетилацетон	1,09	• • •	• • •	•••	•••	
Ацетон	0,395	0,356	0,322	0,246	•••	
Ацетофенон			• • •	1,246	• • •	
Бензиламин	• • •		1,59	• • •	• • •	
Denoma			(25°)			
Бензол	0,91	0,76	0,65	0,436	0,261	
Бромбензол	1,52	1,31	1,13	0,79	$0,\!52$	
и-Бромтолуол	1,73	1,45	1,35	• • •	0,53	
о-Бромтолуол	2,21	1,81	1.51		0,59	
Гексан	0,397	0,355	0,320	0,241	***	
Гептан	0,517	0,458	0.409	0,301		
Глицерин	12,100	3950	1499	• • •	• • •	
Декагидронафталин	• • •		2,40	1,58		
(декалин)			•			
Декан Декан			0,77			
Диметиланилин		1.69	1,41			
Диметиланилин Диоксан		.,	1,26	0,778	• • •	
Диоксан Дифенил		,	• • •	• • •	0,97	
Ди р енил Диэтиламин			0,37	• • •	•••	
, , , , ,		,	(25°)			
Диэтиланилин	• • •	2,85	2,18	1,2	•••	
Подекан	• • •	• • •	1,26	• • •		
Изопентан	0,272	0,246	0,223	•••	• • •	
Изопрен	0,260	0,236	0,216	* * *		
Изопропил бромистый	0,605	0,538	0,482	0,359	• • •	
, хлористый	0,402	0,358	0,322	• • •	• • • •	
Иодбензол		1,97	1,49	1,12	0,69	
Кислота валериановая		• • •	2, 236	1,25		
изомасляная	1,89	• • •	1,32	• • •	• • •	
лауриновая		• • •	• • •	6,88	2,46	
масляная	2,284	• • •	1,538	• • • •	0 545	
муравьиная		2,25	1,78	1,03	0,54	
амид	7,3	5,0	3,75	2,04	0,83	
пропионовая	1,52	1,29	1,10	0,75	0,452	
ангидрид	1,61	1,33	1,12	0,73	0,430	
салициловая		3,20	2,71		•••	
уксусная		•••	1,22	0,74	0,46	
ангидрид	1,24	1.05	0,90	0,62	0,377	
энантовая	• • •	5,62	4,34		1,06	
м-Крезол	95	44	21	4,4	1,6	
<i>о</i> -Крезол			9,8	3,2		
<i>п</i> -Крезол			20,2	4,7	•••	
м -Ксилол	0,80	0,70	0,61	0,443	0.289	
0 -Ксилол	1,10	0,93	0,81	0,56	0,346	
п -Ксилол		0,74	0,64	0,456	0.292	
th-1/Custosi		~,• -	-,	-,	,	

	η · 10-³, Па · с, при t, °С						
Вещество	0	10	20	50	100		
Масло касторовое		2420	986	•••	16,9		
машинное легкое		• • •	• • •	• • •	4,9		
оливковое	***	138	80,8	25,3	•••		
. соевое	• • •	• • •	• • •	20,6			
терпентинное	•••	• • •	1,46	•••	•••		
ц илиндровое							
очищенное	• • •	• • •	• • •		18,7		
темное	• • •	• • •	• • •		24,0		
Ментол	* * *	•••	•••	6,8 (60°)	•••		
Метил иодистый	0,606		0,500	•••			
хлористый		0,202	•••	0,140	0,089		
Метиламин	0,236	•••		• • • •	• • •		
Метиланилин	•••	• • •	2,02 (25°)	•••	• • • •		
Метилен хлористый	0,537	0,481	0,435				
Нафталин		• • • •	• • • •	• • •	0,776		
Нитробензол	3.09	2,46	2.01	1.24	0,70		
Нитрометан	0,844	0,742	0,657	0,478			
м-Нитротолуол	•••	• • •	2,33	•••	0,75		
о-Нитротолуол	3,83	2,96	2,37		0,76		
<i>n</i> -Нитротолуол			-,	• • •	0,76		
Нонан	0,97	0,83	0.71	• • •	0,30		
Октан	0,70	0,61	0,54	0,386	0,245		
Пек		· · ·	3 . 1010	$5 \cdot 10^{6}$	1,19		
Пентан	0,283	0,254	0.229				
Пиридин	1,33	1,12	0,95				
Пропил бромистый	0,645	0,575	0,517	0.388			
хлористый	0,436	0,390	0,352				
Сахар тростниковый	•••	•••	•••	• • •	2,8 · 106 (109°)		
Сероуглерод	0,433	0,396	0,366	•••	(100)		
Спирт аллиловый	2,145		1,363	• • •			
амиловый	8,9	6,23	•••		• • •		
бутиловый	5,19	3,87	2,95	141	0.54		
изоамиловый	8,6	6,1	4,36	1.85	0,63		
изобутиловый	8,3	5,65	3,95	1,61	0,52		
изопропиловый	4,60	3.26	2,39	•••	•••		
метиловый	0,817	0,68	0,584	0,396			
пропиловый	3,85	2,89	2,20	• • •			
циклогексиловый			68,0	12,1			
этиловый	1,78	1,41	1,19	0,701	0,326		
Гетрагидронафталин			2,02	1,3			
(тетралин)			,	-,-			
Гиофен	0,87	0,75	0,66	0,468	• • •		
и-Толуидин	8,7	5,5	3,81	•••	0,77		
э-Толуидин	10,2	6,4	4,35	1.94	0,83		
1- Толуидин	· · ·	• • •		1,75	0,75		
Голуол	0.768	0.667	0.586	0,420	0,271		

,	η · 10 ⁻³ , Πα c, при t, °C						
Вещество	.0	10	20	50	100		
Углерод четырех-	1,35	1,13	0,97	0,65	0,387		
хлористый Фонульрони вкатон	4,07	3,03	2,36		0.69		
Фенилпропилкетон	1,01	• • • •	11,6	3,43	1.05		
Фенол У торбоноо т	1,06	0,91	0,80	0,57	0,370		
Хлорбензол Улорбензол	0,70	0,63	0,57	0,426	• • •		
Хлороформ	• • •	•••	0,97	0,61			
Циклогексан Этан четыреххло-	2,66	2,13	1,75	1,11			
ристый Этил бромистый	0,487	0,441	0,402		• • •		
иодистый иодистый	0,727		0,592				
Этил хлористый	0,320	0,291	0,266				
Этиланилин	•••	2,98	2,25		0,60		
Этиланилин Этилбензол	0,87	0,76	0,67	0,475	0,30 5		
Этилоензои Этилен бромистый	2,438	***	1,721				
треххлористый	0,71	0,64	0.58	0,45			
хлористый	1.077	,,,	0.84	0,565			
четыреххлористый	1,14	1,00	0,88	0,66	0,441		
Этиленгликоль			19,9		1,99		
Эфир масляноамиловый	1,77	1,45	1,21		0,45		
муравьинометиловый	0,43	0,38	0,345		• • •		
муравьиноэтиловый	0,512	,	0,402	0,308			
пропионовоэтиловый	0,696			···			
vксуснобутиловый предостав	1,004	0,851	0.732		0,304		
уксусномутиловый		• • •	0,381	0,284	0,182		
уксуснопропиловый	0,77	0,67	0,58	0,41	0,250		
уксусноэтиловый	0,578	0,507	0,449	0,326	0,210		
уксуспоэтиловыи этиловый	0,296	0,268	0,243	· · ·	0,118		

7.5. ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ

7.5.1. Поверхностное натяжение простых веществ (α) [на границе с газообразной средой указанного состава]

 Π ринятые обозначения: В — воздух, Разр. — разрежение, Π . — пар.

Вещество	Среда	t, °C	α·10 ⁻³ , H/m	Вещество	Среда	ŧ, °C	α·10-3, H/m
Алюминий Бром	В. В.	700 13	840 44,1	Висмут		779 700—800	
Висмут	$\begin{array}{c} \mathbf{B.} \\ \mathbf{H_2} \\ \mathbf{H_2} \end{array}$	20 300 600	41,5 388 367	Галлий Железо	H ₂ или CO ₂ H ₂ H ₂	30—40 1267 1310	7 35 936 917

Вещество	Среда	t, °C	α·10-3, H/м	Вещество	Среда	t, °C	α·10 ⁻³ , Η/м
Золото	H_2	1120	1128	Ртуть	П.	160	442,0
0011010	H_2^2	1200	1120	3	Π.	180	436,8
	H_2 .	1300	1110		Π.	200	431,2
Кадмий	Разр.	350	546,4		Π.	220	425.2
	H_2	330	570		Π.	240	419,0
	H_{2}	400	597		Π.	360	376,4
	H_{2}^{-}	600	58 5		В.	15	487
Калий	CO_2	62	411,5		H_2	19	470
Медь	H_2	1140	1120	Свинец	Разр.	37 7	39 4,2
Натрий	Ħ,	1200	1160		П.	260	412,7
•	$_{\mathbf{H}_{2}}^{\mathbf{H}_{2}}$	1300	1226	•	П.	280	406,4
	Разр.	100	222		Π.	300	399,5
	Разр.	250	211		Π.	320	392,7
	CO	90	294		'n.	340	384,6
Ниобий	H_2^z	1131	1103		H_2	350	453
Олово	Разр.	247	- 539,8		H_2	366	442
	Разр.	271	538,0		H_{2}	522	423
	Разр.	398	533,9	Селен	В.	217	92,5
•	H_{2}	253	526	Сера	В.	141	58,3
	H_2^-	800	520	Серебро	В.	970	800
	н,	878	508		H_2	995	923
Платина	Р <u>а</u> зр.	2000	1819		H_2	1100	909
Ртуть	Π.	20	471,6	Сурьма	H.	640	350
•	Π.	40	468,2		H_2^-	750	368
	Π.	60	464,4	Таллий	Разр.	300-320	357-496
	Π.	80	` 460,5	Цинк	Разр.	470	772,2°
	Π.	100	456,2		Разр.	616	738,9
	Π.	120	452,0		H_2	477	753
	Π.	140	447,2		B.	590	70 8

7.5.2. Поверхностное натяжение ртути на границе с водой и водными растворами

Принятые обозначения: d — плотность; t — температура; α — поверхностное натяжение.

Растворенное вещество	Массовая доля, %	d, г/см ³	t, °C	α·10-8, H/м
Вода	100	0,998	20	375
HCI	1,15	1,004	1920	362,8
	6,85	1,032	19—20	356,1
	24,7	1,122	19—20	342,4
	37,8	1,190	1920	335,7
H ₂ SO ₄	2,15	1,015	19—20	337,5
2 4	10,6	1,071	19—20	319,7
NaOH	0,7	1,006	19—20	407,1

Растворенное вещество	Массовая доля, %	d , г/см³	<i>t</i> , ∘C	α·10-3, Η/м			
NaOH	7,3	1,079	19—20	423,1			
Na ₂ SO ₄	27,0	1,296	19—20	429,4			
	1,3	1,010	19—20	371,8			
	6,4	1,057	19—20	371,0			
	10,7	1,098	19—20	377,3			
CuSO ₄	1,3 6,5	1,012 1,067	19 - 20 $19 - 20$	343,2 334,9			
ZnCl ₂	9,6	1,103	19—20	331,7			
	10,4	1,094	19—20	359,0			
· .	40,6	1,426	19—20	328,7			
	56,3	1,683	19—20	304,7			
Спирт этиловый	20,0	0,969	19—20	363,2			
	44,5	0,927	19—20	361,1			
•	87,8	0,825	0	366,6			
	98,3	0,795	19—20	364,0			
Кислота уксусная	5,3	1,006	20	344			
Натрия ацетат	3,1	1,014	19—20	379,0			
Калия оксалат	4,0	1,029	19—20	352,3			

7.5.3. Поверхностное натяжение ртути на границе с жидкими органическими веществами

Принятые обозначения: см. п. 7.5.2.

Жидкое органичес- кое вещество	<i>t</i> , °C	α·10-3, Н/м	Жидкое органическое вещество	t, °C	α · 10− Н/м
Анилин	20	341	Сероуглерод	20	339
Ацетон	20	390,1	Спирт бутиловый	25	372.8
Бензол	20	357	изобутиловый	20	343
	25	364,3	октиловый	20	352
Бутилбензол	25	362,5	октиловый втор.	20	359
Гексан	20	378	пропиловый	20	368
	25	379,9	•	25	376.5
Гептан	25	378,7	йывоките	20	364
Кислота олеиновая	20	322		25	376.9
ундекановая	20	353	Толуол	20	359
м-Ксилол	20	357	•	25	363,6
о-Ксилол	20	359	Углерод четыреххлорис-	20	362
п-Ксилол	20	361	тый		
Масло оливковое	20	308,1	Хлороформ	20	357
Метилен хлористый	20	341	Этан четырехбромистый	20	307
Нитробензол	20	350	Этил иодистый	20	306
	25	349,5	Этилен бромистый	20	326
Нитроэтан	20	378	Этилиден хлористый	20	377
Октан	20	375	Эфир этиловый	20	379
	25	376	tok comment	•	

7.6. АДГЕЗИОННОЕ НАТЯЖЕНИЕ [а] ЖИДКОСТЕЙ НА ГРАНИЦЕ С ТВЕРДЫМИ ТЕЛАМИ, 10-8 Н/м

	α·10 ⁻³ , H/M							
Жидкость	Квар- цевое стекло при 25°C	Свин- цовое стекло при 25 °C	Известко- во-натро- вое стекло при 25 °C	Песок при 25°C	Тре- пел	Уголь	Сера	
Вода	95,92	76,16		76,7				
Анилин					73,8	60,22	28.9	
Бензол	45,43	41,66		44.1	51.2	81.03	58,3	
Бромбензол			,	39,3			•••	
Бромнафталин (α)	41,07	43,61	44,00	39,6	41,1	88.81	• • •	
Бромоформ	37,25	39,86	39,24	37,4			• • •	
Бутилбензол	• • •	• • •	• • •	38,7	• • •			
Гексан	29,90	34,22		25,9	•••		• • •	
Декалин		•••	•••	• • •	•••	76,38	• • •	
Иодбензол	38,22	38,70	39,10	37,2		• • •	• • •	
Метилен иодистый		43,73		• • •	• • •	•••		
Нитробензол	57,2 5	53,50		57,7	61,4	79,58	• • •	
Пропилбензол			• • •	40,0	• • •	•••	•••	
Сероуглерод	40,46	44,25	• • •	42,3	43,2	90,77	•••	
Спирт амиловый	73,13	71,0	• • • •	• • •	77,5	58,77	•••	
бензиловый	***.	• • •	• • •	• • •	•••	85,73	•••	
бутиловый изобутиловый	• • •	• • •	•••	• • •	• • •	00.7	24,7	
	• • •	• • •	•••	•••	• • •	80,7	56,6	
Тетралин	• • •	•••	• • •	• • •	• • •	76,70		
Толуол	46,54	43,82	•••	43,2	53,4	82,10	• • •	
Углерод четыреххло- ристый	35,67	•••	•••	36,3	39,5	86,38	47,0	
Хлорбензол	•••		•••	40,2			• • •	
α-Хлорнафталин	39,77	40,05	40,20	39,0	• • • .			
Хлороформ	• • •	•••	•••	47,4	58,7	79,83	• • •	
Этилбензол		•••	• • •	41,2				
Этилен четырехбро мистый	43,32	. • • •	42,8	•••	•••	•••	•••	
Эфир уксусноамиловый			•••	• • •		73,7	63,6	
уксуснобутиловый		62,75	•••	64,5	72,1	65,78	• • •	
уксуснопропило- вый	•••	•••	•••	•••	74,4	63,09	•••	
уксусноэтил овый		•••	•••	•••	76,1	59,07		

7.7. ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ (8)

Диэлектрическая проницаемость воды см. п. 8.4.1. Приведенные значения диэлектрической проницаемости относятся к очень длинным волнам. Принятые обозначения: К. т.— комнатная температура, Тв.— твердый, Ж.— жидкий, t— температура.

Вещество	Агрегатное состояние	<i>t</i> , °C	8
Алмаз	Тв.	26	5,68
Азот	Ж.	198,4	1,445
Аммиак	Ж.	25,0	16,9
Аргон	Ж.	-184,4	1,516
Бензидин	Тв.	17	3.6
Бор	Тв.	• • •	12
Бром	Ж.	15	3,22
Водород	Ж.	252,85	1,225
Гелий	Ж.	-269.0	1,048
Гидразин	ж.	25	2,43
Дифенил	Ťв.	17,0	2,57
Иод Иод	Ж.	118,1	11,08
Калия бромид	TB.	25	4,9
	Тв.	18	5,0
карбонат	Тв.	20	4,37
нитрат	Тв.	29,5	4,68
хлорид		29,5 19	
Кальция нитрат	T _B .		6,5
Канифоль	Тв.	К. т.	2,5—2,6
Кварц кристаллический	~		4.0
параллельно оси	Тв.	•••	4,6
перпендикулярно оси	Тв.	•••	4,45
плавленый	TB.	К. т.	3,5-3,6
Кислород	Ж.	— 182 ,9	1,463
Магния оксид	Тв.	25	9,65
сульфат	Тв.	20	8,20
Мрамор	Тв.	К. т.	8,3
Натрия бромид	TB.		6,1
сульфат	Тв.	20	7,9
хлорид	Тв.	25	5,9
Нафталин	TB.	25	2,85
Парафия	Тв.	К. т.	2-2,3
Сера	ж.	118,0	3,52
	Tв.	25	3,7
Селен	τв.	18	6,0
Concin	Ж.	237,5	5,44
Серебра нитрат	Тв.	20	9,0
хлорид	Ťв.	20	12,3
Сероуглерод	Ж.	25,0	2,625
Фосфор (желтый)	Ťв.	20,	4.1
Фтор	ж.	-189.97	1.517
Хлор	Ж.	10,0	1,97
	л. Тв.	К. т.	3,1
Шеллак	тв. Тв.		
Эбонит		К. т.	2,3—2,5
Янтарь	Тв.	К. т.	2,8

7.8. ДИПОЛЬНЫЙ МОМЕНТ

Постоянные дипольные моменты выражают в дебаях: 1 D = 1 \cdot 10⁻¹⁸ ед. СГС и по системе СИ — в кулонах на метр.

1 D =
$$3.33564 \cdot 10^{-30}$$
 Kл · м.

<u> </u>	Π	льный момент	- ' [.	£
Вещество		1	-	
	D	10 = № Кл • м	- '	Вещество Диэтилкетон Иод I ₂ Иода бромид жлорид
A307 N ₂	0	0		диэтилкетон — — — — — — — — — — — — — — — — — — —
Азота (I) оксид	0,14	0,41		Иод I ₂
Азота (II) оксид	0,16	0,50	·	Иода бромид
Азота (III) оксид	0,37	1,2	ľ	хлорид
фторид	0,23	0,71		Калия иодид
Азота (IV) оксид	0,29 1,39	0,91	1	хлорид
Азота (V) оксид	0,37	4,6	l l	Камфора
Азотноватый ангидрид Азотный ангидрид	1,39	1,2 4,6		Кислород
нзотный ангидрид Альдегид бензойный	3,00	10,0	1	Кислота бензойная
мльдегид оензоиный муравьиный	2,27	7,6		бензойная, нитрил
муравьиныи УКСУСНЫЙ	2,72	0,0	İ	Кислота пропионовая, нитрил
уксусный Алюминия бромид, иодид и хлорид	0	ŏ		уксусная, нитрил (ацетонитрил)
Алюминия оромид, иодид и хлорид Аммиак	1,46	4,9) .	Кремния (IV) фторид и хлорид
Анизол (метиловый эфир фенола)	1,35	45	Ī	м-Ксилол
Анилин	1,48	4,6		о-Ксилол
Ацетилацетон — — — — — — — — — — — — — — — — — — —	2,9	9,1		<i>n</i> -Ксилол
Ацетилен	0,0	ŏ,'		Лития хлорат
Ацетон	2,95	9,8	Į.	Метан
Ацетофенон (метилфенилкетон)	2,96	9,9	į,	Метил хлористый
бензол	0,	0,0		Метиламин
Бензофенон (дифенилкетон)	3,13	10,4		Метилацетат
Бериллия бромид и хлорид	0,	0,1	f ·	Метилен хлористый
Бора фторид и хлорид	0 .	· Ŏ		Моносилан
Бороэтан (боран)	Ō	· 0	i i	Мышьяка (III) бромид
Бром	Ō	0	Į.	иодид
Бромбензол — — — — — — — — — — — — — — — — — — —	1,52	5,1	[-	оксид
Бромоформ	0,99	3,3		фторид •
Бутилен (изо)	0,49	1,6		хлорид
Бутил хлористый (изо)	2,12	7,1	į.	Натрий
Вода	1,84	6,1		Нитрамид
Водород Н2	·· 0´	0		Нитробензол
Водорода соединения				Нитрометан
арсеноводород	0,16	0,5		о-Нитротолуол
иодоводород	0,38	1.3		<i>n</i> -Нитротолуол
бромводород	0,79	2,6 7,1		Нитроэтан
пероксид	2,13	7,1	1	Озон
сероводород	0,93	3,1		Олова (IV) ахлорид
фосфороводород	0,55	1,8	1	Осмия (IV) оксид
хлороводород	1,03	3,4	· •	Пиридин
циановодород	2,9	9,7		Пирокатехин
Гексан (н)	0	0		Пропан
<u>Г</u> ид р азин	1,83	6,1	i .	Пропил хлористый (изо)
<u> Дибензил</u>	0	0		Пропил хлористый (н)
Диметиламин	0,97	3,2	183	Пропилен Ртути (II) бромид, иодид и хлорид
и-Динитробензол	3,79	12,6) :	Селена (I) хлорид и хлорид
р-Динитробензол	6,0	20		Селена (1) хлорид Сера S ₈
<u>г-</u> Динитробензол	0	0	1.0	Сера S ₈ Серы (I) хлорид
Циоксан	0,4	1,3		Серы (П) хлорид
<u>Д</u> исила н	0	. 0	1.	Серы (II) хлорид Серы (IV) оксид
Дифенил	0	0	}	фтория
,1-Дихлорэтан	2,07	6, 9 ,	- L	фторид

	Дипольный момент			
Вещество	D	10-30 Кл м		
The same of the sa	_!			
Диэтилкетон	2,72	9,1		
Иод 12	0	0		
Иода бромид	1,0	3,3		
хлорид Кария налич	0,5	1,7		
Калия иодид	9,24	3 0,8		
хлорид	8,0	2,7		
Камфора	2,95	9,8		
Кислород	0	0		
К ислота бензойная	1,0	3,3		
бензойная, нитрил	4,39	14,6		
Кислота пропионовая, нитрил	5,05	16,8		
уксусная, нитрил (ацетонитрил)	3,94	13,1		
Кремния (IV) фторид и хлорид	0	0		
м-Ксилол	0,4	1,3		
о-Қеилол	0.55	1,8		
<i>п</i> -Ксилол	. 0	. 0		
Лития хлорат	7,8	2,6		
Метан	0	0		
Метил хлористый	1,86	6,2		
Метиламин	1,32	4.4		
Метилацетат	См. эфир	уксуснометиловый		
Метилен хлористый	1,57	5,2		
Моносилан	0	0		
Мышьяка (III) бромид	1,63	5,4		
иодид	0.96	3,2		
оксид	0,14	0,47		
фторид •	2,65	8,8		
хлорид	2,1 7	7,2		
Натрий	0	0		
Нитрамид	3,7	12.3		
Нитробензол	4,0	13,3		
Нитрометан	3,54	11,8		
о-Нитротолуол	3,7	12,3		
п-Нитротолуол	4,4	14.7		
Нитроэтан	3,58	11,9		
Озон	0,49	1,6		
Олова (IV) ахлорид	0,10	0,0		
Осмия (IV) оксид	ŏ	ŏ		
Пиридин	2,25	7,5		
Пирокатехин	2,16	7,2		
Пропан	0	0		
Пропил хлористый (изо)	2,15	7,2		
Пропил хлористый (н)	2,10	7,0		
Пропилен	0,35	1,2		
Ртути (II) бромид, иодид и хлорид				
Солоно (1) впория	0	0		
Селена (I) хлорид	2,1	7,0		
Cepa S ₈	0	0		
Серы (I) хлорид	1,60	5,3		
Серы (П) хлорид	0,6	2,0		
Серы (IV) оксид	1,61	5,4		
фторид	0	0		

	Прооолжение таолица Дипольный момент			
Вещество	Ď	10-80 Кл • м		
Серы (VI) оксид	0	0		
Сероуглерод	0	0		
Спирт амиловый (н)	1.65	5,5		
бутиловый (изо)	1,63	5.4		
бутиловый (н)	1.66	5,5		
метиловый	1,69	5,6		
пропиловый (изо)	1,58	5.3		
	1,64	5,5 5.5		
пропиловый (н)	1,70	- ,-		
этиловый		5,7		
Сульфамид	3,9	1,3		
Сульфурил хлористый (дихлорид-диоксид		0.0		
серы)	1,80	6,0		
Сурьмы (III) бромид	2,17	7,2		
иодид	1,58	5,3		
хлорид	3,93	13,1		
Геллура (IV) хлорид	2,54	8,5		
Гионила бромид	1,47	4,9		
хлорид	1,60	5,3		
Гиофосген	0,28	0,9		
Гитана (IV) хлорид	0	0		
Голуол	0,4	1,3		
Гриметиламин — — — — — — — — — — — — — — — — — — —	0,65	2,2		
Грихлормоносилан	0,85	2.8		
	0,11	0,37		
Углерода (II) оксид	0,11	0,57		
Углерода (IV) оксид				
оксид-сульфид	0,65	2,2		
фторид и хлорид	0	0		
Р енол	1,40	4,7		
Росген	1,18	3,9		
Росфор Р4	0	2,0		
Росфора (V) фторид и хлорид	0	0		
Росфора (III) бромид	0,61	0		
иодид	0	0		
хлорид	1,1	3 , 7		
Росфора (V) трихлорид-оксид	2,4	8.0		
инолин	2,19	7, 3		
Cnop Cl ₂	0	0		
лора (Î) оксид	0.78	2,6		
лора (IV) оксид	1,69	5,6		
лора (VII) оксид	0,72	2,4		
лорбензол	1,70	5,7		
	1,15			
лороформ		3,8		
рома дихлорид-диоксид	0,47	1,6		
иклогеќсан	0	0 0		
тан	0	0		
гилмеркаптан_ (этантиол)	1,56	5,2		
гил хлористый	2,05	6,8		
гиламин	1,37	4, 6		
гилацетат	См. эфип ик	сусноэтиловый		
· · · · · · · · · · · · · · · · · · ·	0,6	2,0		

Вещество	Диполі	Дипольный момент		
	D	10-80 Кл⋅м		
Этилен	0	0		
Этилена оксид	1,88	6,3		
Этиленгликоль	2,28	7,6		
Этилендиамин	1,94	6,5		
Этиленхлоргидрин	1,88	6,3		
Эфир диметиловый	1,29	4,3		
дифениловый	1,35	4,5		
диэтиловый	1,18	3,9		
Эфир уксуснометиловый	1,67	5,6		
уксусноэтиловый	1,81	6,0		

7.9. ЭЛЕКТРОПРОВОДНОСТЬ

7.9.1. Электрическое сопротивление чистых металлов

Принятые обозначения: R_t — сопротивление при температуре t °C, Ом; R_0 — сопротивление при температуре 0 °C, Ом; ρ_0 — удельное сопротивление при температуре 0 °C, Ом · м.

Металл	10=4			<u>.</u>	R_t/R_0 n	ри <i>t</i> , °C			
металл	ρ ₀ - 10.74	—2 53	— 192	78	100	200	300	400	500
Li	8,55	0,007	•••	• • •	•••				•••
Na	4,34	0,007	• • •	• • •	• • •				
K	6.38	0,027		• • •			• • •		
Rb	11,3	0,081	• • •	• • •		• • •			
Cs	18,83	0,067		• • •					,
Be	6,6	0,308							
Mg .	4,18	0,034	0,285	0,707	1,37	1,76	2,21	2,76	
Ca	4,3	0,354	• • •	• • •	•••				
Sr	24,8	0,116	• • • •						
Ba	- 50	0,067	0,284						
ΑI	2,41	0,008	0,144	0,646	1,45	1,89			
Ce	78	0,749		•••		• • •			
Ti	43,5	• • •	0,215		1,47	•••			
Zr	41	0,044	• • •		1,44				
Hf	30	0,100	0,263	• • •					
Th	12,0	0,031	0,245	• • •	1,24				
V	19	0,954	0,967	• • •	• • •	• • •			
Nb	13	0,338	0,499	•••		• • •			
Ta	12,4	0,014	0,296	0,730	1,347	1,661			
Cr	18,9	0,053			•••	• • •			
Mo	5,17	0,045	0,137	0,667	1,435	1,885	2,342	2,825	
W	4,91	0,001	0,156	0,652	1,465	1,957	2,479	3,026	
U	30,6	0,597	0,684			• • •	• • •		
Mn	185	1,002	0,981	• • •	•••				• • •

				i	R_t/R_0 nr	он <i>t</i> , °С		•	
Металл	$\rho_0 \cdot 10^{-4}$	253	—192	—78	100	200	300	400	500
								·	<u></u>
Re	19,8	0,110	0,162	0,659	1,443	1,903	2,883	2,888	3,414
Fe	8,7	0,011	0,085	0,579	1,648		3,474		
Co	5,06	0,046	0,151		1,658	2,478	3,527	5,564	5,605
Ni	6,05	0,086	0,178	0,615	1,672	2,532	3,660	4,914	
Ru	7,64	0,083	0,176			• • •	• • •		
Rh	4,3	0,004	0,007	0,685	1,377	1,728	2,058	2,368	
Pd	10,88	0.010	0,173		• • •	• • •	• • •		
Ir	4,58	0,054	0,225	0,694	1,393	1,795	2,197	2,631	3,070
Pt	9,8	0.001	0,206	0,686	1,392	1,772	2,141	2,498	2,844
Cu	1,55	0,006	0,148	0,649	1,433	1,866	2,308		
Ag	1,49	0,009	0,207	0,684	1,410	1,829	2,263	2,710	3,168
Au	2,19	0,007	0,238	0,696	1,398	1,809	2,232	2,680	3,144
Z n	4,8	0,009	0,211	0,686	1,415	1,856	2,341		
Cd	6,83	0,021	0,253	0,693	1,424	1,886	• • •		
Hg	94,07	0,064	0,282		• • •	• • •			• • •
In	8,37	0,026	0,218						
Te	$\sim 15,0$	0,30	0,245	• • •		• • •	• • •	• • •	
Ge	~89 · 108	1,30	1,35					,	
Sn	9,3	0,011	0,23	0,665					
Pb	18,8	0,031	0.263	0.691	1,422	1,877	2,379		
Sb	38,6	0.032	0,204	•••		• • •	• • •		
Bi	106,8	0,233	0.395	0.715	1,446	2,071	• • •		

7.9.2. Удельная электропроводность жидкостей (Х)

Принятые обозначения: т. к.— температура кипения.

Вещество	t, °C	χ, См/м
Жидкие неорганические 1	зещества	
Аммиак	—33 —79	$1 \cdot 10^{-6}$ $1.3 \cdot 10^{-5}$
Бром	17.2	13 - 10-15
Бромоводород	—80	8 · 10-7
Иодоводород	Т. к.	$2 \cdot 10^{-5}$
Мышьяка (III) хлорид	25	$12 \cdot 10^{-5}$
Ртуть	0	1063000
Селена дибромид-оксид	45—5 0	$6 \cdot 10^{-3}$
Селена дихлорид-оксид	25	$2 \cdot 10^{-3}$
Сера (ромбическая)	115	$1 \cdot 10^{-10}$
Серная кислота	25	1
Сероводород	Т. к.	1 · 10-9
Серы (IV) оксид	—15	9 · 10-6

·			
Вещество	t, °G	χ, См/м	
Серы (VI) хлорид-гидроксид-диоксид	25	16 · 10 ⁻³	
Фосфора трихлорид-оксид	25	$22 \cdot 10^{-5}$	
Хлор	 70	1 · 10-4	
Хлористый сульфурил SO ₂ Cl ₂	25	3 • 10-6	
Хлористый тионил SOCl2	25	2 · 10-4	
Хлороводород	 96	1 • 10-6	
Жидкие органические веществ	a		
Анилин	25	$2.4 \cdot 10^{-6}$	
Ацетилацетон	0	$2 \cdot 10^{-5}$	
Ацетон	0	$6 \cdot 10^{-6}$	
T.	25	$6 \cdot 10^{-6}$	
Ацетофенон	25	$6 \cdot 10^{-7}$	
Бензойный альдегид	20	$4 \cdot 10^{-5}$	
Бензол	•••	$1 \cdot 10^{-6}$	
Бензонитрил	25	5 · 10-6	
Бромбензол	25	$2 \cdot 10^{-9}$	
Гексан	18	1 · 10-16	
Гептан	19,5	1 - 10-11	
Глицерин	25	$6.4 \cdot 10^{-6}$	
Кислота дихлоруксусная	0	$4 \cdot 10^{-6}$	
изовалериановая	80	4 10-11	
муравьиная	25	$6.4 \cdot 10^{-3}$	
олеиновая	15	$2 \cdot 10^{-8}$	
пропионовая	25	$1 \cdot 10^{-2}$	
стеариновая	. 80	4 . 10-11	
трихлоруксусная	25	$3 \cdot 10^{-7}$	
уксусная	25	1.1 - 10-3	
хлоруксусная	60	$1.4 \cdot 10^{-14}$	
Ксилол	19,5	1 10-13	
Метил иодистый	25	$2 \cdot 10^{-6}$	
Нафталин	82	$4 \cdot 10^{-8}$	
Нитробензол	25	$2 \cdot 10^{-6}$	
Нитрометан	0	4.4 · 10-6	
Пентан	19,5	$2 \cdot 10^{-8}$	
Пиридин	25	$2 \cdot 10^{-5}$	
Пиперидин	. 25	6,8 · 10-9	
Спирт амиловый (изо)	18	$5 \cdot 10^{-6}$	
бутиловый (изо)	25	$3.5 \cdot 10^{-4}$	
метиловый	25	2,2 ⋅ 10-4	
пропиловый	25	$2 \cdot 10^{-6}$	
этиловый	25	1.7 · 10-6	
Толуол	19,5	1 · 10-12	
Углерод че тыреххлористый	18	4 · 10-16	
Хлороформ	25	2 · 10-3	
	· -		
Этиленгликоль	25	3 · 10-5	
Эфир диэтиловый	25	$4 \cdot 10^{-11}$	
	25	$1 \cdot 10^{-7}$	

7.10.1. Теплопроводность различных металлов ж сплавов

(В сплавах указаны массовые доли компонентов, %)

Металл или сплав	t, °C	λ, Вτ/(м · Κ)
Алюминий, 99%	18	211,0
	100	205
	400	318
	600	423
Висмут	-77	10,76 7,41
	0 100	6,87
5 % Ві и 75 % Рb*	44	19,59
6,5 % Ві и 3,5 % Рb*	44	5,40
00 % Bi и 10 % Sn*	44	5,28
i0 % Bi и 50 % Sn	12,5	23,4
5 % Ві и 75 % Sn	12,5	42,7
З ольфрам	$\frac{0}{7}$	160,4
Зуда сплав	7	13,4
Keneso Fo 0.1 o/ C 0.1 o/ Mp # 0.2 o/ Si	18	60.12
Fe, 0,1 % C, 0,1 % Mn и 0,2 % Si	100	59,45
19 % Fe и 1 % С	18	45.43
,5 / ₀ 10 n 1 / ₀ 0	100	45,05
Fe, 1,5 % C, 0,19 % Mn, 0,05 % Si, 0,03 % Cu, 0,01 % Ри 0,025 % S	18	49,8
Бессемеровская сталь	8	41,25
Волото	0	311,5
	97	312,5
90 % Au и 10 % Pd	25	97,97
50 % Au и 50 % Pd	25	36,0
l0 % Au и 90 % Pd	25 25	51,9 25,9
10 % Au и 60 % Pt	25 25	76.2
10 % Au и 90 % Pt.	17	59,0
Лридий Кадмий	Ö	92,65
Са ДМИИ	100	. 85,62
Калий	5,0	135,7
,	20,7	97,1
	57,6	90,9
52,5 % K и 37,1 % Na	6,0	22,99
KOGAJET	30	487,89
Co, 0,24 % C, 1,4 % Fe, 1,1 % Ni и 0,14 % Si	30	TO, 10F
Патунь красная	0	103,0
iaijno npachan	100	118,36
желтая	0	85,45
	100	106,3

	П родолжение таблицы			
Металл или сплав	t, °C	λ, Bτ/(m · K)		
Литий	0	71		
Магний Манганин (84 % Cu, 4 % Ni и 12 % Mn)	101,3 0—100 18	75 157,4 21,71		
Медь	100 183 0	2,64 465,2 385,2		
60 % Cu и 40 % Ni	100 18 100	385 22,61 26,82		
54 % Си и 46 % Ni 99,67 Си и 0,63 % Р 98,02 % Си и 1,98 % Р 89 % Си и 11 % Zn 87 % Си и 13 % Zn 82 % Си и 18 % Zn 68 % Си и 18 % Zn	18 30 30 18 18 18	20,26 104,7 52,3 115,1 126,0 130,2		
68 % Си и 32 % Zn 52 % Си и 26 % Zn + 22 % Ni 62 % Си, 15 % Ni и 22 % Zn	18 0 100 18	108,9 29,31 36,72		
Натрий	5,7 21,2	24,91 134,4 132,7		
Никель 99 %	88,1 160	120,6 54,0		
Ni и 2 или 3 % Co Никелевая сталь (Fe, 30,4 % Ni,	18 300 500 950 1200 71	58,6 52,6 43,5 27,2 24,3 13,0		
0,14 % Si, 0,84 % Mn и 0,26 % C) Олово	-170	81,6		
30 % Sn и 70 % Zn* 91,1 % Sn и 8,9 % Zn* Излладий 90 % Pd и 10 % Pt 50 % Pd и 50 % Pt 10 % Pd и 90 % Pt 90 % Pd и 10 % Ag 50 % Pd и 50 % Ag 10 % Pd и 90 % Ag Платина 90 % Pt и 10 % Ir 90 % Pt и 10 % Rh 30 % Pt и 70 % Ag 10 % Pt и 90 % Ag	0 100 44 44 100 25 25 25 25 25 25 -252,8 -183 0-200 17 17 25 25	63,97 59,58 93,78 65,73 76,07 81,68 36,8 43,1 47,7 31,8 141,1 389 76,2 69,9 31,0 30,1 31,0 98,0 87,9		

	11 родолж	Продолжение таблиць		
Металл или сплав	t, °C	λ, Вт/(м · Κ)		
Ртуть твердая	-269,3	167		
	44,2 37,2	27,8		
жидкая	—31,2 0	9,13		
	50,4	10, 4 12,5		
•	149,4	16,1		
Серебро, 99,9 %	-160	417,8		
Cepeopo, 33,3 %	0	458,9		
	10—97	403,1		
99,98 %	18	421,2		
30,00 /0	100	415,3		
Свинец	18	34,6 '		
	100	34,1		
Сурьма	—77	26,3		
• .	Q	22,5		
	100	21,6		
20 % Sb и 80 % Bi	0	6,36		
TO 0/ C1	100	8,58		
50 % Sb и 50 % Bi	0	8,21		
70 0/ Ch 20 0/ Di	100	9,59 9,8		
70 % Sb и 30 % Bi	0 100	11,76		
50 % Sb и 50 % Cd	0	2,17		
56,7 % Sb и 33,3 % Cd	ŏ	0,875		
Ганта л	17	54,4		
lanian · .	1827	82,9		
Хромовая сталь, 5 % Сг	30	30,6		
10 % Cr	30	21,8		
15 % Cr	30	18,4		
Цинк	-170	147,2		
.*	18	111,08		
	100	109,65		

[•] В сплавах указаны объемные доли компонентов, %.

7.10.2. Теплопроводность различных твердых веществ

Принятые обозначения: d — плотность; прессов. — прессованный.

Вещество	t, °C	λ, Bτ/(m > K)
Алюминия оксид, порошок плавленый Асбестовое волокно	46,8 650—1350 0 100	0,678 3,35 0,112 0,119
Асбестовый картон	20.	0,745

Асбестовая ткань Бетон Бумага Воск пчелиный Гипс	20 20 20 20 0 600 20 40	0,279 0,92 0,17 0,087 1,30 0,87—0,92 3,42
Бетон Бумага Воск пчелиный Гипс Глина (огнеупорная) Гранит Графит (порошок, $d=0.7 \text{ г/см}^3$) Диатомит	20 20 20 0 600 20 40	0,92 0,17 0,087 1,30 0,87—0,92
Бумага Воск пчелиный Гипс Глина (огнеупорная) Гранит Графит (порошок, $d = 0.7 \text{ г/см}^3$) Диатомит	20 20 0 2—600 20 40	0,17 0,087 1,30 0,87—0,92
Воск пчелиный Гипс Глина (огнеупорная) 360 Гранит Графит (порошок, $d=0.7 \text{ г/см}^3$) Диатомит	20 0 600 20 40	0,087 1,30 0,87—0,92
Гипс Глина (огнеупорная) 360 Гранит Графит (порошок, $d=0.7$ г/см³) Диатомит	0 600 20 40	1,30 0,87—0,92
Глина (огнеупорная) 360 Гранит Графит (порошок, $d=0.7 \text{ г/см}^3$) Диатомит	600 20 40	0,87-0,92
Графит (порошок, $d=0.7$ г/см ³) Диатомит	20 40	
Диатомит		
	20	1,19
Капия иолия		0,054
	0	5,0
хлорид Каменная соль	0 0	6,9 5 6,98
	100	4,89
Каменный уголь	0	0,17
1	427	8,42
Кварц, параллельно оси	0	13,61
	100	9,0
перпендикулярно оси	100	7,25 5 50
Кварцевое стекло	100 0	5, 58 1,39
•	100	1,91
Кирпич	20	0,63
огнеупорный	20	0,46
Кобальта оксид (прессов. порошок)	48,5	0,419
	—1 350 —99	15,57
П.	99	0,842 2,39
Магнезит (кирпич)	000	1,67
Магнезия MgO (прессов. порошок, $d = 0.797 \text{ г/см}^3$)	47,6	0,607
Меди оксид (прессов. порошок)	45,6	1,013
Мел	20	0,92
Мрамор белый черный	20	3,27 2,87
черным Натрия хлорид	30 0	1,116
Нафталин	Ŏ.	0,38
α-Нафтол	35	0.32
β-Нафтол	35	0,33
Никеля оксид (прессов. порошок,	40.0	0.04
$d = 1,445 \text{ r/cm}^3$	46,2	0,94 2,33
Оникс	30	
Опилки $(d = 0.19 \text{ г/см}^3)$	30	0,59
Парафин	0	0,39
Песок сухой	20	0,39
Песчаник $(d = 2,259 \text{ г/см}^3)$	40	I "84
Полевой шпат	20	2 ,34
Портланд-цемент (прессов. порошок)	89,5	0,30
Почва сухая	20	0,14
Сахар тростинковый	0	0,58

<u> </u>	Продолж	ение таблицы
Вещество	t, °C	λ, Bτ/(m · K)
Сера	20—100	0.26
пластическая	-0	0,29
ромбическая	Ŏ	1,03
Серебра бромид	0.	1,09
хлорид	41,3	3,60
Слюда	71,0	1,07
Снег свежий ($d = 0.111 \text{ г/см}^2$)		0,048
старый $(d = 0,450 \text{ г/см}^3)$	22	0,040
Стекло иенское		0,68
крон	12,5	
натриевое	20	0,71
флинт	12,5	0,60
Трепел	100	0,14
	300	0,17
Фарфор	95	1,04
Флюорит -	. 0	10,68
	100	8,00
Х лопок $(d = 0.81 \text{ г/см}^3)$	0	0,057
ійнка оксид (прессов. порошок, $d = 4.886 \text{ г/см}^3$)	49,7	0,59
Эбонит	. 0	0,16

7.10.3. Теплопроводность различных жидкостей

Вещество	<i>t</i> , ∘C	λ, Вт/(м • Κ)
Амилиодид	12	0,085
Ам илхлорид	12	0,118
Амилин Анилин	12	0,17
А петон	0	0,177
Бензол	12	0,139
Бензол Бромбензол	12	0,111
Бромосизом Бутила бромид <i>(изо)</i>	12	0,116
иодид	12	0,087_
	12	0,116
хлорид Бутиловый спирт <i>(изо)</i>	12	0.142
Гексан	4	0,152
	12	0,281
Глицерин	i2	0.125
Капроновая кислота (изо) Масляная кислота (изо)	$\tilde{12}$	0,142
	$\overline{12}$	0,151
Масляная кислот а (н) Метиловый спирт	$\overline{12}$	0,207
	12	0,271
Муравьиная кислота	13	0,149
Нефть Нитробензол	12,5	0,1591
	4	0.157
Октан Пентан	14	0,1196

s	<u> </u>	· · · · · · · · · · · · · · · · · · ·
Вещество	t, °C	λ, Вт/(м · К
Unoquonon vuctora	12	0,163
Пропионовая кислота Пропила бромид	12	0,108
•	12	0,092
иодид	12	0,118
хлорид	0	0,1542
Пропиловый спирт (изо)	12	0,156
Пропиловый спирт (н)	$\overline{12}$	0.144
Сероуглерод	13	0,131
Гимол	Õ	0,1462
Голуол	25	0.18
Уксусная кислота	12	0,126
Клорбензол	12	0.121
Клороформ	$1\overline{2}$	0,114
Гимол	12	0,106
Нетыреххлорис ый углерод	12	0,103
Этила бромид Этиловый спирт	5,2	0,204

7.11. ТЕПЛОВОЕ РАСШИРЕНИЕ

7.11.1. Линейное расширение металлов

Относительное изменение длины твердых тел при повышении температуры на Δt° характеризуется коэффициентом линейного расширения

$$lpha = rac{1}{l_0}rac{\Delta l}{\Delta t}$$
, или $lpha = rac{1}{l_0}rac{l_t-l_0}{t-t_0}$,

где l_0 и l_t — длина тела при температуре t_0 и t. В таблице приведены коэффициенты линейного расширения при 20 °C (α_{20}) , коэффициенты уравнения

$$l_t = l_0 (1 + at + bt^2),$$

а также диапазон температур, в котором применимо это уравнение, в сплавах указаны массовые доли компонентов, %.

Металл или сплав	α ₂₀ 10°,	Δt, °C	a · 10*	b • 10°
Алюминий х. ч. Алюминий техн.	22,4 24,0	20—600 20—100		1,2
Бронза 81,2 % Cu + 8,6 % Zn + 9,9 % Sn 96,0 % Cu + 2,6 % Zn + 0,6 % Mn Дюралюминий	17,74 16,92 23,6	0—80 16—100 20—100		0,469 0,36

<u> </u>	11 p	ооолжен	ue muo	лицы
Металл или сплав •	α ₂₀ · i0s, K-1	Δt, °C	a · 105	b • 10°
Железо литое	11,79	0750	1,1575	0.530
Золото	14,25	0-520	1,416	0,215
Инвар: 36% Ni и 64 % Fe	0,9	0-100	1,110	0,210
Кадмий	28,79		2,699	
Константан: 60 % Cu и 40 % Ni	17,0.	20	-,000	•••
Латунь	•	-		
73,7 % Cu, 24,2 % Zn и 1,5 % Sn	18,2	0 - 80	1,7939	0.456
56,4 % Cu и 43,4 % Zn	19,31	16-100	1,910	0.52
Магний	25,44	20-500	2,507	0,936
Медь	16,23	0625	1,6070	0.403
Молибден	5,15	20-400	0.510	0,124
Никель	12,62	20300	1,236	0,660
Олово	21,38	8—95	2,033	2,63
Платина	9,11	от -183	0,8911	0,491
		до +16		:
Платиноиридий	8,84	40	• • •	• • •
Серебро	19,51		1,939	0,295
Свинец	27,56	14-94	2,726	0,74
Сталь литая	11,39	0-750		
Сурьма	9,76	11-98	0,923	1,32
Гипографский сплав	19,52	17-254	•••	
Хром	8,24	20-500		0,323
Т	28,35	9-96	2,741	2,34
Чугун	10,02	0,625	0,9794	0,566

7.11.2. Линейное расширение различных веществ

	Вещество	<i>t,</i> ∘C	α·106, K-1
Алмаз Алунд Баксит Боксит Воск Графит Гранит Гуттаперча Известняк Изумруд, пара вериендику Каменная соль Карборунд	ANDRO OCH	40 25—900 20—60 25—100 10—25 40 25—100 0—85 0—85 40 25—100 100—900	1,18 8,7 22 4,4 230 7,86 8,3 198,3 9 1,35 1,00 40,4 6,58 4,74

	11 pt	JOUNMERI	е тиолице	л
Вещество	t	°, C	α · 10 ⁶ , Κ	1
Қаучук	17	25	77,0	
Кварц кристаллический	C) —80	7,97	
параллельно оси	() —80	13,37	
перпендикулярно оси	()30	0,42	
плавленый	. (1200	0,586	
Корунд		•••	6,76	
Лел	от —	20 до -1	51	
Магния оксид	-28	5—100	9,7-11,	4
Мрамор	15	5—20	-11,7	
Парафин		0—16 6—38	106,6 1 3 0,3	•
Песчаник		20	7,12	
Резина	20)—60	80	
Резиновая трубка красная	10) —100	111	
Стекло крон бариевый	, (100	9	
флинт бариевый	23	3494	8,8	
пирекс	21	-471	3,6	
Фарфор	20	790	4,13	
Целлулона	20	70	109	
Шпат исландский				
параллельно оси		08—0	26,31	
перпендикулярно оси	•	08—0	5,44	
плавиковый)—100	19,50	
Эбонит	23,	5—35	84,2	

7.11.3. Расширение жидкостей

Относительное изменение объема жидкости при повышении температуры на Δt , °C, характеризуется коэффициентом объемного расширения

$$eta = rac{1}{V_0}rac{\Delta V}{\Delta t}$$
 , или $eta = rac{1}{V_0}rac{V_t - V_0}{t - t_0}$,

где V_0 и V_t — объем жидкости нри температуре t_0 и t. В таблице приведены коэффициенты объемного расширения при 20 °C (β_{20}), коэффициенты уравнения $V_t = V_0(1+at+bt^2+ct^3)$, а также диапазон температур, в котором применимо это уравнение.

5	9	ė
_	•	•

c · 10°	0,5447 -6,7900 4,08642 0,17772 0,75798 6,00114562 0,0021187 1,91225 0,25276 1,79236 0,5299 1,79236 0,5299 1,79236 0,5299 1,79236 0,19756 0,00596 1,35368 0,10741 -1,87983 1,5322 0,27139 0,80648 0,80648	0,19072 0,32021 0,32021 0,32021 2,9819 5,60149 0,26586 0,26586 0,26586 0,04301 1,0876 0,04301 11,3809 0,53365 0,53365 0,53365 0,53365 0,53365 0,53365 0,53365 0,53365 0,53365 0,53365 0,53365 0,53365 0,53365 0,53365 0,51113 0,975 0,977
6 . 10*	1,711138 8,5053 2,18414 0,96955 0,91171 0,002951266 0,01155 0,432 1,37065 0,87288 1,12666 1,4867 0,63572 5,078 1,90086 1,4647 0,8408 3,8090 1,7775 0,44219 1,27775 0,44219 0,44219	1.57606 1,88396 1,80653 0,997049 0,997049 0,997049 1,396 0,83760 0,83760 0,83760 0,27102 1,14053 1,1464 0,53912 3,31528 4,0465 5,09626 5,09626 5,09626 1,8658 1,8658 1,86493 4,9689 0,44303 1,85
a · 10³	1,03819 -0,06427 -1,29412 0,97307 1,1328 0,18169041 0,18163 0,5758 1,13980 0,8472 1,12862 1,0639 1,3218 1,02321 0,25658 1,17155 0,82349 1,3240 1,3240 1,17626 0,4853 1,17626 0,4853 1,3423	1,01705 1,15342 1,19643 1,37022 1,4603 0,8994 0,8994 0,97625 0,97625 0,97625 0,98269 0,77526 0,77526 0,77526 0,77526 0,77526 0,77526 0,8263 1,46 1,18654 1,50697 1,46 1,3306 0,97019 0,9001 0,83751 1,18557
۵۲, ۰۵	оединения от —7 до +60 от —32 до +59 от —15 до +130 от —19 до +113 0—100 24—299 от —34 до +60 от —101 о—101 0—101 0—101 0—141 0—54 6—66 11—81 0—60	0-111 0-95 0-95 0-95 0-97 16-128 15-125 0-133 16-134 66-186 66-186 66-186 66-186 66-194 66-186 66-186 66-186 66-194 00-27 00-27 00-27 00-27 00-27 00-27 00-27 00-39 00-39 00-39
β20 · 103, K-1	анические с 1,113 0,207 1,430 1,020 1,178 0,13186 1,218 0,868 1,154 1,116 1,475 1,102 0,868 1,109 1,475 1,102 0,868 1,169 1,208 0,868 1,208 0,868 1,208 0,868 1,208 0,868 1,207 1,301 0,880 1,301 0,505 1,375	1,082 1,233 1,278 1,278 1,567 0,955 1,068 0,721 1,0102 0,171 1,273 1,273 1,273 1,273 1,273 1,273 1,247 1,447 1,049 0,902 0,902 0,902 0,903 0,905
Вещество	Простые вещества и неорганы Вода Кремния (IV) хлорид Ртуть Серная кислота Сероуглерод Фосфора (III) бромид хлорид Фосфора (III) бромид хлорид Фосфора (IV) оксид Органиеский хлорид хлорид Аллил бромистый хлористый хлористый хлористый хлористый хлористый хлористый дыетон Ашетон Ашетон Бензол Глицерин Диаллил	Диметилсульфид Диэтилкетон Диэтилсульфид Гексан (изо) Изопрен Керосин (изо) Кислота изомасляная капроновая масляная масляная муравыная оленновая пропионовая пропионовая уксусная оленновая пропионовая и-Крезол п-Крезол п-Крезол п-Крезол Метил бромистый метиловый клористый (изо) Пентан (изо) Пентан (изо) Пентан (изо) Пентан (изо) Пентан (изо) Пентан (изо) Пентан (изо) Пентан (изо) Пентан (изо) Пентан (изо) Пентан (изо) Пентан (изо) Пентан (изо) Пентан (изо) Пентан (изо) Пентан (изо) Пентан (изо) Пентан (изо) Пентан (изо) Петомейный эфир Перопыл иодистый клористый (изо) ямиловый пропиловый пропиловый пропиловый пропиловый пропиловый

~	-	
31.3	,,,	•
	-	_

Вода — самое распространенное на Земле вещество: она составляет в основном всю гидросферу, входит в состав минералов и горных пород, находится в растениях и теле животных, составляя от 50 до 99 % их массы, присутствует в почве и атмосфере. Вода имеет очень важное значение в разнообразных процессах и явлениях живой и неживой природы и в практической деятельности человека. Она является наиболее изученным соединением; некоторые ее свойства использованы при определении единиц измерения таких физических величин, как масса, плотность, температура, теплота и теплоемкость.

8.1. СТРОЕНИЕ МОЛЕКУЛЫ ВОДЫ

Вода содержит 11,19 % массовых долей водорода и 88,81 % массовых долей кислорода.

Молекулярная масса — 18,0153.

Рис. 6. Строение молекулы воды: а — структура электронного облака молекулы; б — расположение полюсов заряда.

Структура электронного облака молекулы воды показана на рис. 6. В молекуле имеется 10 электронов (5 пар): одна пара внутренних электронов расположена вблизи ядра кислорода; две пары внешних электронов обобщены попарно между каждым из протонов и ядром кислорода; две остальные пары внешних электронов являются неподеленными и направлены к противоположным от протонов вершинам

Вещество д четыреххлористый		0		-	
	β20 · 103, Κ-1	i	a · 10³	9 . 10	c · 108
					-
фенол	1,236	36 157	1,18384	0,89881	1,35135
	0,934	13—51	0,9545	0 ,10/32 —2,2139	0,4446
	1,273	0-63	1,10715	4,66473	-1.74328
CIEST OPOMECTEES 1,4	1,418	or -32 no +54	1,33763	1,50135	1,6900
ISS	1,179	00-01 20 10 10	1,1520	0,26032	1,4181
	1961	24—131	0.86179	2,61300	1,56987
тый	161	or -28 no -184	1,00112	1,0450	-U,16519
	6375		0.5657	1,010,1	0,10342
Эфир азотноэтиловый (этилнитрат)	299	9	1.990	7014	0,233
(амилбензоат)	,848	0-198	0.81711	0.7377	0.10593
(метилбензоат)	,895	0,162	0,8633	0.7414	0.15896
ювый (этилбензоат)	006,	0,159	90998,0	0,8229	0,12084
	045	88-0	1,2519	2,2401	0,35775
Amipolitatoban (230)	452	<u>0</u> —0	1,2872	4,2923	-0,58573
าหน้า	556 656	0-88	1,2132	3,9318	1,3644
иетилформият)	563		1,01024	2,55918 10,500	4,00512
	417		0,35024	10,238	C808;1-
	304	0—74	1,3049	-1,3275	3,9248 4,6943
амиловый (амилацетат)	,162	0-124	1.11501	-0 09046	1 3015
уксуснометиловый (метилацетат) 1,4	,427	0-58	1.34982	0.87098	3,5569
уксусноэтиловый (этилацетат) 1,3	386	or -36 go +72	1,2585	2.95688	0 14999
шавелевоэтиловый (диэтилоксалат) 1,1	. 136	0-141	1,06031	1,0983	2,6657

тетраэдра. Таким образом в молекуле воды существует четыре полюса заряда: два отрицательных, обусловленных избытком электронной плотности в местах расположения неподеленных пар электронов, и два положительных, созданных недостатком ее в местах нахожде-

ния протонов.

Электрический момент диполя $6.2 \cdot 10^{-30}$ Кл · м $(1.86 \cdot 10^{-18}$ ед. СГС). Расстояние О-Н 0,09584 нм. Расстояние Н-Н 0,1515 нм. Угол между связями О-H (< HOH) 104°27'. Главные моменты инерции $(10^{-47} \text{ кг} \cdot \text{м}^2)$: $I_{\text{A}}^{\text{e}} = 1,0243$; $I_{\text{D}}^{\text{e}} = 1,9207$; $I_{\text{C}}^{\text{e}} = 2,9470$. Радиус молекулы 0.138 нм.

8.2. ДИАГРАММЫ СОСТОЯНИЯ ВОДЫ ПРИ РАЗЛИЧНЫХ ТЕМПЕРАТУРАХ И ДАВЛЕНИЯХ

8.2.1. Общая характеристика

В зависимости от температуры и давления вода может находиться в трех агрегатных состояниях - лед, вода, пар. Пространственные и плоскостные диаграммы фазового состояния для однокомпонентной системы чистой воды приведены на рис. 7, а. В них координатами яв-

Рис. 7. Диаграмма состояния системы лед-вода-пар: a — при атмосферном давлении, δ — при высоких давлениях.

ляются переменные, входящие в уравнение состояния: температура t, давление p, молярный объем V; из них в качестве независимых переменных обычно принимают температуру и давление. При этом физический смысл имеют лишь точки, лежащие на поверхности плоскостей объемных диаграмм или на линиях их пересечений.

Все три фазы — твердая, жидкая, газообразная — находятся в равновесии при давлении 610 Па и температуре 0,0100 °C (тройная точка А). Температура, соответствующая этому состоянию воды, является единственной реперной точкой абсолютной термодинамической шкалы температур (273,16 К). В соответствии с правилом фаз система в данном случае нонвариантна, так как число степеней своболы

равно нулю.

Следует отметить, что в присутствии воздуха при давления 101325 Па (1 атм, 760 мм рт. ст.) тройной точке соответствует 0 °С (273,15 К); это одна из реперных точек стоградусной шкалы темпе-

ратур.

На диаграмме состояния области сосуществования двух фаз (вода пар, вода — лед, лед — пар) заштрихованы линиями, параллельными оси молярных объемов. Такие системы моновариантны (одна степень свободы) и, следовательно, допускают варьирование в некоторых пределах одного из переменных параметров. При переходе от одной фазы к другой молярный объем изменяется скачкообразно, поэтому в объемной диаграмме поверхность, отвечающая каждой новой фазе, сдвинута относительно других поверхностей. При температурах выше критической, при которой вода и пар еще могут существовать как отдельные фазы, поверхности жидкой и газообразной фаз сливаются.

В проекции пространственной модели фазового состояния воды на плоскость pt, наиболее удобной для пользования, отражены три обширные области, в которых три фазы существуют каждая в отдельности. В таких однокомпонентных однофазных системах число степеней свободы равно двум (бивариантные системы) и для их описания должны быть известны температура и давление. Границами, разделяющими области на этой диаграмме, являются линии (следы проекций, соответствующих плоскостям объемной модели), и поэтому точкам, лежащим на них, соответствует равновесие двух фаз: вода — пар (AB), вода лед (AD), лед — пар (AC). Как уже отмечалось, для характеристики таких систем достаточно указать лишь температуру или давление, так как они имеют только одну степень свободы.

Линия АВ представляет собой равновесную кривую испарения, она ограничена тройной точкой (А) и точкой критической температуры (В). На этой линии лежит также вторая реперная точка стоградусной шкалы температур 373,15 К, отвечающая температуре кипения воды при давлении 101325 Па (760 мм рт. ст.). При давлениях и температурах, соответствующих точкам выше кривой АВ, вода полностью испаряется. Пунктирная линия, которая служит продолжением кривой АВ, представляет собой кривую давления пара переохлажденной воды. Чистая вода легко переохлаждается и перегревается; при атмосферном давлении достигнуты температуры -33 и

+200 °C.

Линия АС является кривой возгонки льда, выше нее находится область льда, ниже расположена область пара. Теоретически эта линия продолжается до абсолютного нуля. В связи с тем, что вода — вещество несколько необычное и при замерзании расширяется, линия плавления AD отклонена от вертикали влево, то есть увеличение внешнего давления вызывает сдвиг равновесной системы в направлении жидкой фазы, и температура замерзания понижается. При давлениях выше 200 МПа наблюдается полиморфизм льда (рис. 7,6). Обнаружено семь его различных кристаллических модификаций (существование льда IV не подтверждено). Каждая из них, за исключением обычного льда I, имеет плотность больше, чем у воды. В связи с этим кривые плавления льда III, V, VI на рис. 7,6 наклонены вправо от вертикали, как это видно из плоскостной диаграммы фазового состояния воды и льда при давлениях до 1000 МПа (лед VII образуется при давлениях свыше 2000 MΠa).

Теории структуры воды, на основании которых построены схемы на

рис. 8. изложены в п. 8.17.3.

8.2.2. Физико-химические характеристики кристаллических модификаций льда

		····	J	Іед	· · ·	
Показатель	I	п	111	v	VI	VII
Относительная плотность Относительный молярный объем	0,92 1,096	1,12 0,89	1,03 0,97	1,09 0,92	1,13 0,88	1,5 0,67

ка; 3 — разрушенная или искаженная решетка льда I; 4 — беспорядочно связанные молекулы воды; 5 — отдельные

молекулы воды.

8.2.3. Тройные точки воды и модификаций льда

Система	<i>t</i> , °C	.р, МПа
Вода — лед I — лед III	-22,0	207
Іед I — лед II — лед III	—34 ,7	213
вода — лед III — лед V	—17,0	346,5
Iед II — лед III — лед V	-24,3 +0,16	344,5 626
Вода — лед V — лед VI Вода — лед VI — лед VII	+0,10 +81,6	2199

8.3. ФИЗИКО-ХИМИЧЕСКИЕ КОНСТАНТЫ ВОДЫ В ТРЕХ АГРЕГАТНЫХ СОСТОЯНИЯХ

8.3.1. Лед

Параметр	Единицы измерения	Значение
Плотность (°C, 101325 Па)	кг/дм ³	916,8
Параметр решетки	HM	a = 0.4535 $c = 0.714$
Модуль упругости Юнга (—10°С, 101235 Па)	МПа	9486,3
Изотермическая сжимаемость (0°C, 30 Па)	МПа ^{— 1}	12 · 10 ⁻⁵
Скорость распространения звука	м/с	3160
Диэлектрическая проницаемость (—1°C, 101325 Па, 3000 Гц)	Ф/м	79
Удельные величины при нормальных условиях		
теплота плавления	кДж/кг	332,4
теплота сублимации (0°C)	кДж/кг	2834
теплоемкость	кДж/(кг • К)	2,039
теплопроводность	Вт/(м ⋅ К)	~2,34
электрическая проводимость (0°C)	См/м	$0.4 \cdot 10^{-10}$
коэффициент объемного расширения	K-1	12 · 10-5
коэффициент линейного расширения	K-1	5,27 · 10
Термодинамические величины	т. П. и. / г. с. т.	292, 72
энтальпия (0°C, 101325 Па) теплота плавления (101325 Па)	кДж/моль кДж/моль	232, 72 6,0 12

8.3.2. Вода — жидкость

		-
Параметр	Единицы измерения	Значение
Тем пература		
замерзания (101325 Па)	° C	0,00
кипения (101325 Па)	°Č	100,00
максимальной плотности	°Č	3,98
Критические константы	•	0,30
температура	° C	374,15
давление	МΠа	22,143
плотность	Kr/m³	325
Скорость распространения звука (25 °C)	M/C	1496,3
Криоскопическая константа	/-	1,85
Эбулиоскопическая константа		0,516
Удельные величины при 101325 Па		0,010
теплоемкость (15°C)	кДж/(кг • К)	4,187
теплопроводность (0°C)	Вт/(м · К)	0.599
» (45 °C)	$B\tau/(M \cdot K)$	0,645
электрическая проводимость (18°C)	См/м	4.4 . 10-10
Гермодинамические величины	,	-,- 10
энтальпия (—ΔH, газ, 101325 Па, 25°C)	кДж/моль	241,989
энтропия (S, газ, 101325 Па, 25°C)	Дж/(моль • К)	188,846
свободная энергия ($-\Delta F$, газ	кДж/моль	228,750
101325 Па)	пдатушоны	220,100
теплоемкость (25°C)	Дж/(моль К)	76,07
энергия диссоциации	A/ (ob 1()	10,01
$H_2\hat{O} \rightarrow H + O + H$	кДж/моль	-916,5
$H_2O \rightarrow H^+ + OH^-$	кДж/моль	-493,2
теплота электролитической диссоци-	Дж/моль	-57150
ации(20 °C)	, ,	
•		

8.3.3. Водяной пар (100 °C, 101325 Па)

Параметр	Единицы измерения	Значение
Удельный объем	м ³ /кг	1,7296
Вязкость	мПа∙с	0,0124
Коэффициент диффузии в воздухе	CM ² /C	0,380
Диэлектрическая проницаемость (145°C)	Ф/м	1,00705
Скорость распространения звука	M/C	405
Удельные величины		,,,,
теплопроводно с ть	$B\tau/(M \cdot K)$	0,0231
теплоемкость	кДж/(кг • К)	2,039
c_p/c_v (15°C)		`1.32
Гермодинамические величины		-,
энтальпия	кДж/моль	242,49
теплота испарения	кДж/моль	44.041

8.4. ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ВОДЫ

8.4.1. Диэлектрическая проницаемость воды в [для очень больших длин волн]

t, °C	0	10	15	20	25	30	40	50
	88,3	84,3	82,3	81,8	78,3	76,7	73,1	68,9
t, °C ε	60 66,5	70 63,5		90 57,8	100 55,1	200 34,6	364 10,1	

8.4.2. Диэлектрические свойства воды при разных частотах

Принятые обозначения: f — частота, ϵ — диэлектрическая проницаемость, $tg\delta$ — тангенс угла потерь.

t, °C	<i>f,</i> Гu	В	tg ð	Состо- яние	t, °C	<i>f,</i> Гц	8	tg ö
— 15	24 · 109	3,3	0,003	Жид-	10	3 • 109	79	0,23
— 5	0 1	75,0	• • •	кое				0,60
	$1 \cdot 10^4$	25	1,2		20	$1 \cdot 10^{6}$	80	
	$5 \cdot 10^{4}$	5	2,4			1 - 10	80	0,06
	1 • 105	4	1.5			$3 \cdot 10^{9}$	78	0,17
	1 • 106					$10 \cdot 10^9$	64	0,47
70			• • •			19 · 109	44	0,85
						$24 \cdot 10^9$		1,0
					40			0,09
								0,36
								0,62
			-		60			0,06
3								0,05
					60	9 . 10.	., 00	0,00
	—15	-15 24 · 10 ⁹ -5 0 1 · 10 ⁴ 5 · 10 ⁴ 1 · 10 ⁵ 1 · 10 ⁶ -70 1 · 10 ³ -50 1 · 10 ³ -30 1 · 10 ³ -3 1 · 10 ³	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1, °C f, Га г tg о яние —15 $24 \cdot 10^9$ 3,3 0,003 Жид- —5 0 75,0 кое 1 \cdot 10^4 25 1,2 5 \cdot 10^4 5 2,4 1 \cdot 10^5 4 1,5 1 \cdot 10^6 3 0,2 —70 1 \cdot 10^3 3,82 —30 1 \cdot 10^3 14,6 —10 1 \cdot 10^3 72,4 —3 3 \cdot 10^9 79 9,5 \cdot 10^9 30 0,9	1, °C f, Га в tg о яние f, °C —15 $24 \cdot 10^9$ 3,3 0,003 Жид- 10 —5 0 75,0 кое 1 · 10^4 25 1,2 20 5 · 10^4 5 2,4 1 · 10^5 4 1,5 1 · 10^6 3 0,2 —70 1 · 10^3 3,82 —30 1 · 10^3 14,6 40 —10 1 · 10^3 69,4 —3 1 · 10^3 72,4 3 3 · 10^9 79 0,3 60 9,5 · 10^9 30 0,9 80	1, °C f, Га в tg 0 яние г. °C f, Га —15 $24 \cdot 10^9$ 3,3 0,003 Жид- 10 $3 \cdot 10^9$ —5 0 75,0 кое 9,5 · 10^9 1 · 10^4 25 1,2 20 $1 \cdot 10^6$ 5 · 10^4 5 2,4 1 · 10^6 1 · 10^5 4 1,5 3 · 10^9 1 · 10^3 3,33 19 · 10^9 —50 1 · 10^3 3,82 24 · 10^9 —30 1 · 10^3 14,6 40 3 · 10^9 —31 1 · 10^3 69,4 24 · 10^9 —3 3 · 10^9 79 0,3 60 3 · 10^9 9,5 · 10^9 30 0,9 80 3 · 10^9	1, °C f, Га в tg ° яние f, °C 7, 11 в —15 24 · 10° 3,3 0,003 Жид- 10 3 · 10° 79 —5 0 75,0 · · · кое 9,5 · 10° 36 1 · 10⁴ 25 1,2 20 1 · 10° 80 5 · 10⁴ 5 2,4 1 · 10° 80 1 · 10⁵ 4 1,5 3 · 10° 78 1 · 10⁶ 3 0,2 10 · 10° 64 —70 1 · 10³ 3,33 · · · 19 · 10° 44 —50 1 · 10³ 3,82 · · · 24 · 10° 35 —30 1 · 10³ 14,6 · · · 9,5 · 10° 48 —10 1 · 10³ 69,4 · · · 9,5 · 10° 48 —3 1 · 10³ 72,4 · · · 24 · 10° 51 3 3 · 10° 79 0,3 60 3 · 10° 68

8.5. ЭЛЕКТРИЧЕСКАЯ ПРОВОДИМОСТЬ ВОДЫ

Показателем чистоты воды обычно служит ее электрическая проводимость; вода — слабый амфолит и при ее диссоциации образуется некоторое количество ионов H^+ и OH^- с активностями a_{H^+} и a_{OH^-}

8.5.1. Удельная электрическая проводимость (х) особо чистой воды (вода Кольрауша)

		χ • 1	0-10, CM/M				
			воды п	ри <i>t</i> , °C		-	
льда при 0°C	0	2	4	10	18	25	50
0,4	1,58	1,80	2,12	2,85	4,41	6,2	18,9

П р и м е ч а н и е. В системе СГС удельная электрическая проводимость воды равна целому числу, умноженному на 10^{-8} Ом $^{-1}$ · см $^{-1}$

8.5.2. Удельная электрическая проводимость лабораторной воды

При контакте с воздухом электрическая проводимость воды повышается в результате растворения CO_2 : обычная лабораторная дистиллированная вода, дважды перегнанная, имеет электрическую проводимость около $1 \cdot 10^{-8} - 4 \cdot 10^{-8}$ См/м $(1 \cdot 10^{-6} - 4 \cdot 10^{-6}$ Ом⁻¹·см⁻¹).

8.6. ИОННОЕ ПРОИЗВЕДЕНИЕ ВОДЫ

8.6.1. Ионное произведение воды при температурах 0—200°C

$$K_{W}=a_{\mathrm{H}^{+}}a_{\mathrm{OH}^{-}},$$

где $a_{\rm H^+},~a_{\rm OH^-}$ — активность водородного и гидроксильного ионов.

В чистой воде

$$V\overline{K_W} = a_{H^+} = a_{OH^-} = 10^{-7}$$
.

Водородный показатель $pH = -lga_{H^{+}}$.

<i>t</i> , ℃	Kw · 1014	$\sqrt{K_{W}} = a_{H+}$	t, °C	K₩ · 1014	$V\overline{K_{W}}=a_{H+}$
.0	0,11	$0.33 = 10^{-7.48}$	30	1,48	$1,20 = 10^{-6,92}$
5	0,17	$0.42 = 01^{-7.38}$	35	2,09	$1,45 = 10^{-6.84}$
10	0,30	$0.54 = 10^{-7.27}$	40	2,95	$1,70 = 10^{-6,77}$
15	0,46	$0.68 = 10^{-7.17}$	50	5,50	$2,34 = 10^{-6,63}$
16	0,50	$0.71 = 10^{-7.15}$	60	9,55	$3,09 = 10^{-6,51}$
17	0,55	$0,74 = 10^{-7,13}$	70	15,8	$3,98 = 10^{-6,40}$
18	0,60	$0.74 = 10^{-7.11}$	80	25,1	$5,01 = 10^{-6,30}$
19	0,65	$0,80 = 10^{-7,10}$	90	38,0	$6,17-10^{-6,21}$
20	0,69	$0.83 = 10^{-7.08}$	100	55,0	$7,41 = 10^{-6,13}$
21	0,76	$0.87 = 10^{-7.06}$	120	125	$11,1 = 10^{-5,95}$
22	0,81	$0.89 = 10^{-7.05}$	140	180	$13.4 = 10^{-5.87}$
23	0,87	$0.93 = 10^{-7.03}$	160	250	$15,8 = 10^{-5,80}$
24	0,93	$0.96 = 10^{-7.02}$	180	320	$17,8 = 10^{-5,75}$
25	1,00	$1,00 = 10^{-7,00}$	200	400	$20.0 = 10^{-5.70}$

8.6.2. Пересчет водородного показателя (рН) на активность ионов водорода $a_{\rm H^+}$ и обратно

Вычисление $a_{\rm H+}$ по известному pH производят следующим образом: находят в первом вертикальном столбце первый знак мантиссы pH, а по горизонтали — второй знак этой мантиссы. В точке пересечения линий получают значения $a_{\rm H+}$, которые надо еще умножить на 10 в степени, равной характеристике pH, взятой с отрицательным знаком. Например, pH = 7,25; $a_{\rm H+}=0.562\cdot 10^{-7}$.

Вычисление рН по известной величине $a_{\rm H+}$ осуществляется следующим образом: выражают величину $a_{\rm H+}$ так, чтобы она изображалась числом, начинающимся с нуля и умноженным на 10 в некоторой отрицательной степени. Затем это число (или близкое к нему) находят в таблице и, двигаясь от него влево и вверх, получают два знака после запятой в числе рН. Характеристика рН будет равна той степени, в которую возведено 10 в пересчитанном числе $a_{\rm H+}$, но с положительным знаком. Например, $a_{\rm H+}=3,47\cdot10^{-7}=0,347\cdot10^{-6}$; рН = 6,46.

Таблицу можно использовать для пересчета показателей произведения растворимости рПР на произведение растворимости ПР, показателей константы рК на константы К и в других аналогичных случаях.

					a _H +					
ž E					Сотые д	оли рН				
Десятые доли рН	,00	,01	,02	,03	,04	,05	,06	,07	,08	,09
,0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9	1,000 0,794 0,631 0,501 0,398 0,316 0,251 0,200 0,158 0,126	0,977 0,766 0,617 0,490 0,389 0,309 0,245 0,195 0,155 0,123	0,955 0,759 0,603 0,479 0,380 0,302 0,240 0,191 0,151 0,120	0,933 0,741 0,589 0,468 0,372 0,295 0,234 0,186 0,148 0,117	0,912 0,725 0,575 0,475 0,363 0,288 0,229 0,182 0,145 0,115	0,891 0,708 0,562 0,447 0,355 0,282 0,224 0,178 0,141 0,112	0,871 0,692 0,550 0,437 0,275 0,219 0,174 0,138 0,110	0,851 0,676 0,537 0,427 0,339 0,269 0,214 0,170 0,135 0,107	0,832 0,661 0,525 0,417 0,331 0,263 0,209 0,166 0,132 0,105	0,813 0,646 0,513 0,407 0,324 0,257 0,204 0,162 0,129 0,102

8.7. СЖИМАЕМОСТЬ ВОДЫ

8.7.1. Изменение объема воды при повышении давления

Температура t_m (°C), при которой вода имеет максимальную плотность (ρ) при различных давлениях p (МПа), определяется по формуле

$$t_m = 3.93 - 0.0169 (p - 1).$$

- 1		Относи	тельное изм	тенение р при	t, °C	
<i>р</i> , МПа	0	10	20	40	60	80
1 50	1,0000 0,9764	1,0001 0,9775	1,0016 0,9801	1,0076 0,9865	1,0168 0,9965	1,0287 1,0068

8.7.2. Средний коэффициент сжимаемости воды [β]

 $eta_t = rac{v_1 - v_2}{p_2 - p_1} rac{1}{V_1}$, где v_1 — объем при давлении p_1 и температуре t, °C, v_2 — объем при давлении p_2 и той же температуре.

	$\beta_t \cdot 10^{-7}$, MIIa-1, npu t , °C							
Давление в диапазоне $p_1 - p_2$, МПа	0 .	5	10	15	20	30		
0,1—2,5	52,5		50,0		49,1	• • •		
2,5-5	51,6		49,2	•••	47,6	• • •		
0.1 - 10	51,5	49,3	48,3	47,3	46,8	46,0		
10-20	49,2	47,5	46,1	45,1	44,2	43,6		
20-30	48,0	46,2	45,3	44,3	43,4	42,2		
30-40	46,6	44,9	44,1	43,3	42,4	41,3		
40-50	45,5	44.4	43,0	42,2	41,5	40,6		
50-60	43,8	43,0	41,8	41,1	40,4	39,2		
60-70	42.9	40,9	40.5	39,8	39,4	38,7		
70-80	41,8	40,7	39,8	39,0	39,8	37,5		
8090	40.6	39,3	38,9	38,0	37,3	36,8		
90-100	***		•••	36,8	36,5	36,0		

'	β _t · 10-7, МПа-1, при t, °С								
Давление в диапазоне р ₁ —р ₂ , МПа	40	50	60	70	80	90	100		
0,1-2,5						•••			
2,5—5	• • •		• • • •	• • •	• • •		• • •		
0,1—10	44,9	44,9	45,5	46,2	• • •	47,8	• • •		
10—20	42,9	42,5	42,7	43,9	• • •	46,8	81,7		
20-30	41.4	41,3	41.5	42,5	43,6	45,9	76,9		
30-40	40.7	40.2	40,6	41.1	42,2	44,6	73,1		
40—50	40.4	39,9	39,4	39,8	40.8	43,4	68,2		
5060	39,0	39.0	38,8	39.1	39,9	41,6	66,0		
6070	38,2	37,7	38,3	38.0	38,7	40,7	62,7		
70—80	37,4	37,1	36,9	37.4	37,8	38,9	61,3		
80-90	36,2	36.2	36,3	36.6	36,8	38,2	58.9		
90—100	35,3	35,3	36,0	36,1	36,2	37,1	56.5		

в.в. вязкость воды

8.8.1. Вязкость и текучесть воды при разных температурах

 Π ринятые обозначения: f — текучесть, η — вязкость, ϕ — относительная вязкость.

	i	1		(I	1	1	
t, °€	f, Па-1-с-1	η, мПа∙с	φ	t, ℃	f, Па-1-е-1	η, мПа∙с	φ
-10	385	2,60	1,45	22	1044,0	0,9579	0,5345
8	417	2,40	1,34	23	1068,6	0,9358	0,5222
 6	450	2,22	1,24	24	1093,8	0,9142	0,5101
5	467	2,14	1,19	25	1119,1	0,8937	0,4987
4	488	2,05	1,14	26	1144,5	0,8737	0,4875
2	524	1,91	1,07	27	1170,3	0,8545	0,4768
0	558,0	1,7921	1,0000	28	1196,2	0,8360	0,4665
1	577,6	1,7313	0,9661	29	1222,5	0,8180	0,4564
2	597,8	1,6728	0,9334	30	1248,9	0,8007	0,4468
3	617,6	1,6191	0,9035	31	1275,4	0,7840	0,4375
4	638,0	1,5674	0,8746	32	1302,2	0,7679	0,4285
5	658,4	1,5188	0,8475	33	1329,3	0,7523	0,4198
6	679,0	1,4728	0,8218	34	1356,6	0,7371	0,4113
7	700,1	1,4284	0,7971	35	1384,0	0,7225	0,4032
8	721,5	1,3680	0,7734	36	1411,5	0,7085	0,355 3
9	742,8	1,3462	0,7512	37	1439,5	0,6947	0,3876
10	764,7	1,3077	0,7297	38	1467,6	0,6814	0,3802
11	786,6	1,2713	0,7094	39	1496,0	0,6685	0,3730
12	808,9	1,2363	0,6899	40	1524,5	0,6560	0,3661
13	831,4	1,2028	0,6712	41	1553,0	0,6439	0,3593
14	854,0	1,1709	0,6534	42	1582,0	0,6321	0,3527
15	876,9	1,1404	0,6363	43	1611,1	0,6207	0,3464
16	900,0	1,1111	0,6200	44	1640,2	0,6097	0,3402
17	923,5	1,0828	0,6042	45	1670,0	0,5988	0,3341
18	947,1	1,6559	0,5892	46	1699,7	0,5883	0,3293
19	971,0	1,0299	0,5747	47	1729,5	0,5782	0,3226
20	995,0	1,0050	0,5608	48	1759,5	0,5683	0,3171
21	1019,4	0,9810	0,5474	49	1789,5	0,5588	0,3118

П подолжение	таблиць

					11 000	<u> </u>	
t, °C	f, Па−1 · c−1	η, мПа · с	φ	<i>t</i> , °C	f, Па−¹·с−¹	η, мПа · ο	φ
	1820,0	0,5494	0,3066	87	3052,7	0,3276	0,1828
50	1850,5	0,5404	0,3015	88	3087,8	0,3239	0,1807
51	1881,4	0,5315	0,1966	89	3123,5	0,3202	0,1787
52	1912,3	0,5229	0,2918	90	3159,2	0,3165	0,1766
53 54	1943,4	0,5146	0,2871	91	3195,3	0,3130	0,1747
55	1974,5	0,5064	0,2826	92	3231,3	0,3095	0,1727
56	2006,2	0,4985	0,2782	93	3267,4	0,3060	0,1707
57	2037,8	0,4907	0,2738	94	3303,8	0,3027	0,1689
58	2069,5	0,4832	0,2696	95	3340,1	0,2994	0,1671
59	2101,3	0,4759	0,2656	96	3376,5	0,2962	0,1653
60	2133,3	0,4683	0,2616	97	3413,0	0,2930	0,1635
61	2165,4	0,4618	0,2577	98	3449,6	0,2899	0,1018
62	2198,0	0,4550	0,2539	99	3486,3	0,2868	0,1600
63	2230,7	0,4483	0,2502	100	5523	0,2838	0,1584
64	2263,4	0,4413	0,2465	101	2543	0,282	0,157
65	2296,4	0,4355	0,2430	102	3584	0,279	0,156
66	2329,4	0,4293	0,2396	103	3623	0,276	0,154
67	2362,5	0,4233	0,2362	104	3663	0,273	0,152
6 8	2395,7	0,4174	0,2329	105	3704	0,270	0,151 0,149
69	2429,1	0,4117	0,2297	106	3745	0,267	0,149
70	2462,6	0,4061	0,2266	107	3788	0,264	0,147
71	2496,3	0,4006	0,2235	108	3817	0,262	0,140
72	25 80 ,2	0,3952	0,2205	109	3861	0,259 0,256	0,143
73	2564,2	0,3900	0,2176	110	3906	0,232	0,130
74	2598,2	0,3849	0,2148	120	4310 4717	0,232	0,118
75	2632,5	0,3799	0,2120	130	5102	0,196	0,109
76	2666,7	0,3750	0,2093	140		0,184	0,103
77	2701,2	0,3702	0,2063	150	5435	0,184	0,103
78	2735,7	0,3655	0,2040	160	5618		0,093
79	2770,4	0,3610	0,2014	170		0,166	
80	2805,3	0,3565	0,1989	180		0,155	0,087
81	2840,3	0,3521	0,1965	190	6849	0,146	0,082
82	2875,3	0,3478	0,1941	200	7194	0,139	0,078
83	2910,3	0,3436	0,1917	210	7463	0,134	0,075
84	2945,4	0,3395	0,1894	220	7752	0,129	0,072
85	2980,6	0,3355	0,1872	225	7813	0,128	0,071
86	3016,3	0,3315	0,1850				•
		•					

8.8.2. Динамическая [η] и кинематическая [γ] вязкость воды при разных температурах и давлениях (η , мПа -c; -v, 10^{-6} м 2 /c)

-		·			p, N	Пα	······			
<i>t</i> , °C	0	,1		5	10)		20		30
	η	ν	- ŋ	v	η	٧	η	v	η	v
0	1,792	1,792	1,781	1,776	1,770	1,761	1,748	1,731	1,726	1,702
10	1,307	1,307	0,301	1,299	1,296	1,290	1,289	1,276	1,281	1,266
20	1,002*	1,004	1,001	1,001	1,000	0,997	0,998	0,991	0,995	0,984
30	0,797	0,801	0,797	0,799	0,798	0,798	0,798	0,795	0,800	0,792
40	0,653	0,658	0,653	0,657	0,654	0,656	0,656	0,656	0,658	0,655
50	0,546	0,553	0,547	0,553	0,549	0,553	0,552	0,554	0,555	0,555
60	0,466	0,474	0,468	0,475	0,469	0,475	0,472	0,476	0,476	0,478
70	0,404	0,413	0,406	0,414	0,408	0,415	0,411	0,418	0,416	0,420
80	0,355	0,365	0,358	0,367	0,361	0,370	0,366	0,373	0,372	0,377
90	0,315	0,326	0,319	0,329	0,324	0,334	0,330	0,339	0,337	0,345
100	0,282	0,292	0,287	0,299	0,293	0,304	0,301	0,311	0,309	0,318
200	• • •	• • •	0,139	0,161	0,141	0,162	0,145	0,165	0,149	0,169
300	•••	•••	• • •	• • •	0,094	0,132	0,096	0,131	0,099	0,132
400	• • •	• • • . •	•••	•••	• • •	• • •	•••	•••	0,043	0,130

^{*} Абсолютная величина для целей калибровки, принятая по предложению **На**ционального бюро стандартов США (NBS).

8.8.3. Относительная вязкость (ф) воды при высоких давлениях

]_		φ, при <i>t</i> , °C	
р, МПа	0	30	75
0,1	1,000	0,488	0,222
100	0,921	0,514	0,239
200	0,957	0,550	0,258
400	1,111	0,658	0,302
600	1,347	0,786	0,367
800	•••	0,923	0,445
000		1,058	•••

8.9. ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ

8.9.1. Поверхностное натяжение на границе с воздухом

Принятые обозначения: σ — поверхностное натяжение, мН/м (дин/см или эрг/см²).

<i>t,</i> °C	σ	t, °C	σ	t, °C	σ	t, °C	σ
-8 -5 0 5 6 7 8 9 10	76,96* 76,40* 75,62 74,76 76,62 74,48 74,34 74,20 74,07	12 13 14 15 16 17 18 19 20 21	73.92 73,78 73,64 73,48 76,34 73,20 73,05 72,89 72,75 72,60	22 23 24 25 26 27 28 29 30 31	72,44 72,28 72,12 71,96 71,80 71,64 71,47 71,31 71,15 70,35	40 45 50 60 70 80 90 100 110 120 130	69,55 68,73 67,90 66,17 64,41 62,60 60,74 58,84 56,89 54,89 52,84

^{*} Переохлажденная вода.

8.9.2. Поверхностное натяжение воды на границе с органическими жидкостями

Принятое обозначение: см. п. 8.9.1.

Вещество	Формула	t, °C	σ
Анилин	C ₆ H ₅ NH ₂	30	5,7
Ацетофенон	C ₆ H ₅ COČH ₃	30	12,1
Бензин		20	~48
Бензол	$C_{6}\dot{\mathbf{H}}_{6}$	30	33,1
Бутилбензол	$C_6H_5C_4H_9$	25	38,3
Гексан	C_6H_{14}	30	50,7
Гептан	C_7^{14}	. 25	50,8
Декан	$C_{10}H_{00}$	30	50,7
1 2-Диброметан	BrČH, CH, Br	20	37,2
N, N-Диметиланилин	$C_6H_5\tilde{N}(C\tilde{H}_3)_2$	25	25,6
Керосин	• • • •	20	48,3
Кислота изовалериановая	(CH ₃) ₂ CHCH ₂ COOH	20	2,7
каприловая	CH ₂ (CH ₂) ₂ COOH	18	8,2
капроновая	CH ₃ (CH ₂) ₄ COOH	20	5,2
лауриновая	$CH_3(CH_2)_{10}COOH$	60	10,5
оденновая	$C_{17}\hat{H}_{33}COOH$. 20	15.7

Вещество	Формула	t, °C	σ
Кислота ундециленовая	С ₁₀ Н ₁₉ СООН	25	10,
энантовая	CH ₃ (CH ₂) ₅ COOH	20	6,
Масло оливковое	• • •	20	18,
парафиновое	•••	25	52,
х лонково е	***	30	20,
э вкалиптовое	•••	30	16,
Нитробензол	$C_6H_5NO_2$	30	23,
Октан (н)	C_8H_{18}	25	50,
Октан (изо)	C_8H_{18}	25	49,
Пропилбензол	$C_6H_5C_3H_7$	25	40,
Спирт амиловый (н)	$C_3^{"}H_7^{"}CH_2^{"}OH$	30	4,
амиловый (изо)	$C_4H_9CH_2OH$	20	5,
бутиловый (н)	C ₄ H ₉ CH ₂ OH	25	1,
бутиловый (<i>изо</i>)	$C_3H_7CH_2OH$	27	1,9
октиловый	C ₇ H ₁₅ CH ₂ OH	30	9,
ундециловый	C ₁₀ H ₂₁ CH ₂ OH	25	8,0
етралин	$C_{10}H_{12}$	25	38,
Олуол	$C_6H_5CH_3$	25	35,
Углерод четыреххлористы й	CCI ₄	25	43,
Уксусный ангидрид	(CH ₃ CO) ₂ O	30	3,0
Рурфурол	C_4H_4OCHO	30	5,
Синолин Синолин	C_9H_7N	30	2,9
Слорбензол	C_6H_5Cl	25	37,9
Слороф орм	CHCl ₃	30	31,4
Іиклогексан	C_6H_{12}	20	51,
тилбензол Тилбензол	$C_{6}H_{5}C_{2}H_{5}$	25	38,3
Эфир бензойнобензиловый	$C_6H_5COOCH_2C_6H_5$	30	
бензойнометиловый	C ₆ H ₅ COOCH ₃	30	23,8 16,1
в а лериановоамиловы й	$C_4H_9COOC_5H_{11}$	30	21,1
ди э тиловый	$(C_2H_5)_2O$	30	11,1
каприновоэтиловый	CH ₃ (CH ₂) ₈ COOC ₂ H ₅	60	22,0
капроновоэтиловый лауриновоэтиловый	CH³(CH²)₄COOC₂H₅ CH₃(CH₂)₁₀COOC₂H₅	. 30 60	21,1 25,0
масляноамиловый	$C_3H_7COOC_5H_{11}$	30	21,9
масляноэтиловый	$C_3H_7COOC_2H_5$	30	13,3
пальмитиновоэтиловый	$C_{15}H_{31}COOC_2H_5$	60	26,5
салициловоамиловый салициловометиловый	HÖC ₆ H ₄ COOC ₅ H ₁₁ HOC ₆ H ₄ COOCH ₃	30	29,8
уксусноамиловый уксусноамиловый	$CH_3COOC_5H_{11}$	30 30	$\frac{22,3}{12,0}$
уксуснобензиловый	CH,COOCH,C,H,	30	15,1
уксуснобутиловый	CH ₃ COOC ₄ H ₆	25	14,5
уксусноэтиловый	CH ₃ COOC ₂ H ₅	25	6,8
этилнониловый	$C_2H_5OC_9H_{19}$	20	23,9

8.10. ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ ВОДЫ

8.10.1. Показатель преломления воды $n_{\rm D}$ по отношению к воздуху (D — линия натрия, $\lambda = 589,3\,$ нм)

t, °C	n _D	<i>t</i> , ℃	n _D	t, °C	n _D
10 15 20 25 30 35	1,3337 1,3334 1,3330 1,3325 1,3319 1,3312	40 45 50 60 65 70	1,3305 1,3298 1,3289 1,3272 1,3262 1,3251	75 80 85 90 100	1,3240 1,3229 1,3217 1,3205 1,3178

8.10.2. Показатель преломления воды для разных длин волн при 20 $^{\circ}$ C

 $ar{\Pi}$ ринятые обозначения: n — показатель преломления; λ — длина волны.

λ, нм	n	λ, нм	n	λ, нм	n
1256,0	1,3210	589,3	1,3330	480	1,3374
670,8	1,3308	546,1	1,3345	404,7	1,3428
656,3	1,3311	508,6	1,3360	303,4	1,3584
643,8	1,3314	486,1	1,3371	214.4	1,403

8.11. УПРУГОСТЬ ПАРОВ, ПЛОТНОСТЬ И УДЕЛЬНЫЙ ОБЪЕМ ВОДЫ

8.11.1. Упругость паров воды надо льдом

<i>t</i> , °C	р, 102 Па	<i>t</i> , °C	р, 102 Па	t, ° C	р, 10% Па
-100	1,3 · 10 ⁻⁵ 9,3 · 10 ⁻⁵ 5,3 · 10 ⁻⁴ 2,5 · 10 ⁻³ 10,8 · 10 ⁻³ 3,95 · 10 ⁻² 12,88 · 10 ⁻² 0,3812 0,635	-20	1,035	-8	3,101
-90		-18	1,252	-7	3,382
-80		-15	1,655	-6	3,686
-70		-14	1,815	-5	4,017
-60		-13	1,986	-4	4,373
-50		-12	2,176	-3	4,757
-40		-11	2,380	-2	5,173
-30		-10	2,600	-1	5,622
-25		-9	2,841	0	6,106

8.11.2. Плотность, удельный объем воды и упругость пара при разных температурах

Принятые обозначения: t-температура: ρ — плотность; v — удельный объем; p — упругость пара.

t, °C	ρ, κι/м³	υ, 10 ⁻³ м³/кг	р, 102 Па	t, °C	ρ, κг/ м ³	10 ⁻³ m ³ /kr	р, 104 Па
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20 20 21 21 22 22 23 24 24 25 26 26 27 28 27 28 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	998,12 998,40 998,66 998,89 999,09 999,27 999,42 999,55 999,67 999,96 999,94 999,96 999,97 999,85 999,78 999,78 999,79 999,85 999,79 999,49 999,37 999,49 999,49 999,49 999,79 999,49 999,56	1,00188 1,00160 1,00134 1,00111 1,00091 1,00073 1,00058 1,00045 1,00033 1,00024 1,00016 1,00010 1,00006 1,00004 1,00003 1,00004 1,00006	2,865 3,101 3,252 3,620 3,908 4,212 4,546 4,897 5,274 5,677 6,105 6,567 7,058 7,579 8,134 8,723 9,350 10,016 10,726 11,478 12,278 13,119 14,03 14,97 15,99 17,05 18,17 19,37 20,64 21,97 23,38 24,86 26,44 28,09 29,84 31,68 33,61 35,68 37,80 40,05 42,42	40 45 50 55 60 65 70 75 80 85 90 95 100 110 120 130 140 150 160 170 180 220 230 240 250 260 270 280 290 300 310 320 330 340 350 370 374	992,21 990,21 988,04 985,70 983,21 980,56 977,78 974,86 971,80 968,62 965,31 961,89 958,35 951,0 943,4 935,3 926,4 917,3 907,5 897,3 886,6 875 865 837 823 809 799 782 766 750 730 710 686 662 637 607 573 527 454 327	1,00785 1,00988 1,01210 1,01451 1,01708 1,01982 1,02273 1,02579 1,02902 1,033240 1,03602 1,03962 1,04346 1,0515 1,0693 1,0794 1,0902 1,1019 1,1145 1,1279 1,1429 1,1563 1,177 1,195 1,215 1,236 1,251 1,279 1,306 1,334 1,369 1,369 1,408 1,458 1,510	73,75 95,83 123,3 157,3 199,2 250,0 311.6 385,4 473,4 578,1 701,0 845,1 1013,2 1433 1985 2701 3614 4761 6181 7921 10026 12549 15544 19073 23192 27698 23465 39754 46913 55010 64133 74392 85903 98903 112906 128672 146110 165322 186508 210238 220604

8.12. ТЕМПЕРАТУРА КИПЕНИЯ ВОДЫ ПРИ РАЗЛИЧНЫХ ДАВЛЕНИЯХ

p	t, °C	p	t, °C	n	<i>t</i> , °C
Давлені	ие в гекто	паскаля	x		
900° 910 920 930 940 950	96,7 97,0 97,3 97,6 97,9 98,2	960 970 980 990 1000 1010	98,5 98,8 99,1 99,4 99,6 99,9	1020 1030 1040 1050 1060 1070	100,2 100,5 100,7 101,0 101,3 101,6
Давлені	ие в мегаг	таскаляз	K		
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4	99,7 120,3 133,4 143,5 151,7 158,7 164,8 170,3 175 179,7 183,8 187,8 191,5	1,5 1,6 1,7 1,8 1,9 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0	188,2 201,3 204,2 207,0 210,2 212,3 224 236 244 252 259 266 272 277	6,5 7,0 7,5 8,0 8,5 9,0 9,5 10,0 11,0 12,0 13,0 14,0 15,0	283 288 293 297 301 305 309 313 320 327 333 339 344 350
Давлени	е в милли	метрах	ртутного	столба	
680 685 690 695 700 705 710 715	96,9 97,1 97,3 97,5 97,7 97,9 98,1 98,3	720 725 730 735 740 745 750 755	98,5 98,7 98,9 99,1 99,3 99,5 99,6	760 765 770 775 780 785 790 800	100,0 100,2 100,4 100,6 100,7 100,9 101,1 101,5
Давлени	е в физич	еских ат	мосферах		
1 2 3 4 5 6 7	100 120,6 133,9 144,0 152,2 159,2 165,3	8 10 11 12 13	170,8 175,8 180,3 184,5 188,4 192,1 195,5	15 16 17 18 19 20	198,9 201,9 205,0 207,6 210,3 213,0

			1	7 родолжени	е таблице
p	<i>t</i> , °C	р	t, °C	p	t, °C
авлен	ие в техн	ических а	зтмосфер	ах	
1	99,1	10	179,0	40	251
2 3	119,6	12	187,1	50	265
3	132,9	14	194,1	60	276
4 5	142,9	15	197,4	70	287
5	151,1	16	200,4	80	296
6	158,4	18	206,1	90	304
7	. 164,2	19	208,8	100	312
8 9	169,6	20	211,4	120	326
9	174,5	30	235	140	338
				160	348

8.13. КОЭФФИЦИЕНТЫ ТЕПЛОПРОВОДНОСТИ $\{\lambda\}$ ВОДЫ И ВОДЯНОГО ПАРА

Коэффициенты теплопроводности воды расположены выше ломаной линни, коэффициенты теплопроводности перегретого пара — ниже.

t, °C	нась	линии ище- ия		λ·10², Вт/(м·К), при ρ, МПа										
., .	вода	пар	0,1	2,0	4,0	6,0	8,0	10,0	15,0	20,0	25,0	30,0		
0	55,1	•••	55,1	55,1	55,2	55,2	55,4	55,5	55,6	55,8	56,1	56,3		
10	5 7, 5	• • •	`57,5	57,5	57,6	57,7	57,8	57,9	58,2	58,4	58,6	59,0		
2 0	59,9	•••	59,9	59,9	60,0	60,1	60,2	60,4	60,6	60,8	61,1	61,4		
3 0	61,8	•••	61,8	61,8	61,9	62,0	62,1	62,2	62,5	62,8	63,0	63,4		
40	63,4	•••	63,4	63,4	63,5	63,6	63,7	63,8	64,1	64,4	64,7	65,0		
50	64,8	•••	64,8	64,8	64,9	65,0	65,1	65,2	65,5	65,7	65,9	66,3		
6 0	65,9	•••	65,9	65,9	66,1	66,2	66,3	66,4	66,6	66,9	67,1	66,5		
70	66,8	··•	66,8	66,8	66,9	67,0	67,1	67,2	67,5	67,8	68,0	68,4		
80	67,5	•••	67,5	67,5	67,6	67,7	67,8	67,9	68,2	68,5	68,7	69,1		

		насі	линин ыще- ия			λ	· 10², B	т/(м •	К), прі	я р, М	Па		
t,	°C	вода	пар	0,1	2,0	4,0	6,0	8,0	10,0	15,0	20,0	25,0	30,0
	90	.68,0	•••	68,0	68,0	68,2	68,3	68,4	68,5	68,7	69,1	69,3	69,7
	00		2,37	2,37	68,4	68,5	68,6	68,7	69,0	69,2	69,5	69,8	70,1
_	10 20	68,5 68,6	2,49	2,47 2,57	68,5 $68,6$	68,6 68,7	68,7 $68,8$	69,0 69,1	69,2 69,3	69,4 69,7	69,8 70,0	70,0 70,4	70,4 70,7
	30	68,6		2,66	68,6	68,7	68,8	69,1	69,3	69,7	70,0	70,4	70,8
	40	68,5	2,79	2,76	68,5	68,6	68,8	69,1	69,3	69,7	70,0	70,4	70,7
	50 60	68,4 68,3		2,84	68,4 68,3	68,6	68,8	69,1	69,3 69,0	69,5 69,3	69,9	70,2	70,7
	70	67,9	3,13	2,94 3,04	67,9	68,4 68,0	68,5 68,3	68,7 $68,5$	68,7	69,3	69,7 $69,4$	70,1 $69,8$	70, 5 70,1
18	80	67,5	3,27	3,15	67,5	67,6	67,8	68,0	68,3	68,6	69,0	.69,3	69,8
	90	67,0		3,26	67,0	67,1	67,3	67,6	67,8	68,2	68,5	69,0	69,4
	00 10	66,3 65,5	3,55 3,72	3,35 3,47	66,3 65,5	66,5 65,7	66,8 65,9	67,0 66,2	67,2 66,5	67,6 67,0	67,9 67,5	68,4 67,8	69,0 68,3
	20	64,5	3.90	3,57	3,80	64,8	65,0	65.2	65,6	66.1	66,5	67,1	67,7
	30	63,7	4,09	3,68	3,94	63,8	64,1	64,3	64,7	65,1	65,7	66,2	66,8
	40	62,8	4,29	3,77	4,00	62,8	63,0	63,3	63,6	64,2	64,8	65,4	65,9
	50	61,8		3,87	4,09	4,50	61,8	62,0	62,5	63,0	63,6	64,2	64,8
	60 70	60,5 59,0		3,99 4 ,11	4,20 4,32	4,57 4,68	60,6 59,0	60,8 59,3	61,2 59,8	61,8 $60,5$	62,3 $61,2$	62,9 $61,2$	63,6 62,5
	80	57,5	5,49	4,21	4.42	4,75	5,25	57.6	58,2	58,8	59,5	60,4	61,2
	90	55,8	. ,	4,31	4,52	4,85	5,21	55,8	56,3	57,0	57,8	58,7	59,7
33	00	54,0	6,27	4,42	4,59	4,92	5,35	5,98	54,2	55,0	55,8	56,5	57,2
	10	52,3		4,55	4,75	5,05	5,45	6,01	6,80	53,3	54,1	54,9	55,7
32	20 30	50,6 48,3	7,51	4,66	4,86	5,15	5,52	6,05 6,09	6,72	51,3	52,5	53,4 51,5	54,1 52,6
	40	40,3 45,7		4,77 4,88	4,95 5,07	5,31 5,35	5,61 5,70	6,14	6,71 6,71	48,8 45,7	50,5 48,1	49,5	50,8
	50		10.7	5,00	5,16	5,43	5,77	6,20	6,71	8,88	45,2	47,3	48,7
36	60	39,5	12,8	5,10	5,27	5,54	5,86	6,27	6,76	8,61	41,2	44,5	46,4
	70	33,7	17,1	5,23	5,40	5,65	5,97	6,35	6,80	8,46	12,3	40,5	43,7
	80 90	• • •	• • •	5,36 5,49	5,51 5,64	5,76 5,87	6,07 6,16	6,44 6,53	6,87 6,95	8,37 8,34	11,1 10,6	32,1 17,1	40,1 34,8
	00			5,59	5,75	5,98	6,26	6,62	6,99	8,28	10,3	14,2	25,7
	10	• • •	• • •	5,71	5,86	6,09	6,37	7,70	6,07	8,28	10,3	10,0	13,0
	20 30	•••	•••	5,83	5,99	6,22	6,49	6,80	7,16	8,30	9,92	12,4	16,9
	30 40	• • •	• • •	5,95 6,08	6,11 6,23	6,32 6,44	6,59 6,71	6,89 6,99	7,25 7,34	8,32 8,37	9,83 9,75	12,0 11,7	15,3 14,4
4	50	• • •	• • •	6,20	6,35	6,56	6,84	7,09	7,42	8,41	9,71	11,4	13,8
	60	• • •	• • •	6,33	6,49	6,70	6,97	7,21	7,52	8,48	9,71	11,3	13,4
	70 80		• • • •	6,46 6,61	6,62 6,75	6,83 6,94	7,08 7,19	7,32 7,44	7,63 7,73	8,55 8,62	$9,70 \\ 9,72$	11,2 11,1	13,1 12,9
	9)	• • •	• • •	6,72	6,86	7,05	7,13	7,54	7,73	8,68	9,73	11,1	12,7
5(00	• • •	• • •	6,84	6,98	7,16	7,38	7,64	7,92	8,75	9,76	11,0	12,6
				*									

8.14. УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ ВОДЫ И ВОДЯНЫХ ПАРОВ $(c_{\,{}_{D}})$

8.14.1. Удельная теплоемкость воды и водяного пара при давлении до 20 МПа и температуре 0—500 $^{\circ}$ C

Значения теплоемкости воды расположены выше ломаной линии, теплоемкости пара — ниже.

		· · · · · · · · · · · · · · · · · · ·	c _p , 1	Дж/(кг•	К), при р	, МПа		
<i>t,</i> °C	0,1	0,2	0,5	1,0	2,0	3,0	4,0	5,0
0	4,212	4,212	4,212	4,208	4,208	4,208	4,204	4,204
20	4,183	4,178	4,178	4,178	4,178	4,174	4,174	4,170
40	4,178	4,178	4,!74	4,174	4,170	4,170	4,166	4,162
60	4,191	4,191	4,187	4,183	4,178	4,174	4,170	4,166
80	4,204	4,204	4,204	4,199	4,195	4,191	4,187	4,183
100	2,101	4,229	4,224	4,220	4,216	4,212	4,208	4,204
120	2,031	2,114	4,154	4,250	4,245	4,241	4,237	4,233
140	2,001	2,064	4,296	4,287	4,279	4,275	4,270	4,266
160	1,980	2,035	2,311	4,358	4,346	4,338	4,329	4,325
180	1,976	2,018	2,198	2,680	4,425	4,409	4,400	4,396
200	1,976	. 2,005	2,135	2,420	4,518	4,500	4,488	4,484
220	1,980	2,001	2,106	2,299	2,939	4,626	4,610	4,593
240	1,985	2,001	2,085	2,227	2,633	3,311	4,742	4,739
260	1,993	2,005	2,072	2,186	2,474	2,918	3,525	4,945
280	2,001	2,014	2,068	2,156	2,370	2,667	3,073	3,655
300	2,014	2,022	2,064	2,135	2,311	2,520	2,772	3,140
320	2,026	2,030	2,068	2,127	2,261	2,424	2,621	2,864
340	2,035	2,039	2,072	2,123	2,236	2,365	2,516	2,693
360	2,047	2,047	2,077	2,123	2,215	2,324	2,445	2,587
380	2,060	2,060	2,085	2,123	2,206	2,293	2,399	2,512
400	2,072	2,068	2,093	2,127	2,198	2,278	2,361	2,458
420	2,085	2,080	2,106	2,135	2,202	2,269	2,340	2,420
440	2,098	2,093	2,118	2,144	2,202	2,261	2,324	2,391
460	2,110	2,102	2,127	2,152	2,202	2,257	2,311	2,370
480	2,123	2,114	2,139	2,160	2,206	2,252	2,303	2,353
500	2,135	2,131	2,152	2,169	2,211	2,252	2,294	2,340

							-		•
			,	<i>с</i> _р , к	Дж/(кг•	K), при <i>р</i>	МПа		
	<i>t</i> , °C	6,0	8,0	10,0	12,0	14,0	16,0	18,0	20,0
	9	4,204	4,199	4,195	4,191	4,187	4,187	4,183	4,178
	20	4,170	4,166	4,162	4,157	4,153	4,149	4,145	4,141
	40	4,162	4,157	4,153	4,149	4,145	4,151	4,132	4,128
	60	4,162	4,157	4,153	4,149	4,145	4,141	4,132	4,128
	80	4,178	4,174	4,166	4,162	4,157	4:149	4,145	4,141
	100	4,199	4,195	4,187	4,183	4,174	4,170	4,166	4,157
	120	4,229	4,224	4,216	4,208	4,205	4,195	4,191	4,183
	140	4,262	4,254	4,250	4,241	4,233	4,229	4,220	4,212
	16 0	4,321	4,312	4,304	4,296	4,287	4,279	4,271	4,262
	180	4,388	4,379	4,371	4,363	4,350	4,342	4,333	4,321
	20 0	4,476	4,4 67	4,455	4,442	4,430	4,421	4,409	4,396
	22 0	4,585	4,568	4,555	4,543	4,5 30	4,518	4,501	4,488
	24 0	4,727	4,710	4,693	4,677	4,660	4,643	4,622	4,605
	26 0	4,932	4,907	4,882	4,857	4,832	4,811	4,790	4,769
	280	4,451	5,233	5,150	5,125	5,091	5,058	5,028	4,999
	30 0	3,605	5,150	5,652	5,560	5, 480	5,413	5,355	5,300
	32 0	3,161	3,994	5,531	6,741	6,322	6,113	5,945	5,824
e	34 0	2,906	3,454	4,258	5 ,686	8,960	7, 787	7,327	7,013
	36 0	2,746	3,144	3,684	4,334	5,589	7,825	13,632	· <u>-</u>
	38 0	2,638	2,939	3 ,333	3, 839	4,463	5,401	6,904	9,588
	400	2,562	2,801	3, 094	3,468	3, 906	4,467	5,179	6,142
	420	2,508	2,700	2,927	8,199	3,521	3, 906	4,358	4,886
	440	2,462	2,625	2, 809	3,019	3,257	3,529	3,843	4,220
	46 0	2,432	2, 571	2,7 29	2,889	8,073	3,287	8,517	8,781
	48 0	2,407	2,525	2,654	2, 793	2,947	8,119	3, 308	8,518
	50 0	2,391	2,491	2,600	2,717	2,847	2,985	8,144	8,811

8.14.2. Удельная теплоемкость водяного пара при давлении до 20 МПа и температуре 520—740 °C

	i -	· c	, кД ж/(кг	· К), при <i>t</i> ,	°C .	•
р, МПа	520	- 540	560	580	600	620
			**************************************	•	·	<u>' </u>
0,1	2,252	2,165	2,181	2,194	2,206	2,21
0,5	2,165	2,177	2,190	2,202	2,215	2,22
1,0	2,181	2,194	2,206	2,215	2,227	2,24
2,0	2,219	2,227	2,236	2,244	2,252	2,26
3,0	2,257	2,261	2,265	2,273	2,278	2,28
4,0	2,294	2,294 2,332	2,299	2,303	2,303	2,30
5,0	2,336	2,332	2,332	2,332	2,328	2,33 2,35
6,0	2,378	2,370	2,365	2,361	2,357	2,35
7,0	2,420	2,407	2,399	2,391	2,382	2,38
8,0	2,466	2,449	2,432	2,420	2,412	2,40
9,0	2,512	2,487	2,470	2,453	2,441	2,43
10,0	2,562	2,529	2,508	2,487	2,470	2,45
11,0	2,613	2,575	2,546	2,520	2,499	2,48
12,0 13,0	2,663	2,613	2,583	2,554	2,529	2,513
14,0	2,717 $2,771$	2,654	2,621	2,592	2,558	2,53
15,0	2,771	2,709	2,663	2,629	2,595	2,560
16.0	2,83 2,889	2,759	2,705	2,667	2,629	2,596
17,0	2,009	2,809 2,864	$2,746 \\ 2,793$	2,705	2,663	2,625
18,0	3,014	2,914	2,793	2,742	2,696	2,654
19,0	3,081	2,973	2,885	2,780	2,726	2,679
20,0	3,153	3,031	2,935	$2,822 \\ 2,864$	2.763	2,713
0,1	2,236	2,248	2,355 2,261	2,278	2,801 2,290	2,740
0,5	2,240	2,257	2,269	2,278	2,290	2,307 2,311
1,0	2,252	2,265	2,278	2,290	2,307	2,319
2,0	2,273	2,282	2,294	2,307	2,319	2,332
3,0	2,294	2,303	2,311	2,323	2,332	2,345
4,0	2,315	2,319	2,332	2,340	2,349	2,357
5,0	2,336	2,340	2,349	2,353	2,361	2,374
6,0	2,357	2,361	2,365	2,370	2,378	2,386
7,0	2,378	2,382	2,382	2,386	2,953	2,399
8.0	2,403	2,403	2,403	2,403	2,407	2,416
9,0	2,424	2,424	2,420	2,420	2,424	2,428
10,0	2,449	2,445	2,441	2,441	2,441	2,441
1`1,0	2,474	2,466	2,458	2,458	2,458	2,458
12,0	2,495	2,487	2,479	2,474	2,470	2,470
13,0	2,520	2,507	2,499	2,491	2.487	2,487
14,0	2,545	2,529	2,520	2,512	2,504	2,499
15,0	2.571	2,554	2,537	2,529	2,520	2,516
16,0	2,596	2,575	2,558	2,546	2,537	2,529
17,0	2,621	2,596	2,579	2,566	2,554	2,546
18,0	2.646	2,617	2,600	2,583	2,571	2,562
19,0	2,675	2,646	2,621	2,604	2,587	2,579
20,0	2,705	2,671	2,642	2,621	2,604	2,592

8.14.3. Удельная теплоемкость водяного пара при давлении выше 20 МПа и температуре 400—740 $^{\circ}$ C

			c_p ,	кДж/(г	κr • K),	при <i>t</i> , °	С		
р, МПа	400	420	4 4 0	460	480	500	520	549	560
21,0	6,824	5,204	4,434	3,931	3,622	3,400	3,224	3,086	3,985
22 ,0	7,845	5,581	4,668	4,095	3,739	3,488	3,295	3,144	3,035
23,0	8,683	6,050	4,919	4,270	3,864	3,580	3,370	3,207	3,090
24,0	10,082	6,590	5,196	4,459	3,998	3,676	3,446	3,274	3,144
25,0	11,911	7,113	5,49 3	4,660	4,137	3,776	3,525	3,341	3,199
26,0	14,545	7,804	5,825	4,878	4,283	3,881	3,609	3,408	3,253
27, 0	18,623	8,625	6,201	5,108	4,438	3,990	3,684	3,475	3,308
28, 0	23,701	9,567	6,611	5,342	4,584	4,095	3,768	3,546	3,366
29, 0	28,608	10,685	7,071	5,602	4,752	4,212	3,856	3,617	3,421
30 ,0	28,889	12,024	7,561	5,870	4,932	4,333	3,944	3,684	3,475
31,0	•••	•••	8,055	6,184	5,120	4,450	4,036	3,756	3,538
32 ,0	•••	•••	8,579	6,502	5,321	4,597	4,128	3,827	3,596
3 3,0	•••	•••	9,123	6,833	5,531	4,735	4,229	3,902	3,659
34,0	***	•••	9,680	7,176	5,753	4,882	4,333	3,977	3,72 2
35 ,0	•••	•••	10,232	7,524	5,988	5,032	4,438	4,061	3,781
3 6,0	•••	*••	•••	7,875	6,222	5,196	4,547	4,141	3,8 52
37,0	4 4:0	•••	•••	8,235	6,469	5,363	4,664	4,224	3,923
38,0	•••	•••	***	8,575	6,720	5,535	4,871	4,812	3,990
39 ,0	***	•••	•••	8,889	6,967	5,711	4,903	4,392	4,057
40,0	•••		•••	9, 148	7,210	5,8 95	5,028	4,480	4,120

Продолжение	makanna
11 DUUUNNUC R UC	пислица

			c_p	, кДж/(кг • Κ),	при <i>t</i> , ч	•C		
р₃ МПа	580	600	620	640	660	680	700	720	740
21,0	2,906	2,834	2,776	2,730	2,696	2,667	2,642	2,621	2,608
22,0	2,952	2,876	2,809	2,759	2,721	2,688	2,6 63	2,642	2,625
23,0	2,994	2,910	2,839	2,784	2,742	2,709	2,684	2,659	2,64 2
24,0	3,040	2,947	2,872	2,813	2,772	2,734	2,700	2,675	2,6 59
25,0	3,090	2,994	2,914	. 2,847	2,797	2,755	2,721	2,696	2,6 75
26,0	3,140	3,040	2,952	2,876	2,818	2,780	2,742	2,713	2,6 92
27,0	3,186	3,081	2,985	2,910	2,847	2,801	2,763	2,73 0	2,7 05
28,0	3,232	3,119	3,023	2,943	2,876	2,826	2,784	2,751	2,7 26
29,0	3,278	3,161	3,060	2,977	2,901	2,847	2,805	2,772	2,74 2
30,0	3,324	3,203	3,098	3,006	2,931	2,872	2,826	2,788	2,7 59
31,0	3,375	3,245	3,136	3,040	2,956	2,897	2,847	2,809	2,7 76
32,0	3 ,425	3,287	3,174	3,073	2,985	2,922	2,872	2,830	2,793
33,0	3,479	3,328	3,270	3,102	3,019	2,952	2,893	2,847	2,809
34,0	3,529	3,375	3,245	3,139	3,048	2,977	2,918	2,868	2,830
35,0	3,580	3,416	3,282	3,169	3,077	3,002	2,939	2,889	2,847
36,0	3,630	3,462	3,316	3,203	3,107	3,027	2,960	2,906	2,864
37,0	3,684	3,504	3,358	3,236	3,136	3,0 52	3,985	2,931	2,885
38,0	3,743	3,555	3,400	3,274	3,165	3,081	3,010	2,952	2,901
39,0	3,802	3,601	3,441	3,308	3,199	3,107	3,035	2,973	2,918
40,0	3,856	3,655	3,488	3,345	3,228	3,136	3,061	2,9 94	2,039
	,								623
	21,0 22,0 23,0 24,0 25,0 26,0 27,0 28,0 29,0 30,0 31,0 32,0 33,0 34,0 35,0 36,0 37,0 38,0 39,0	21,0 2,906 22,0 2,952 23,0 2,994 24,0 3,040 25,0 3,090 26,0 3,140 27,0 3,186 28,0 3,232 29,0 3,278 30,0 3,324 31,0 3,375 32,0 3,425 33,0 3,479 34,0 3,529 35,0 3,580 36,0 3,630 37,0 3,684 38,0 3,743 39,0 3,802	580 600 21,0 2,906 2,834 22,0 2,952 2,876 23,0 2,994 2,910 24,0 3,040 2,947 25,0 3,090 2,994 26,0 3,140 3,040 27,0 3,186 3,081 28,0 3,232 3,119 29,0 3,278 3,161 30,0 3,324 3,203 31,0 3,375 3,245 32,0 3,425 3,287 33,0 3,479 3,328 34,0 3,529 3,375 35,0 3,580 3,416 36,0 3,630 3,462 37,0 3,684 3,504 38,0 3,743 3,555 39,0 3,802 3,601	ρ, ΜΠα 590 600 620 21,0 2,906 2,834 2,776 22,0 2,952 2,876 2,809 23,0 2,994 2,910 2,839 24,0 3,040 2,947 2,872 25,0 3,140 3,040 2,952 27,0 3,186 3,081 2,985 28,0 3,232 3,119 3,023 29,0 3,278 3,161 3,060 30,0 3,324 3,203 3,098 31,0 3,375 3,245 3,136 32,0 3,425 3,287 3,174 33,0 3,479 3,328 3,270 34,0 3,529 3,375 3,245 35,0 3,580 3,416 3,282 36,0 3,630 3,462 3,316 37,0 3,684 3,504 3,358 38,0 3,743 3,555 3,400 39,0 3,802 3	ρ. ΜΠα 580 600 620 640 21,0 2,906 2,834 2,776 2,730 22,0 2,952 2,876 2,809 2,759 23,0 2,994 2,910 2,839 2,784 24,0 3,040 2,947 2,872 2,813 25,0 3,090 2,994 2,914 2,847 26,0 3,140 3,040 2,952 2,876 27,0 3,186 3,081 2,985 2,910 28,0 3,232 3,119 3,023 2,943 29,0 3,278 3,161 3,060 2,977 30,0 3,324 3,203 3,098 3,006 31,0 3,375 3,245 3,136 3,040 32,0 3,425 3,287 3,174 3,073 34,0 3,529 3,375 3,245 3,139 35,0 3,580 3,416 3,282 3,169 36,0 3,634	p, MПа 580 600 620 640 660 21,0 2,906 2,834 2,776 2,730 2,696 22,0 2,952 2,876 2,809 2,759 2,712 23,0 2,994 2,910 2,839 2,784 2,742 24,0 3,040 2,947 2,872 2,813 2,772 25,0 3,090 2,994 2,914 2,847 2,797 26,0 3,140 3,040 2,952 2,876 2,818 27,0 3,186 3,081 2,985 2,910 2,847 28,0 3,232 3,119 3,023 2,943 2,876 29,0 3,278 3,161 3,060 2,977 2,901 30,0 3,324 3,203 3,098 3,006 2,931 31,0 3,375 3,245 3,136 3,040 2,956 32,0 3,425 3,287 3,174 3,073 3,019 34,	P. MITIA 580 600 620 640 660 680 21,0 2,906 2,834 2,776 2,730 2,696 2,667 22,0 2,952 2,876 2,809 2,759 2,721 2,688 23,0 2,994 2,910 2,839 2,784 2,742 2,709 24,0 3,040 2,947 2,872 2,813 2,772 2,734 25,0 3,090 2,994 2,914 2,847 2,797 2,755 26,0 3,140 3,040 2,952 2,876 2,818 2,780 27,0 3,186 3,081 2,985 2,910 2,847 2,801 28,0 3,232 3,119 3,023 2,943 2,876 2,826 29,0 3,278 3,161 3,060 2,977 2,901 2,847 31,0 3,375 3,245 3,136 3,040 2,956 2,897 32,0 3,425 3,287	21,0 2,906 2,834 2,776 2,730 2,696 2,667 2,642 22,0 2,952 2,876 2,809 2,759 2,721 2,688 2,663 23,0 2,994 2,910 2,839 2,784 2,742 2,709 2,684 24,0 3,040 2,947 2,872 2,813 2,772 2,734 2,700 25,0 3,090 2,994 2,914 2,847 2,797 2,755 2,721 26,0 3,140 3,040 2,952 2,876 2,818 2,780 2,742 27,0 3,186 3,081 2,985 2,910 2,847 2,801 2,763 28,0 3,232 3,119 3,023 2,943 2,876 2,826 2,784 29,0 3,278 3,161 3,060 2,977 2,901 2,847 2,805 30,0 3,324 3,203 3,098 3,006 2,931 2,872 2,826 31,	P. MITA 580 600 620 640 660 680 700 720 21,0 2,906 2,834 2,776 2,730 2,696 2,667 2,642 2,621 22,0 2,952 2,876 2,809 2,759 2,721 2,688 2,663 2,642 23,0 2,994 2,910 2,839 2,784 2,742 2,709 2,684 2,659 24,0 3,040 2,947 2,812 2,813 2,772 2,734 2,700 2,675 25,0 3,090 2,994 2,914 2,847 2,797 2,755 2,721 2,696 26,0 3,140 3,040 2,952 2,876 2,818 2,780 2,742 2,713 27,0 3,186 3,081 2,985 2,910 2,847 2,801 2,763 2,712 28,0 3,278 3,161 3,060 2,977 2,901 2,847 2,805 2,772 30,0

8.15. УДЕЛЬНЫЙ ОБЪЕМ, МАССА 1 м³ ВОДЯНОГО ПАРА, УДЕЛЬНАЯ ЭНТАЛЬПИЯ (ТЕПЛОСОДЕРЖАНИЕ) И УДЕЛЬНАЯ ТЕПЛОТА ПАРООБРАЗОВАНИЯ

8.15.1. Насыщенный водяной пар

Принятые обозначения: t — температура, °C; p — давление, 0,1 МПа; v — удельный объем сухого пара, м³/кг; γ — масса 1 м³ сухого пара, кг; i' — удельная энтальпия жидкости, кДж/кг; i'' — удельная энтальпия сухого пара, кДж/кг; r — скрытая удельная теплота парообразования, кДж/кг.

<i>t</i>	p p	บ	ν	i'	l"	r
0 5 10 15 20 25 30 35 40 45 55 60 65 70 75 80 85 90 95 100 115 120 125 130 135 140 145 150 160 170 180 180 180 180 180 180 180 180 180 18	0,0061 0,0087 0,0123 0,0171 0,0233 0,0317 0,0425 0,0562 0,0737 0,0958 0,124 0,158 0,199 0,250 0,312 0,385 0,474 0,579 0,701 0,845 1,013 1,21 1,43 1,67 1,99 2,32 2,69 3,13 3,62 4,16 4,76 6,18 7,92 10,0 12,6 15,6 19,1	206,3 147,2 107,4 78,0 57,8 43,4 32,9 25,2 19,6 15,3 12,08 9,54 7,68 6,20 5,05 4,13 2,36 1,98 1,67 1,42 1,21 1,04 0,982 0,770 0,668 0,582 0,509 0,446 0,393 0,307 0,243 0,156 0,127 0,104	0,00485 0,00680 0,00940 0,0128 0,0173 0,0230 0,0304 0,0396 0,0512 0,0654 0,0831 0,104 0,130 0,161 0,198 0,242 0,293 0,354 0,424 0,505 0,598 0,705 0,598 0,705 0,826 1,121 1,30 1,50 1,72 1,97 2,24 2,55 3,26 4,12 5,16 6,39 7,86 9,59	0 20,9 41,9 63 84 104 125 146 167 188 209 230 251 272 293 314 335 356 377 398 419 440 461 485 503 523 548 566 590 611 632 678 716 766 808 850 856	2500,8 2509,9 2519,2 2529 2537 2545 2553 2566 2574 2583 2591 2600 2608 2617 2625 2633 2642 2650 2659 2667 2675 2684 2700 2705 2713 2721 2726 2734 2746 2759 2768 2788 2788 2788 2788 2788 2780 2788 2788	2500,8 2489,0 2477,3 2466 2453 2441 2428 2420 2407 2395 2382 2370 2357 2345 2332 2319 2307 2294 2286 2244 2227 2215 2202 2190 2173 2160 2144 2114 2081 2081 2081 2081 1980 1983 1901
	•	,	-,			

				Прода	Продолжение таб		
t	p	v	ν	i'	i"	ŗ	
220	23,2	0,086	11,6	942	2801	1859	
230	27,9	0,0715	14,0	992	2805	1813	
240	33,4	0,0597	16,8	1038	2805	1767	
250	39,8	0,0501	20,0	1084	2801	1717	
260	47,0	0.0422	23,7	1135	1797	1662	
270	55,0	0,0356	28,1	1185	2788	1603	
280	64,2	0,0301	33,2	1235	2780	1545	
290	74,4	0,0255	39,2	1289	2767	1478	
300	85,9	0,0216	46,2	1344	2747	1403	
310	99,0	0,183	54,6	1403	2726	1323	
320	113	0,0155	65	1461	2700	1239	
3 30	128	0,0130	77	1528	2667	1139	
3 40	′ 146	0,0108	93	1595	2621	1026	
850	166	0,00881	114	1670	1562	892	
3 60	186	0,00694	144	1763	2483	720	
370	211	0.00493	203	1892	2332	440	
374	220,8	0.00347	288	2031	2144	113	

8.15.2. Перегретый водяной пар [удельная энтальпия, или теплосодержание]

		Энтальпия, к $Д$ ж/к r , при t , $^{\circ}$ С												
р, 0,1 МПа	100	120	140	160	180	20 0	300	490	500					
1	2676,6	2715,8	2754,7	2793,2	2833,0	2872,0	3074,0	3274,3	3484,1					
2		2711,5	2748,1	2787,5	2827,0	2867,5	3071,0	3273,5	3483,7					
3	•••	•••	2739,5	2781,2	2822,2	2862,7	3068,0	3272,2	3483,3					
4	•••	• • •	• • •	2775,5	2816,5	2857,7	3064,5	3271,0	3482,8					
5	•••	•••		2767,0	2810,5	2852,5	3061,0	3270,1	3482,5					
6			•••	• • •	2805,0	2844,2	3058,5	3268,5	3482,1					
7	•••		• • •	• • •	2801,2	2841,5	3056,0	3267,2	3481,4					
8		• • •		•••	2792,2	2838,2	3053,5	3265,9	3480,7					
9		• • •	•••	•••	2785,5	2832,5	3051,0	3264,6	3479 ,9					
10		• • •	•••	•••	2778,0	2827,0	3048,5	3263,2	3479,1					
20	***	•••				•••	3022,0	3250,0	3471 ,7					
30		• • •	•••	• • •	•••	•••	2990,5	3234,5	346 5,0					
40	•••	•••	•••	•••	• • •	***	2958,5	3218,0	3456 ,7					
50		•••	•••	•	• • •		2926,0	3202,5	3448 ,5					
100	• • •	•••	• • •		•••	•••	•••	3113,0	3396 ,5					

8.16. СКОРОСТЬ УЛЬТРАЗВУКА В ВОДЕ ПРИ РАЗЛИЧНЫХ ТЕМПЕРАТУРАХ

 Π , р и н я т ы е обозначения: t — температура; c — скорость ультразвука.

t, °G	c, m/c	t, °C	с, м/с	1, ℃	с, м/с
0	1402,74	34	1518,12	68	1551.70
1	1407,71	35	1520,12	69	1554,93
2	1412,57	36	1522,06	70	1555,12
2 3 4 5	1417,32	37	1523,93	71	1555,27
4	1421,96	38	1525,74	72	1555,37
5	1426,50	39	1527,49	73	1555,44
<u>6</u> .	1430,92	40	1529,18	74	1555,47
7	1435,24	41	1530,80	75	1555,45
8	1439,46	42	1532,37	76	1555,40
9	1443,58	43	1533,88	77	1555,31
10	1447,59	44	1535,33	78	1555,18
11	1451,51	45	1536,72	79	1555,02
12	1455,34	46	1538.06	80	1554,81
13	1459,07	47	1539,34	81	1554,57
14	1462,70	48	1540,57	82	1554,30
15	1466,75	49	1541,74	83	1553,98
16	1469,70	50	1542,87	84	1553,63
17	1473,07	51	1543,93	85	1553,25
18	1476,35	52	1544,95	86	1552,82
19	1479,55	53	1545,92	87	1552,37
20	1482,66	54	1546,83	88	1551,88
21	1485,69	55	1547,70	89	1551,35
22	1488,63	56	1548,51	90	1550,79
23	1491,50	57	1549,28	91	1550,19
24	1494,29	58	1550,00	92	1548,58
25	1497,00	59	1550,68	93	1548,92
26	1499,64	60	1551,30	94	1548,23
27	1502,20	61	1551,88	95	1547 ,50
28	1504,68	62	1552,42	96	1546,75
29	1507,10	63	1552,91	97	1545,96
30	1509,44	64	1 5 53,3 5	98	1545,14
31	1511,71	65	1553,76	99	1544,29
32	1513,91	66	1554,11	100	1543,41
33	1516,05	67	1554,43		, -

8.17. АНОМАЛИИ ВОДЫ

8.17.1. Водородные связи

Водородные связи представляют собой особый тип трехцентровой химической связи типа X—Н...Y, в которой центральный атом H, соединенный ковалентной связью с электроотрицательным атомом X (C, N, O, S), образует дополнительную связь с атомом Y (N, O, S), имеющим направленную вдоль линии этой связи неподеленную электронную пару. Водородную связь можно рассматривать как частный случай координационной связи, так как число связей, образуемых центральным атомом H, превышает его формальную валентность.

Водородные связи в молекулах воды образуются по схеме:

Взаимодействие, обусловленное водородными связями, приводит к сохранению в воде аномально высокого по сравнению с другими жидкостями ближнего порядка. Возникновение и стабилизация одной связи благоприятствует образованию водородных связей с другими соседними молекулами воды, в результате чего структура воды упрочняется в широких областях. Эластичность водородных связей допуснает сосуществование разнообразных структур в различных кристаллических модификациях льда (п. 8.2.2). Наличием водородных связей объясняются также аномалии воды, проявляемые в некоторых ее свойствах. (О водородных связях см. пп. 4.2.8 и 4.2.9).

8.17.2. Аномальные физические свойства воды

Свойство	Сравнительная характеристика	Роль в физических и биологических явлениях, в технических процессах
Летучесть	Наименьшая летучесть среди соединений водорода с элементами подгруппы кислорода	Существенна для физиологии клетки; медленная потеря влажности различными материалами
Плотность	рода плотность при 3,98°С, при дальней- шем охлаждении плотность уменьшается и вода превращается в лед	Определяет распределение температуры по глубине водоема. В зимний период лед, имеющий низкую теплопроводность, защищает водоемы от промерзания
Вязкость	Уменьшается с повышением давления в противоположность наблюдающемуся обычно у других веществ увеличению вязкости в диапазоне 0—30 °C; при этих же температурах аномально быстро снижается при нагревании	Важно для гидродинамики водных потоков и седиментации взвешенных веществ
Фазовые переходы	По аналогии с оксидами элементов VI группы ее температура плавления должна быть ниже —60 °С и температура кипения соответствовать комнатной	Существенно для биологических явлений; определяет термодинамику производственных процессов, протекающих в водной среде
Тепло- емкость	Наиболее высокая из всех твердых и жидких веществ, за исключением аммиака; с повышением температуры (до 40°C) несколько снижается, затем возрастает	Определяет термостатирую щий эффект в технологи ческих процессах, перено тепла водными течениями в природе, способствует сохранению постоянно

температуры тела

		П родолжение таблицы
Свойство	Сравнительная характеристика	Роль в физических и биологических явлениях, в технических процессах
Теплота плавления	Наиболее высокая, за исключением аммиака	Термостатирующий эффект в точке замерзания
Теплота испарения	Наиболее высокая из всех веществ	_ <u>_</u> .
Тепло- проводность	Наиболее высокая из всех жидкостей	сации пара Играет роль в теплообменной аппаратуре и существенно влияет на процессы малого масштаба (например, проис
Поверхност- ное натяже- ние	Наиболее высокое из всех жидкостей	ходящие в живых клетках) Существенно для физиологии клетки; определяет поверх- ностные явления в техно-
Диэлектри- ческая про- ницаемость	Наиболее высокая из всех жидкостей	логических процессах Оказывает существенное влияние на диссоциацию электролитов
Растворяю- щая спо- собность	Растворяет многие вещества в количествах больших, чем другие жидкости	Используется в технике как основной растворитель; обеспечивает возможность взаимосвязи живой и неживой природы

8.17.3. Теории структуры воды

Модели структуры воды можно разделить на два основных типа — она рассматривается либо как однородный континуум, либо предполагается наличие по меньшей мере двух разнородных структур (рис.8, 6). По Берналу и Фаулеру, в воде могут существовать три типа взаимного расположения молекул: ажурная структура льда типа тридимита (вода-1), тетраэдрическая структура типа кварца (вода-2), простая симметричная упаковка (вода-3). С ростом температуры структурное равновесие вода-1 ≠ вода-2 ≠ вода-3 смещается вправо. Девис и Литовиц предложили двухструктурную модель, которая содержит гексагональные кольца типа структуры льда І. В одном состоянии они имеют ажурную упаковку, в другом они сжаты.

Лед I имеет гексагональную структуру. Каждый атом кислорода в структуре льда I связан с другими атомами кислорода, расположенными в вершинах тетраэдра на расстоянии 0,276 им от центрального атома кислорода (рис. 8, а). Тетраэдры, содержащие по пять молекул воды, послойно связаны с аналогичными тетраэдрами общими углами, а с расположенными выше слоями — вершинами, образуя сравнительно «пористую» гексагональную структуру.

Подобие структуры льда I и воды положено в основу модели воды, предложенной Самойловым, который объясняет аномалии воды прогрессирующим с ростом температуры заполнением отдельными молекулами воды пустот структуры льда в разрушающемся и при этом все более искажающемся его каркасе. Форшлинд подсчитал, что в жидкой фазе при 0 °С количество таких молекул составляет примерно 16 % их общего числа. Полинг предположил, что вода имеет клатратную структуру, характерную для газовых гидратов (п. 9.7.2). Исследования Денфорда и Леви подтвердили не гипотезу Полинга, а модель, которая сходна с моделью Самойлова,— разрушенный льдоподобный каркас и междоузельные молекулы воды. Марчи и Эйринг предложили структурную модель, которая, по их мнению, качественно похожа на более ранние модели Самойлова, Полинга и Денфорда — Леви. Плавление льда I сопровождается появлением более плотной структуры, сохраняющей

тетраэдрическую решетку.
Определенный интерес представляет кластерная модель Френка и Вина, которая получила дальнейшее развитие в работах Немети и Шерага. В соответствии с ней существование определенной квазикристаллической структуры отрицается и лишь предусматриваются произвольные образования из соединенных водородными связями конгломератов воды — «мерцающих кластеров», — плавающих в более или менее «своболной» воде.

Водяной пар состоит в основном из мономерных молекул воды; редко встречаются димеры и очень редко — тримеры,

8.17.4. Водородные связи в различных соединениях

Вещество	Связь	Энергия связи, кДж/моль	Длина связи, нм
Н ₆ F ₆ NH ₄ F NH ₃ (HCN) ₂ H ₂ O (лед) ROH (спирт) (HCOOH) ₂ (CH ₃ COOH) ₂ O—C ₆ H ₅ OHCI	F—H···F N—H···N C—H···N O—H···O O—H···O O—H···O O—H···O	6,7 5,0 1,3 3,2 4,5 6,2 7,1 8,2 3,9	0,226 0,263 0,338

8.18. ТЯЖЕЛАЯ ВОДА

8.18.1. Изотопные разновидности воды

Вследствие наличия трех изотопов водорода — 1 H, D и T и шести изотопов кислорода — 14 O, 16 O, 16 O, 16 O, 19 O имеется 36 изотопных разновидностей воды, из которых девять представляют собой стабильные изотопы и содержатся в природной воде в следующих количествах (молярные доли, %): 14 1 16 O — 99 73; 14 2 17 O — 90 04; 14 2 18 O — 90 20;

 1 HD 16 O — 0,03; 1 HD 16 O — 0,03; 1 HD 17 O — 1,2 · 10 $^{-15}$; 1 HD 18 O — **5.7** • 10^{-9} ; $D_0^{-18}O = 2.3 \cdot 10^{-6}$; $D_2^{-17}O = 0.9 \cdot 10^{-9}$; $D_3^{-18}O = 4.4 \cdot 10^{-9}$. Дейтериевую тяжелую воду — изотопную разновидность воды, HDO и D₂O. в состав которой входит тяжелый изотоп водорода — дейтерий (D) — получают из природной воды. Растворимость в тяжелой воде меньше, чем в обыкновенной, например при 25 °C растворимость КСІ уменьшается на 88 %, К₂Сг₂О₇ — на 27 % и РbСl₂ — на 36 %. Повышается плотность (на 10,8 %) и вязкость (на 23,2 %). Смеси обычной и тяжелой воды образуют идеальные системы, свойства которых почти линейно изменяются с изменением содержания, выражаемом в молярных долях. В тяжелой воде замедляются некоторые реакции и биологические процессы. Она используется как замедлитель нейтронов, а также в качестве исходного вещества для получения соединений с ме-

Тритневую тяжелую воду — НТО, РТО, Т2О — получают путем ядерных реакций. По физическим свойствам она больше, чем дейтериевая, отличается от обыкновенной воды. Используют ее как изотопный

индикатор. Она очень радиоактивна.

Тяжелокислородная вода, содержащая изотопы кислорода ¹⁷O, 18О, получают из природной воды. Используют ее как меченную по кислороду воду и как источник для получения препаратов с меченым кислородом.

8.18.2. Свойства тяжелой воды

Принятые обозначения: Ж.— жидкость; Т. пл.— температура плавления; П.— пар.

Параметр	Состояние или условие	t, ∘C	Значение для D₂¹6О
Молекулярная масса			20,02948
Плотность, кг/м ³	Ж.	25	1104,211
Температура, °С	, , , , , , , , , , , , , , , , , , , ,	20	1104,211
плавления	101325 Па		3,813
максимальной плотности	101325 Па		
кипения	101325 Па	•••	11,6
критическая	22,75 M∏a	•••	101,43
Давление	22,10 1111	•••	371,5
критическое, МПа			00.15
пара, 102 Па	П.		22,15
	П.	25	26,73
Вязкость относительная		100	959,4
Токазатель преломления	Ж.	25	1,232
Поверхностное натяжение, мН/м	D-линия Na	.25	1,32795
Циэлектрическая проницаемость	ж.	20	67, 8
Ионное произведение $(D_3O^+\cdot (OD^-)\cdot 10^{14})$	Ж.	25	78,54
Іппольный момент, 10 ²⁸ Кл · м	Ж.	25	0,20
Convolution Moment, 10-5 IVI - M	•••	• • •	6,23
Гермодинамические величины			
энтальпия, кДж/моль (— ДН г.)	101325 Па	25	84,78
теплота плавления, кДж/моль	101325 Ma	Т. пл.	249,383
теплота испарения, кДж/моль	101325 Па	25	6,284
свободная энергия, к Π ж/моль (— ΔF г.)	101325 Па	•••	45,427
энтропия (S) , Дж/(моль \cdot K)	10,1325 Па	25	234,741
теплоемкость, Дж/(моль К)	Ж.	25	185,806

8.19. ПРИРОДНЫЕ ВОДЫ

Природные воды характеризуются:

1) содержанием грубодисперсных примесей (частиц песка, лесса и др.), определяемых фильтрованием через бумагу с последующим взвешиванием либо по прозрачности (просматриванием стандартного шрифта) или мутности (сравниванием с образцами, замутненными стандартной взвесью);

2) цветностью, обусловленной в основном растворением гуминовых веществ; измеряется в условных градусах платинокобальтовой шкалы; 3) вкусом и запахом; вкус зависит от состава и количества растворенных солей; запах может быть природного или промышленного происхождения; оценка производится по качеству и интенсивности (по

пятибалльной системе);

4) наличием легко окисляющихся примесей, определяемых по кислороду (мг/дм³), израсходованному на их окисление в стандартных условиях: различают перманганатную и бихроматную окисляемость; 5) щелочностью, которая определяется как сумма эквивалентных

концентраций анионов слабых кислот (в основном HCO_3 и CO_2^{2-});

6) жесткостью, которая равна сумме эквивалентных концентраций катионов Ca2+ и Mg2+ в воде;

7) сухим остатком — условным показателем, определяющим содержание растворенных и коллоидных примесей (мг/дм3), остающихся при упаривании воды;

8) общим солесодержанием — суммарной концентрацией растворенных в природной воде минеральных солей, рассчитанной по данным

отдельных определений.

Природные воды, содержащие до 0,1 % растворенных веществ, называются пресными, 0.1-5 % — минерализованными, свыше 5 %—

рассолами.

К числу главных компонентов природных вод относятся ионы N_{a}^{+} , K^{+} , C_{a}^{2+} , Mg^{2+} , H^{+} , Cl^{-} , HCO_{3}^{-} , CO_{3}^{2-} , SO_{4}^{2-} и газы O_{2} , CO_{2} и $H_{2}S$. В малых количествах содержатся ноны Fe²⁺, Fe³⁺, Mn²⁺, Br⁻, I⁻, F⁻, BO₂, HPO_4^{2-} , SO_3^{2-} , HSO_4^- , $S_2O_3^{2-}$, HS^- , HSO_3^- , HSO_3^- и газы N_2 , CH_4 , He. Остальные вещества находятся в воде в крайне рассеянном состоянии.

Данные о составе наиболее характерных природных вод на терри-

тории СССР приведены в пп. 8.19.1-8.19.4.

8.19.1. Средний состав морской воды

			-				
Эле- мент	Массовая доля, %	Эле- мент	Массовая доля, %	Эле- мент	Массовая доля, %	Эле- мент	Массовая доля, %
O H Cl Na Mg S Ca K Br C Sr B	86,82 10,72 1,89 1,06 0,14 0,088 0,041 0,038 0,0065 0,002 0,0013 0,00045	F Si Rb Li N I P Zn Ba Fe Cu As	0,0001 0,00005 0,00002 0,000015 1 · 10 ⁻⁵ 5 · 10 ⁻⁶ 5 · 10 ⁻⁶ 5 · 10 ⁻⁶ 5 · 10 ⁻⁶ 2 · 10 ⁻⁶ 1,5 · 10 ⁻⁶	Al Pb Mn Se Ni Sn Cs U Co Mo Ti Ge	<1 · 10 ⁻⁶ 5 · 10 ⁻⁷ 4 · 10 ⁻⁷ 4 · 10 ⁻⁷ 3 · 10 ⁻⁷ 3 · 10 ⁻⁷ 2 · 10 ⁻⁷ 2 · 10 ⁻⁷ 1 · 10 ⁻⁷ <1 · 10 ⁻⁷ <1 · 10 ⁻⁷	V Ga Th Y La Ce Bi Sc Hg Ag Au Ra	5 · 10 ⁻⁸ 5 · 10 ⁻⁸ 4 · 10 ⁻⁸ 3 · 10 ⁻⁸ 3 · 10 ⁻⁸ 3 · 10 ⁻⁸ <2 · 10 ⁻⁸ 4 · 10 ⁻⁹ 4 · 10 ⁻⁹ 4 · 10 ⁻⁹ 1 · 10 ⁻¹⁴

		<u></u>	Ī		1	1	
Ионы	Пятигорск, Александровско- Ермолинский источник, Ессентуки	Ессентуки, источник № 4	Кисловодский нарзан	Железноводск	Мацеста, источник № 6	Серноводск (Терский район)	Ижевский источник
Li+ Na+ K+ Mg ²⁺ Ca ²⁺ Sr ²⁺ Ba ²⁺ NH ⁴ Mn ²⁺ Fe ₀ ofut F-	0,19 1021 60,3 63,1 445,0 44,6 0,002 1,14 0,18 0,26 0,24 1056	1,7 2,36 — 0,24 6,63 Следы 1687	0,05 117,1 13,3 84,6 362,2 0,8 0,03 0,79 0,065 1,28 0,016 128,4	0,25 551,8 33,8 42,2 275,5 0,13 0,014 0,31 0,078 4,93 0,035 250,6	3384 130,6 179,4 533,9 — — — — — — — 6312	0,57 1110 13,1 37,0 — 0,2 — Следы	575 186 210 70 —
Br ⁻ I- SO ₄ ² S ₂ O ₃ ² HS- HPO ₄ ² HAsO ₄ HBO ₂ SiO ₂	4,89 0,226 833 — 0,021 0,089 0,022 4,32 55,9	4,05 1,0 — — — — — 12,7	0,33 0,011 451,7 — 0,163 — 0,39 10,1	0,74 0,017 748,5 — 0,01 0,027 0,58 33,1		2,5 0,2 135,5 — — —	
CO ₂ общ CO ₂ связ CO ₂ своб HCO ₃ H ₂ S _{общ} H ₂ S _{св} об Сухой остаток Углеводороды	2171 582,2 1007 1614 10,8 10,2 4342	5625 1597 2432 4427 — 6610	2772 387,3 1997 1074 — 1711	2128 447,6 1233 1241 — 2547	10,7 222 1095	47,5 870 313 244 — 23 2914	12,8

Боржоми, Екатерининский источник	Абастумани, Богатырский источник	Миргородская вода	Березовская вода	Вода Поляна Квасова	Лужанская вода № 1	Вода Свалява	Вода Нафтуся
1,16		- .	_		. –	_	
1,533 35,7		958,6	70,6		1023,9	2425,4	3,5
50,3	1,4	18,3	26,2	19,8	3,5	19,6	41,9
	30,0	32,1	102,0	119,4	141,2	191,7	103,6
			· -	_	_	_	
		· <u>-</u>		—	_		_
	_	_	_	-	-		
		1.6	-		0.0		
		1,0	3,0	1,7	0,8	Следы	_
	147.5	1183.0	36.9	541.0	60.4	150.0	24,5
		1100,0		041,0	- 00,4	150,0	24,5
	_	0.5		_	_		_
	146,8	187.6	70,8	Слелы	8.0	54.3	35,4
			_	Опеды	_		_
<u> </u>		_					
0,16	_	-			• _ •	*****	
0,05	_		_		_		
33,2	_	-	- .	_		_	
			41,0	16,0	27,6	40,0	
		_	_		_	_	_
	_			. —			· <u> </u>
	20	461.0		2380	3256,0		57,0
40/2	30	461,2	481,9	7527,6	3050,0	6788,0	448,0
3.3				_	_	_	0.6
4208 —	_	2842,9 —	832,4	11243,9	4323,7	9669,0	0,6 656,9 1,4
	1,533 35,7 50,3 121,2 5,6 4,6 1,98 0,05 2,94 0,14 400,2 0,65 0,35 0,92 0,16 0,05 33,2 22,2 4094 1668 1157 4072 3,3	1,16 — 1,533 1389 35,7 2,6 50,3 1,4 121,2 36,0 5,6 — 4,6 — 1,98 — 0,05 — 2,94 — 0,14 — 400,2 147,5 0,65 — 0,35 — 0,92 146,8 — 2,2 — 3,6 0,16 — 0,05 — 33,2 — 22,2 — 4094 — 1668 — 1157 — 4072 30 — 3,3 —	1,16 — — 1,533 1389 958,6 35,7 2,6 50,3 1,4 18,3 121,2 36,0 32,1 5,6 — 4,6 — — — 1,98 — — — 0,05 — — — 2,94 — 1,6 0,14 — 400,2 147,5 1183,0 0,65 — — 0,35 — 0,5 0,92 146,8 187,6 — 2,2 — — 3,6 — — 0,05 — — 33,2 — — 22,2 — — 4094 — — 1157 — — 4072 30 461,2 — — 3,3 —	1,16 — — — 1,533 1389 958,6 70,6 50,3 1,4 18,3 26,2 121,2 36,0 32,1 102,0 5,6 — — — 4,6 — — — 1,98 — — — 0,05 — — — 2,94 — 1,6 3,0 0,14 — — — 400,2 147,5 1183,0 36,9 0,65 — — — 0,92 146,8 187,6 70,8 — 2,2 — — — 3,6 — — 0,05 — — — 33,2 — — — 22,2 — 41,0 4094 — — — 1157 — 0,6 4072 30 461,2 481,9 — — — — 3,3 — — —	1,16 — — — 1,533 1389 958,6 70,6 3004,0 35,7 2,6 14,0 50,3 1,4 18,3 26,2 19,8 121,2 36,0 32,1 102,0 119,4 5,6 — — — 4,6 — — — 1,98 — — — 0,05 — — — 2,94 — 1,6 3,0 1,7 0,14 — — — 400,2 147,5 1183,0 36,9 541,0 0,65 — — — 0,92 146,8 187,6 70,8 Следы — — — — 0,16 — — — 0,05 — — — 0,16 — — — 0,05 — — — 33,2 — — — 22,2 — 41,0 16,0	1,16 — <td>1,16 — — — — — — — — — — — — — — — — — — — — — — — —<!--</td--></td>	1,16 — — — — — — — — — — — — — — — — — — — — — — — — </td

Река	Место забора	Tare	3+	17 WI WI WI WI WI WI WI W	_ '				
		Agrid	3	Mg ²	Na ⁺ + K ⁺	HCO_	so's	נו	Сумма
Амударья Белая	г. Турт-Куль	VII 1940 r.	89,5	3,2	11.4	140 4	79.0	Ų	
ra	г. Вольск	2/1X 1940 r. 21/XII 1940 r	114,0	25,0	17,0	272,1	166,9	45,4 18.0	369 613
XOB Ka	г. Новгород	29/VI 1938 r.	27.4	, 2, τ. 2, α	12,5 2,5	210,4	112,3	19,9	458
<u> </u>	г. глиров с. Разумовка	18/IX 1940 r.	33,6	0 0,0	24,8 24,8	90,4 186,0	13,3 2,4	გ გ, დ	186
	с. Аксайская	4/VII 1939 r.	55,7	8,11	2,5	195,2	12,9	9,0	503 587
сеи	г. Красноярск	20/IX 1936 r.	0,76 10,3	18,0 0,4	52,2	260,0	112,0	44,0	268
ышан	устье р. Фандарья г. Омск	15/VII 1940 r.	41,4	, c,	0,4 6,4	73,2	4,0 26,9	2,6	104,6
	r. Uncronomb	25/VIII 1940 r. 6/IX 1040 z	24,5	4,7	0,1	79,3	15.3	3,8	203
ань	х. Тиховский	20/VII 1938 r.	87,7 34,7 34,7	21,0	20,3	190,3	132,0	13,5	449.3
	с. Сальяны	24/VII 1941 r.	47.5	0,0	34,0 7,50	108,0	18,0	17,0	195
KBa	c. Taranobo	8/IX 1940 r.	18,0	တ်	18,8	66.4	0,1,0 0,0	0 0 0 0 0	382
-	с. Ивановское	9/VII 1946 FF.	61,5	14,2	23,0	250,7	1,0,0	7,67 7,07	358.5
	г. Новосибирск	21/VIII 1940 r.	9,0 9,0	- L 1, K	∞ <u>-</u>	27,5	4,5	က်တ	48,8
Z Z	с. Усть-Цильма	19/VI 1941 r.	4.6	, c	ر م.د	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	13,0	: ;	129
Двина	т. Звоз	15/VII 1940 r.	59,6	3,2	, 6, 1, 0,	149.4	3,0° 5,0°	დ დ დ დ	954
Донец	ст. Усть-Белокалит-	31/VIII 1946 r.	41,4	9,4	13,4	122,	47,1	140,0	247
į.	Винская	.1 .000	0,11	6,11	110,3	246,4	163,0	171,5	829
Серек Герек	кишл. Кок-Булак ст. Капгалинская	14/VII 1940 r.	105,8	1,2	1,2	153,1	105.3	35.0	700
	г. Оренбург	12/VIII 1940 r.	0,69 0,00	18,6 27.4	21,5	216,9	123,4	24,9	405 495
	уроч. Дюссюке	31/V 1941 r.	165,7	46,7	332,2	265,4 245,9	156,4 345,4 5	14,2 504.6	580
!						•	1.4	,	1401

8.19.4. Химический состав вод некоторых крупных озер СССР [мг/л] (по Алекину, 1953]

. Озеро	Ca ²⁺	Mg ²⁺	$Na^+ + K^+$	HCO-	SO ₄ ²⁻	CI ⁻	Сумма ионов
Байкал	15,2	4,2	6,1	59	4,9	1,8	91
Балхаш	25,7	164,0	694,0	443,8-48,9	893,0	574,0	2843,4
Валдайское	29,1	3,3	2,5	100,6	4,3	4,2	145,0
Иссык-Куль	114,0	294,0	1475,0	240.0	2115,0	1585,0	5823,0
Ладожское	7,1	1,9	8,6	40,2	2,5	7,7	68,0
Онежское	54,2	1,6	1,5	20,4	1,3	1,5	30,2
Севан	33,9	55,9	77,3+21,4	414,7	16,9	62,9	662,0
Телецкое	12,4	2,1	1,73	48,6	2,8	0,8	68,4
Чудское	23,9	55,2	11,5	112,8	4,0	5,2	162,6
Кучук*	0,5	11,2	82,3	0,5	44,5	121,6	260
М. Богатское*	0,21	19,2	97,3	1,9—0,7	95,2	137,8	352
Сакское*	1,0	5,4	35,7	0,2	7,6	61,3	111,3
Эбейты (Кулун- динская степь)*	0,2	6,5	92,2	0,4	79,3	102,5	281,1

^{*} Содержание ионов выражено в г/кг.

8.20. ВОДА НА ЗЕМНОМ ШАРЕ

8.20.1. Запасы воды на Земле

Водные объекты	Объем, км ⁸	Масса воды	Объемная доля, %
Океаны и меря	1336 - 106	1,3 · 1018	99,6973
Полярные льды	$3.5 \cdot 10^{6}$	3.5 1015	0.2612
Подземные озера	$250 \cdot 10^{3}$	$0.25 \cdot 10^{15}$	0.0187
Озера	$250 \cdot 10^{3}$	$0.25 \cdot 10^{15}$	0.0187
Реки	$50 \cdot 10^{3}$	$50 \cdot 10^{12}$	0,0037
Белота	$6 \cdot 10^{3}$	$6 \cdot 10^{12}$	0.0004
Снежный покров	250	$250 \cdot 10^9$	0,00002

8.20.2. Классификация природных вод по общей минерализации

Вода	Характеристика	Общая минерализа вня, мг/л
Ультрапресная I Пресная	Обычно гидрокарбонатная	Менее 200 200—500
С относительно повышенной минерализацией	Гидрокарбонатно-суль- фатная	500—1000
Солоноватая \ Соленая	Сульфатно-хлоридная	3000-10000
С повышенной соленостью	Преимущественно хлорид-	10 00 0—35 000
Переходная к рассолу } Рассолы	Хлоридная	35 000—50 000 50 000—400 000

8.20.3. Классификация природных вод по жесткости

Вода	Жесткость, мг зкв/л
Очень мягкая	<1,5
Мягкая	1,5—4
Средней жесткости	4—8
Жесткая	8—12
Очень жесткая	>12

8.21. СРАВНЕНИЕ ГРАДУСОВ ЖЕСТКОСТИ

В соответствии с ГОСТ 6055-51 в Советском Союзе жесткость выражается в миллиграмм-эквивалентах на литр. Общая жесткость воды подразделяется на карбонатную и некарбонатную. Первая обусловлена присутствием в воде карбонатов и гидрокарбонатов Ca2+ и Mg2+, вторая — остальных солей этих катионов (хлоридов, сульфатов и др.).

В зарубежных странах жесткость принято выражать в условных

градусах:

а) немецкие градусы: 1° = 1 часть СаО в 100000 частях воды, или 10 мг CaO в 1 л воды; 1 часть MgO эквивалентна 1,4 частям CaO;

б) французские градусы: $1^{\circ} = 1$ часть $CaCO_3$ в 100000 частях

воды, или 10 мг СаСО3 в 1 л воды;

в) американские градусы: $1^{\circ} = 1$ гран (0,0648 г) CaCO₃ в 1 галлоне $(3,785\,$ дм³) воды = 1 часть $CaCO_3$ в 100000 частях воды, или 1 мг CaCO₃ в 1 л воды;

г) английские градусы: $1^{\circ} = 1$ гран (0,0648 г) СаСО₃ в 1 галлоне (4,546 дм3) воды = 1 часть CaCO3 в 70000 частях воды, или 10 мг CaCO3

в 0,7 дм³ воды.

		Жест	гкость				
	Наименование единиц	<u>мг•экв</u> дм ³	мкг•экв дм³	немец- кий	француз- ский	амери- канский	англий- ский
1	миллиграмм-эквива- лент на кубический дециметр	, i	1000	2,804	5,005	50,045	3,511
1	(мг · экв/дм³) микрограмм-эквива- лент на кубический дециметр (мкг · экв/дм²)	0,001	1	0,0028	0,005	0,050	0,0035
1111	немецкий градус французский градус американский градус английский градус	0,3566 0,1998 0,0200 0,2848	356,63 199,82 19,98 284,83	1 0,560 0,056 0,799	1,785 1 0,100 1,426	17,847 10,000 1 14,253	1,252 0,702 0,070 1

8.22. КЛАССИФИКАЦИЯ ПРИМЕСЕЙ ВОДЫ ПО ФАЗОВО-ДИСПЕРСНОМУ СОСТОЯНИЮ И СИСТЕМАТИЗАЦИЯ МЕТОДОВ ИХ УДАЛЕНИЯ [ПО КУЛЬСКОМУ, 1972]

8.22.1. Классификация примесей воды по фазово-дисперскому состоянию

І группа. Системы, образованные примесями первой группы, кинетически неустойчивы. Нерастворимые вещества удерживаются во взве-

шенном состоянии динамическими силами потока воды.

II группа. Кинетическая устойчивость примесей второй группы характеризуется соотношением сил гравитационного поля и броуновского движения. Агрегативная устойчивость этих водных дисперсий создается силами отталкивания между частицами, возникающими вследствие электростатического состояния межфазной поверхности, образования диффузных слоев и гидратных оболочек.

III группа. Примеси, относящиеся к третьей группе, могут вступать во взаимодействие как между собой, так и с водой. Как правило, эти взаимодействия обусловлены вандерваальсовыми силами. Кроме того, они могут образовывать с водой соединения, существующие лишь в растворе. В этих непрочных соединениях в большинстве случаев основ-

ную роль играет водородная связь.

IV группа. Примеси четвертой группы представляют собой электролиты. Молекулы этих веществ с ионной или сильной полярной связью под влиянием полярной структуры молекул воды, распадаются на более или менее гидратированные ионы. Ионно-дипольное взаимодействие наиболее интенсивно при гидратации катионов. При гидратации анионов со значительным отрицательным зарядом или малым радиусом более характерно присоединение молекул воды за счет волородных связей.

Система	Группа	Размер частиц, см	, Краткая характеристика
Гетероген- ная	I — взвеси	>10 ⁻⁵	Суспензии и эмульсии, обу- словливающие мутность воды, а также микроорга- низмы, образующие планк- тон
	II — коллоид- ные растворы	10-5-10-6	Коллоиды и высокомолеку- лярные гуминовые соеди- нения, обусловливающие цветность и окисляемость воды, а также вирусы
Гомогенная	III — молеку- лярные рас- творы	10-6-10-7	Газы, растворенные в воде, органические вещества, иногда придающие ей запахи и привкусы
	IV — ионные растворы	<10-7	Соли, основания, кислоты, обусловливающие минерализацию, жесткость, щелочность или кислотность воды

8.22.2. Систематизация методов удаления примесей воды

_			
Гетероген	ные системы	Гомогенн	ые системы
Группа 1	Группа II	Группа []]	Группа IV
Суспензоиды и эмульсоиды; бактерии и водоросли	Коллоидно- растворенные и высокомолеку- лярные гещества вирусы	Молекулярно- растворенные вещества и газы	Электролиты
Механические безреагентные выделения	Диализ, ультра- фильтрация	Десорбция газов, эвапорация органических веществ	
Окисление клором, оксидом клора (IV), озоном	Окисление хлором, озоном	Окисление хлором, оксидом хлора (IV), озоном, перманганатом	Перевод ионов, в частности окислением, в малорастворимые соединения
Флотация су- спензий и эмульсий	Коагуляция коллоидных примесей	Экстракция орга- ническими рас- творителями	Сепарация ионов при различном фазовом состоянии
Адгезия на гидроксидах алюминия или железа, а также зернистых и высокодисперсных материалах	Адсорбция на гидроксидах алюминия или железа, а также на высокодисперсных глинистых материалах	Адсорбция на активированных углях и других материалах	Фиксация ионов на твердой фазе ионитов
Электрофильтрация суспензий и электро- удерживание микроорганизмов	Электрофорез и электро- диализ кол- лоидов	Поляризация моле- кул в электриче- ских и магнитных полях	Использование по- движности в электрическом поле — электро- диализ
Вактерицидное воздействие на патогенные микроорганизмы	Вирулицидное воздействие	Виохимический распад	Микробное выделе- ние ионов метал- лов

8.23. ОСНОВНЫЕ ТРЕБОВАНИЯ К КАЧЕСТВУ ПИТЬЕВОЙ ВОДЫ (ГОСТ 2874—82)

По согласованию с органами санитарно-эпидемиологической службы допускается использование воды с цветностью до 35 град, содержанием сухого остатка до 1500 мг/л. Содержание железа в воде, поступающей в водопроводную сеть, может достигать 1,0 мг/л; общая жесткость не должна превышать 10 мг · экв/л. При применении серебрадля консервирования воды содержание его ионов не должно превышать 0,05 мг/л.

Показатель	Единица измерения	Норма	Номер ГОСТа на определе- ние
Запахи и привкусы при 20 °C	Салл	≪2	3351—74
Цветность	град	€20	3351—74
Мутность	мг/л	€1, 5	3351—74
Водородный показатель (рН)	<u> </u>	6,5—8,5	
Сухой остаток	мг/л	≪1000	18164—72
Хлориды	мг/л	€350	4245—72
Сульфаты	мг/л	€500	4389—72
Железо	мг/л	€0,3	4011—72
Марганец	мг/л	€0,1	4974—72
Медь	Mr/J	≪ 1,0	4338-74
Цинк	мг/л	€5,0	18293—72
Остаточный алюминий	мг/л	€0,5	18165—81
Гексаметафосфат	мг/л	≼ 3,5	1830972
Триполифосфат	мг/л	≼ 3,5	18309—72
Общая жесткость	мг∙экв/л	≤ 7,0	4151—72
Бериллий	мг/л	€0,0002	18294—72
Молибден	мг/л	€0,5	18308—72
Мышьяк	мг/л	0,05	415281
Нитраты	мг/л	≪10,0	18826—73

***************************************		проболжение таблицы		
Показатель	Единица измерения	Норма	Номер ГОСТа на определе- ние	
Полиакриламид	мг/л	€2,0		
Свинец	мг/л	≪ 0,1	18293—72	
Селен	мг/л	≪0,001		
Стронций	мг/л	€2,0		
Фтор	мг/л	0,7—1,5	4386—81	
Уран природный и уран-238	мг/л	≪1,7	18921—73	
Радий-226	Бк/л	≪4,4	18912—73	
Стронций-90	Бк/л	≪ 4.8	18913—73	
Общее количество бактерий	шт./мл	≪ 100	18963—73	
Коли-индеко	шт./л	≼ 3	18963—78	
Коли-титр	мл/шт.	≥ 300 ·	18963—73	

РАСТВОРЫ

9.1. СПОСОБЫ ВЫРАЖЕНИЯ КОНЦЕНТРАЦИИ РАСТВОРОВ

Содержание компонентов в смеси согласно СИ выражают несколькимя способами. Молярная концентрация — это отношение количества вещества к объему смеси (моль/м³), массовая концентрация — отношение массы компонента к объему смеси (кг/м³). Отношение массы компонента к массе смеси называется массовой долей (а не массовой концентрацией), объема компонента к объему смеси — объемной долей, количества вещества компонента к количеству вещества смеси — молярной долей. Массовая, объемная и молярная доли выражаются в процентах (%), промиле (%0) и в миллионных долях (млн-1).

Практически при приготовлении растворов пользуются массовой молярной и молярной (эквивалентной) концентрациями. Молярная (эквивалентная) концентрация — отношение количества вещества (эквивалента вещества) к массе растворителя (обычно к 1000 г).

В аналитической химии концентрацию часто выражают нормальностью (внесистемная единица). Нормальным называется раствор, в литре (дм³) которого содержится 1 грамм-эквивалент (молярная масса эквивалента) растворенного вещества. Для дольных концентраций нормальных и молярных растворов применяют десятичные приставки (0,1 н.— децинормальный, 0,01 н.— сантинормальный).

Иногда число молей или эквивалентов растворенного вещества относят не к массе или объему раствора, а к массе или объему растворителя. Раствор, концентрация которого выражена числом молей на 1000 г растворителя, называется моляльным. Раствор, концентрация которого выражена числом эквивалентов на 1000 г растворителя, называется эквивалентным. Особенностью этих растворов является независимость концентрации от температуры.

В таблице приведены формулы пересчета концентрации для наиболее употребительных растворов. Они разделены на три группы: формулы пересчета для концентраций по массе, молярных концентраций и эквивалентных концентраций. В формулах учитывалось, что для одинаковых температур и обычной точности измерений числовые значения относительной плотности (г/см³) и удельного веса (гс/см³) практически совпадают. Для объемных и нормальных растворов концентрация приводится в 1 дм³, что вполне допустимо для практических иелей (1 л = 1,00028 дм³).

По содержанию растворенного вещества различают концентрированные растворы, в которых количество растворенного вещества сравнимо с количеством растворителя, и разбавленные, в которых количество растворенного вещества невелико.

9.2. ПЕРЕСЧЕТ КОНЦЕНТРАЦИЙ РАСТВОРОВ

9.2.1. Формулы пересчета концентрации растворов

Принятые обозначения: $M_{\rm a}$ — молярная масса вещества, г/моль; $M_{\rm p}$ — молярная масса растворителя, г/моль; $\partial_{\rm a}$ — молярная масса эквивалента растворенного вещества, г/моль; d — относительная плотность раствора по воде.

-		1		Заданная
	Исходная концентрация	∠ _M , %	С _{м. м} . г/100 г	^С _{М.О} , г/дм ⁸
I.	Концентрации по мас-			
1.	Концентрация по массе (г/100 г раствора), $C_{\rm M}$, %	$C_{_{ m M}}$	$\frac{100 \cdot C_{\text{M.M}}}{100 + C_{\text{M.M}}}$	$\frac{C_{\text{M.O}}}{10d}$.
	СИ — массовая доля			
2.	Концентрация по массе $C_{\mathbf{M}-\mathbf{M}}$ (г/100 г растворителя)	$\frac{100C_{\rm M}}{100-C_{\rm M}}$	C _{M. M}	$\frac{100C_{\mathrm{M.o}}}{1000a - C_{\mathrm{M.o}}}$
3.	Массо-объемная кончентрация $C_{\rm M-O}$ (г/дм 3 раствора)	10 <i>d</i> · C _M	$\frac{1000 \cdot C_{\text{M.M}} \cdot d}{100 + C_{\text{M.M}}}$	C _{M. 0}
	СИ — массовая кон- центрация			
11.	Молярные концентра- ции			
4.	Молярная доля $C_{\mathbf{M}, \mathbf{Q}}$ (число молей растворенного вещества на общее число молей в растворе)	$\begin{aligned} &\frac{C_{\text{\tiny M}}/M_{\text{a}}}{C_{\text{\tiny M}}} + \\ &+ \frac{100 - C_{\text{\tiny M}}}{M_{\text{p}}} \end{aligned}$	$\frac{C_{\text{M.M}}/M_{\text{a}}}{C_{\text{M.M}}} + \frac{100}{M_{\text{p}}}$	$\frac{M_{\rm p} \cdot C_{\rm M.~o}}{C_{\rm M.~o} (M_{\rm p} - M_{\rm a}) + 1000 dM_{\rm a}}$
5.	Молярно-массовая концентрация $C'_{M.M'}$, моляльный раствор (моль/1000 г растворителя)	$\frac{1000C_{\rm M}}{M_{\rm a}(100-C_{\rm M})}$	10C _{M. M} M _a	$\frac{1000C_{\text{M. o}}}{M_{\text{a}} (1000a - C_{\text{M. o}})}$
	СИ — моляльность			
5.	Молярно-объемная концентрация $C'_{\text{м. o}}$, молярный раствор (моль/дм³ раствора)	$\frac{C_{\rm M} \cdot 10d}{M_{\rm a}}$	$\frac{1000dC_{_{\rm M,M}}}{(100+}\\+C_{_{\rm M,M}})M_{_{\rm B}}$	$\frac{C_{\text{M. O}}}{M_{\text{a}}}$
	СИ — молярная кон- центрация	,		·.
łI	. Эквивалентные кон- центрации			

кон центрацня			1
С _{м. д}	С _{м. м} , моль/1000 г	С' _{М.О} , моль/дм ^а	G _{3.0} , r · 9
100С _{м. д} · М _а	100C' _{W.M} ·M _a	$C_{\text{M. O}} \cdot M_{\text{g}}$	$\frac{C_{9.0}}{10d}$
$\frac{100C_{\text{M. }\text{J}} \cdot M_{\text{a}}}{C_{\text{M. }\text{J}} \cdot M_{\text{a}} + (1 - C_{\text{M. }\text{J}}) M_{\text{p}}}$	$1000 + C_{\text{M. B}} \times M_{\text{a}}$	10 <i>d</i>	10a
100 <i>C</i> _{м. л} ⋅ <i>M</i> _a	$C'_{M,M}\cdot M_{n}$	100C' _{M. O} · M _a	100C _{9.0}
$\frac{100C_{\text{M. A}} \cdot M_{\text{a}}}{(1 - C_{\text{M. A}}) M_{\text{p}}}$	10	1000d — C'm. o× × Ma	$1000d - C_3$
$\begin{array}{c} 1000dC_{\text{\tiny M. }\text{\tiny \vec{A}}} \cdot M_{\underline{a}} \\ \hline C_{\text{\tiny M. }\text{\tiny \vec{A}}} M_{a} + (1 - \\ - C_{\text{\tiny M. }\text{\tiny \vec{A}}}) M_{p} \end{array}$	$1000dC_{\text{M.M}} \times M_a$	$C_{\mathbf{M}.\ \mathbf{O}}$ · $M_{\mathbf{a}}$	C _{9.0}
$-C_{\mathbf{M}, \mathbf{A}}$) $\dot{M}_{\mathbf{p}}$	$\begin{array}{c} 100 + C'_{\text{M, M}} \times \\ \times M_{\text{a}} \end{array}$		
С _{м. д}	$M_{\mathbf{p}}\cdot C_{\mathbf{M}.\ \mathbf{M}}'$	$M_{\rm p} \cdot C_{\rm M.o}$	$C_{9.0} \cdot \theta_{a}$
	$M_{\rm p} \cdot C_{\rm M.M} + 1000$	$\frac{M_{\mathbf{p}} \cdot C_{\mathbf{M}, 0}'}{C_{\mathbf{M}, 0}' (M_{\mathbf{p}} - M_{\mathbf{a}}) \times \times 1000d}$	$\begin{array}{c} C_{9.0} \cdot S_a \\ -M_a \end{array} + 1$
$\frac{1000C_{\text{M}. \text{\#}}}{M_{\text{p}} - C_{\text{M}. \text{\#}} \cdot M_{\text{p}}}$	C' _{M. M}	$\frac{1000C_{\text{M.o}}^{\prime}}{1000d-C_{\text{M.o}}^{\prime}\times}$	$\frac{1000C_{9.6}}{(1000d - C_{9.6})}$
		$\times M_a$	$\times \partial_{\mathbf{a}}$
1000d · С _{м. д}	1000d · C' _{M. M}	C' _{M. 0}	C _{s. o} ·
$\frac{C_{\mathrm{M.}\mathrm{g}} \cdot M_{\mathrm{a}} + (1 - C_{\mathrm{M.}\mathrm{g}})}{-C_{\mathrm{M.}\mathrm{g}}} M_{\mathrm{p}}$	$ \frac{1000 + C_{\text{M.M}} \times}{\times M_{\text{a}}} $		Ma
21*			

			Заданная		
Исходная концентрацвя	C _M , %	C _{M, M} , r/100 r	С _{м. О} , г/дм ^в		
Эквивалентно-объемная концентрация $C_{9.0}$, нормальный раствор $(\mathbf{r} \cdot \mathbf{j} \times \mathbf{k})$ раствора)	$\frac{C_{\mathtt{M}} \cdot 10d}{\partial_{\mathtt{a}}}$	$\frac{1000d \cdot C_{\text{M. M}}}{(100 + C_{\text{M. M}}) \vartheta_{\text{a}}}$	С _{м. о} Э _а		
СИ — молярная кон- центрация вещества эквивалента, моль/л	y				
Эквивалентно-массовая концентрация $C_{s, n}$ (г • экв/1000 г растворителя)	$\begin{array}{c} 1000C_{\rm M} \\ \overline{\partial_{\rm a} (100 - \\ - C_{\rm M})} \end{array}$	10C _{M. M} ∂ _a	$\frac{1000C_{\text{M. o}}}{(1000 - C_{\text{M. o}}) \mathcal{J}_{\text{a}}}$		

9.2.2. Пересчет концентраций, выраженных в граммах на концентрацию в граммах на 100 г растворителя $(C_{\mathsf{M. M}})$

C _M	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	
0 1 2 3 4 5 6 7 8 9	0,000 1,010 2,041 3,097 4,167 5,264 6,428 7,527 8,696 9,890	0,001 1,112 2,145 3,200 4,276 5,374 6,495 7,644 8,815 10,01	0,200 1,215 2,250 3,305 4,384 5,485 6,610 7,759 8,933 10,13	0,3009 1,317 2,354 3,413 4,494 5,598 6,724 7,882 9,051 10,25	1,420 2,459				0,8065 1,833 2,881 3,950 5,042 6,156 7,296 8,461 9,649 10,88	0,908 1,937 2,987 4,059 5,156 6,270 7,411 8,576 9,770 10,98	

Примеры: 1. Для приготовления раствора соды с массовой долей Na_2CO_3 серной кислоты с массовой долей H_2SO_4 34 % соответствует содержанию 51,52 р П р и м е ч а и и е. Широко применимы простые физические методы контроля ности (п. 9.10); для оптически активных веществ — по вращению плоскости поляри

кенцентрация			
^С м, д	С _{м. м} , моль/1000 г	С _{м, о} , моль/ды ^з	С _{э. О} , г • экв/дм³
$ \frac{1000d \cdot C_{\text{M. A}} \cdot M_{\text{a}}}{C_{\text{M. A}} \cdot M_{\text{a}} + M_{\text{p}} + (1 - C_{\text{M. A}})/\beta_{\text{a}}} $	$ \frac{1000d \cdot G'_{\text{M. M}} \times}{\times M_{\text{a}}} \times \frac{M_{\text{a}}}{(1000 + C_{\text{M. M}} \times \times M_{\text{a}}) \vartheta_{\text{a}}} $	$\frac{C'_{M. o} \cdot M_{a}}{\partial_{a}}$	C _{9.0}
$\begin{array}{c} 1000C_{\text{\tiny{M. }}\text{\tiny{A}}} \cdot M_{\text{a}} \\ \hline (M_{\text{\tiny{p}}} - C_{\text{\tiny{M. }}\text{\tiny{A}}} \times \\ \times M_{\text{\tiny{p}}}) \cdot \vartheta_{\text{a}} \end{array}$	$\frac{C'_{M,\;M}\cdot M_{a}}{\partial_{a}}$	$ \frac{1000C'_{\text{M. o}} \cdot M_{\text{a}}}{(1000d - C_{\text{M. o}} \times X)} \times M_{\text{a}} $	$\frac{1000C_{9.0}}{1000d - C_{9.0} \cdot \mathcal{P}_{a}}$

на 100 г раствора ($C_{\rm M}$, массовые доли, %),

	-					C _{M. B}					
	0	0,0	1,01	2,04			5,26		7,53	8,70	9,89
100	10	11,11	12,36	13,63							23,46
¥	20	25,00	26,58								40,84
	30	42,85	44,94	47,05						61,29	63,94
	40	66,67	69,49	72,41	75,44					92,30	96,07
X.	50	100,00					122,2	127,27			143,90
100	60	150,00		163,16				194,12			
	70	233,33	244,83		270,37			316,67		354,55	
7	80	400,00			488,24			614,29		733,33	
ij.	90	900	1011	1150	1329	1566	1900	2400	3234	4900 9	9900
14,											
· . —											
	2.5 9	6 (2.5 %	-ный рас	твор) вз	ять 2.56	i4 r Na	CO. 188	100 r a	าขอ. 2.	Волный	DACTROE
	H.S	Ö₄`B 160	-ный рас г воды.				oog na			оодили	p,

9.2.3. Показатель преломления водных растворов неорганических веществ различных концентраций при 17,5 °C

Вещество	Показател	ь преломлен	ия <i>п</i> _{17,5} пр	н концентр	рации вещ	ества, г/л	раствора
Бещество	20	40	60	00	100	150	200
CaCl,	1,33788	1,34251	1.34703	1,35151	1,35589	1,36652	·
HCl -	1,33779	1,34227	1,34669	1,35102	1,35528	1.36565	
HNO ₃	1,33572	1,33816	1,34058	1,34298	1,34538	1,35144	1.35732
H_3PO_4	1,33509	1,33688	1,33860	1,34031	1,34203	1,34616	1,35032
H ₂ SO ₄	1,33572	1,33801	1,34023	1,34245	1,34465	1,34999	1,35513
KCl	1,33589	1,33848	1,34106	1,34355	1.34593	1.35199	1,35778
КОН	1,33719	1,34101	1,34465	1,34803	1.35151	1,35921	1,36658
NH_3	1,334 16	1,33519	1,33631	1,33746	1,33865	1.34182	1,34531
NH ₄ Cl	1,33709	1,34088	1,34459	1,34823	1,35181	1.35060	
Na_2CO_3	1,33762	1,34172	1,34563	1,34945	1,35312	1.36159	
NaCl	1,33667	1,34002	1,34332	1,34651	1,34963	1.35721	1,36446
NaOH	1,33866	1,34388	1,34877	1,35334	1,35755	1,36773	

9.2.4. Показатель преломления водных растворов органических веществ различной концентрации при 20°C

Вещество	Показатели преломления n_{20}^D при массовой доле вещества, $\%$							
	0	5	10	20	30	40		
Глицерин Метиловый спирт Сахароза Этиловый спирт	1,3330 1,3330 1,3330 1,3330	1,3340 1,3388 1,3403	1,3353 1,3422 1,3448 1,3478	1,3381 1,3515 1,3575 1,3638	1,3404 1,3579 1,3707 1,3811	1,3419 1,3639 1,3841 1,3997		

Продолжение таблицы

Вещество	Показатели преломления n_{20}^D при массовой доле вещества, %							
	50	60	70 .	80	90	100		
Глицерин	1,3424	1,3417	1,3401	1,3374	1,3335	1,3286		
Метиловый спирт Сахароза	1,3691 1,3981	1,3740 1,4130	1,3780 1. 4279	1,3814 1.4429	1,3842 1 .45 84	1,3854 1,4770		
Этиловый спирт	1,4200	1,4418	1,4651	1,4901	.,			

9.3. ФОРМУЛЫ И ЗАВИСИМОСТИ, ИСПОЛЬЗУЕМЫЕ ПРИ ПРИГОТОВЛЕНИИ РАСТВОРОВ

9.3.1. Растворение вещества в растворителе

$$x = \frac{C_{\mathbf{M}}a}{100}, \ b = a - x,$$

где x — масса растворяемого вещества, необходимая для приготовления заданной массы (a) раствора с требуемой массовой долей вещества $C_{\mathbf{u}}$, %; b — масса растворителя.

При растворении кристаллогидрата в воде необходимо учитывать, что содержащаяся в нем кристаллизационная вода разбавляет раствор.

Приводимая формула упрощает расчеты

$$x = \frac{C_{\text{M.M}}z}{1 - \frac{C_{\text{M.M}}(z - 1)}{100}},$$

где $C_{\text{м.м}}$ — заданная концентрация безводного вещества в растворе, r/100 г воды; x — масса кристаллогидрата, которую следует растворить в 100 г воды, чтобы приготовить раствор с концентрацией $C_{\text{м.м}}$; z — отношение M_1/M (M_1 и M — молярные массы кристаллогидрата и безводного вещества).

9.3.2. Разбавление раствора растворителем

$$x = b\left(1 - \frac{n}{m}\right), \quad x = a\left(\frac{m}{n} - 1\right), \quad b = x + a,$$

где x — масса растворителя, необходимая для разбавления a единиц массы раствора с данной концентрацией m (массовая доля, %) до требуемой n (массовая доля, %); b — масса раствора после разбавления.

9.3.3. Концентрирозание раствора выпариванием растворителя

$$x = \frac{a (n - m)}{n}, \ a = x + b,$$

где x — масса растворителя, которую необходимо выпарить из единицы массы раствора с данной концентрацией m (массовая доля, %), чтобы получить раствор с требуемой концентрацией n (массовая доля, %) n > m; b — масса раствора после выпаривания растворителя.

9.3.4. Смешение двух растворов одного вещества с различными концентрациями

$$a = \frac{c(l-n)}{m-n} = \frac{b(l-n)}{m-l}, \ b = \frac{a(m-l)}{l-n} = \frac{c(m-l)}{m-n}, \ c = a+b,$$

где a — масса раствора с концентрацией m; b — масса раствора с концентрацией n; m и n — концентрации растворов (массовая доля, %) до смешения, m > n; c — масса смеси с концентрацией l; l — требуемая концентрация вещества в смеси (массовая доля, %).

9.3.5. Смешение двух растворов различных веществ

$$a = \frac{m'c}{m}, b = \frac{n'c}{n}, a + b = c, m = \frac{m'c}{a},$$
 $m' = \frac{am}{c}, n = \frac{n'c}{b}, n' = \frac{bn}{c},$
 $m' + n' + l = 100.$

где a и b — соответственно массы раствора вещества A и раствора вещества B, необходимые для приготовления смеси; m и n — концентрации раствора вещества A (массовая доля, %) и раствора вещества B (массовая доля, %); m' и n' — массовая доля вещества B в смеси, %; l — массовая доля растворителя в смеси, %; c — масса смеси.

9.3.6. Правило смешения («правило креста»)

Применяется для упрощения расчетов в случае приготовления раствора заданной концентрации (в массовых долях, %) путем разбавления растворителем или смешения двух растворов (таблицы 9.2.2).

Заданная концентрация раствора пишется в месте пересечения двух линий, а концентрация исходных растворов (для растворителя она равна нулю) — у концов обеих линий слева. Затем для каждой линии производится вычитание одного стоящего на ней числа из другого и разность записывается у свободного конца той же линии. Направление вычислений указывают стрелками. Полученные числа располагают у концов соответствующей линии справа. Они показывают, сколько единиц массы каждого раствора следует взять, чтобы получить раствор с заданной концентрацией.

Примеры:

а. Для получения раствора с массовой долей вещества 25 % из растворов с массовой долей вещества 50 и 10 % следует взять 15 единиц массы раствора с массовой долей 50 % и 25 единиц массы раствора с массовой долей вещества 10 %.

6. Для разбавления раствора с массовой долей вещества 50 % до раствора с массовой долей вещества 25 % следует 25 единиц его массы разбавить 25 единицами массы растворителя.

9.4. СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА РАСТВОРИМОСТИ ТВЕРДЫХ И ЖИДКИХ ВЕЩЕСТВ В РАЗЛИЧНЫХ РАСТВОРИТЕЛЯХ

Характеристика растворимости	Условное обозначение степени растворимости	Число единиц массы растворителя на одну единицу массы растворяемого вещества
Смешивается во всех отношениях	00	•
Хорошо растворимо	Х. р.	1—10
Растворимо	Р.	1030
Трудно растворимо	Тр. р.	30-10000
Нерастворимо (практически) Для труднорастворимых веществ	H.	10000
трудно растворимо	Т.	30—100
мало растворимо	М. р.	100—1000
очень трудно растворимо	Оч. т.	1000—10000

9.5. РАСТВОРИМОСТЬ В ВОДЕ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Под растворимостью одного вещества в другом понимают концентрацию растворенного вещества при равновесии между раствором и твердой фазой растворенного при данных температуре и давлении вещества. Общей теории, способной предсказать растворимость, пока не существует, и на практике приходится пользоваться справочными таблицами, в которых приведены данные по растворимости различных веществ в воде и других растворителях.

В таблицах растворимости часто приводятся выражения концентрации в граммах на 100 г растворителя и в массовых долях.

9.5.1. Диаграммы растворимости

Растворимость в системах неорганическое соединение — вода представлена тремя видами простейших диаграмм, которые отражают образование: безводной соли S_A (рис. 9, a); гидрата S_1 , растворимого конгруэнтно (рис. 9, δ); гидрата S_1 , растворимого инконгруэнтно (рис. 9, ϵ); льда S_0 . Области существования пара, жидкости и твердого вещества соответственно отмечены буквами V, L, S. Поле V от поля V+L отделяет кривая кипения, которая в случае нелетучего соединения показывает зависимость температуры кипения от состава раствора; состав пара при этом постоянный — он содержит только молекулы воды. Концентрация неорганических соединений (C) дана в массовых долях (%). Растворимость при высоких температурах определялась в замкнутом объеме.

Характерной особенностью систем соль — вода является практическое отсутствие твердых растворов на основе льда (исключение составляет система NH_4F — вода), а также твердых растворов воды в солях и их гидратах. На реальных диаграммах иногда отражено образование нескольких гидратов, наблюдается также наличие полиморфных форм и метастабильных состояний.

Рис. 9. Общий вид диаграмм состояния систем неорганическое вещество — вода с образованием: $a \rightarrow$ безводной соли; $\delta \rightarrow$ гидрата, растворимого конгруэнтно; $s \rightarrow$ гидрата, растворимого инконгруэнтно.

NaF.

4 NaF, %

Рис. 10. Системы фториды аммония, натрия — вода:

Особые точки	t, ∘c c,	% Особые точки	t, °C	c, %
NH ₄ F — H ₂ O Эвтектика <i>E</i> Точка <i>D</i>	-28,7 33	Образует со льдом твер- дые растворы	<u>.</u>	+ 2
$\begin{array}{c} \text{NH}_{4}\text{F} \cdot \text{H}_{2}\text{O} + 4\text{NHF} \cdot \text{H}_{2}\text{O} \\ 4\text{NH}_{4}\text{F} \cdot \text{H}_{2}\text{O} + \text{NH}_{4}\text{F} \end{array}$	-28,7 38 -27,3 39,5 -26,8 39,	2 NaF—Н₂О 5 Эвтектика	-3,5	3,9

Рис. 11. Системы хлориды аммония, натрия, калия — вода:

Особые точки	t, °C .	C. %	Особые точки	t, °C	C, %
a — NH ₄ Cl—H ₂ O			β — KCl—H ₂ O		
Эвтектика	-15,2	19,7	Лед $+$ KCl \cdot H ₂ O	-10,6	19,7
Точка кипения	115,8	46,6	$KCl \cdot H_2O + KCl$	-6,6	20,7
6 — NaCl−H₂O			Лед + КСІ (метаста бильное состояние)	—10,8 —	19,9
Лед + NaCl·2H ₂ O	-21,2	23,3	Точка кипения	108,5	36,3
NaCl · 2H ₂ O + NaCi	0,15	26,3			
Точка кипения	108,8	28,9	And the second s		

Рис. 12. Системы карбонат, гидрокарбонат аммония — вода (а, б).

Рис. 13. Системы карбонаты, гидрокарбонат натрия — вода (в — ∂).

Особые точки		t, °C	.C, %
$a - (NH_4)_2CO_3 - H_2O$ Пед $+ (NH_4)_2CO_3 \cdot H_2O$ $NH_4)_2CO_3 \cdot H_2O + (NH_4)_2CO_3$ По другим данным эвтектика	• .	14,6 42 17,6	30 54, 3 32,7

Рис. 14. Системы карбонаты, гидрокарбонат калия — вода (e-s).

	П	оодолжение
Особые точки	t, °C	C, %
6 — NH₄HCO₃—H₂O (данные двух источников)		
Эвтектика	3,9	9,5
θ — Na ₂ CO ₂ —H ₂ O		
Лед + Na ₂ CO ₂ · 10H ₂ O	-2,1	5,75
$Na_2CO_3 \cdot IOH_2O + \alpha^2Na_2CO_3 \cdot 7H_2O$	32	31,2
$lpha$ -Na $_2$ CO $_3$ · 7H $_2$ O $+$ Na $_2$ CO $_3$ · H $_2$ O $_3$ · $_2$ O (метастабиль-	35,4	33,1
+100 состояние)	(25)	(34)
$Na_2CO_3 \cdot 10H_2O + Na_2CO_3 \cdot H_2O$ (метастабиль-	• •	000
ное состояние) Точка кипения	33,0 104.8	33,3 31 ,5
	104,0	01,0
е — то же в замкнутом объеме	100	20.0
Переходная точка	109	30,8

	Π_{I}	одолжение
Особые точки	t, °C	C, %.
∂ — NaHCO $_3$ — H_2 О (в замкнутом объеме) Эвтектика	-2,33	6,26
e — K ₂ CO ₃ —H ₂ O Лед + K ₂ CO ₃ • 5H ₂ O K ₃ CO ₃ • 5H ₂ O + K ₂ CO ₃ • 1,5H ₂ O Точка кипения	36,4 6,3 135,2	40,4 51,2 67,1
ж — то же в замкнутом объеме K ₂ CO ₃ · 1,5H ₂ O + K ₂ CO ₃ · 0,5H ₂ O K ₂ CO ₃ · 0,5H ₂ O + K ₂ CO ₃ s — KHCO ₂ —H ₂ O	147 153	69, 5 70,0
Эвтектика	— 6	17

Рис. 15. Системы сульфаты аммония, натрия, калия — вода:

Особые точки	t, °C	C, %
$a - (NH_4)SO_4 - H_2O$		
Эвтектика Точка кипения 5 — Na ₂ SO ₄ —H ₂ O	—19 —10 7, 5	39,5 47,5
$\text{Мед} + \text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O}$	-1,2	4,0

	11 p	одолжение
Особые точки	t, °C	C, %
Na ₂ SO ₄ · 10H ₂ O + Na ₂ SO ₄ Лед + Na ₂ SO ₄ · 7H ₂ O (метастабильное состояние)	32,4 —3,6	33,3 12,7
Na ₂ SO ₄ · 7H ₂ O → Na ₂ SO ₄ (метастабильное состояние) Точка кипения	24,0 102,9	34,2 (30)
$e - K_2SO_4 - H_2O$ $A = A + K_2SO_4 \cdot H_2O$ $A = A \cdot H_2O + K_2SO_4 \cdot H_2O + K_2SO_4$	-1,6 9,7	6,5 8,47
Лед + K ₂ SO ₄ (мет.) Температура кипения	-1,9 101,4	7,3 (20)

	П родолжени		
Особые точки	t, °C	C, %	
а — в замкнутом объеме			
Лед $+$ CaCl ₂ · 6H ₂ O CaCl ₂ · H ₂ O $+$ α-CaCl ₂ · H ₂ O α-CaCl ₂ · 4H ₂ O $+$ CaCl ₂ · 2H ₂ O CaCl ₂ · 2H ₂ O $+$ CaCl ₃ · H ₂ O Точка кипения	49,8 29,8 45,3 176 178	30,5 50,2 56,5 75,0 75,3	
б — в замкнутом объеме CaCl₂ ⋅ 2H₂O + CaCl₂	260	77,0	
$m{s}$ — днаграмма метастабильных состояний ${ m CaCl_2 \cdot 6H_2O}$ — ${ m CaCl_2 \cdot 6H_2O}$ — ${ m \beta}$ - ${ m CaCl_2 \cdot 6H_2O}$ — ${ m \gamma}$ - ${ m CaCl_2 \cdot 4H_2O}$ — ${ m \beta}$ - ${ m CaCl_2 \cdot 4H_2O}$ — ${ m \gamma}$ - ${ m CaCl_2 \cdot 2H_2O}$ — ${ m \gamma}$ - ${ m CaCl_2 \cdot 4H_2O}$ — ${ m \gamma}$ - ${ m CaCl_2 \cdot 4H_2O}$ — ${ m \gamma}$ - ${ m CaCl_2 \cdot 4H_2O}$ — ${ m \gamma}$ - ${ m CaCl_2 \cdot 4H_2O}$ — ${ m \gamma}$ - ${ m CaCl_2 \cdot 4H_2O}$ — ${ m \gamma}$ - ${ m CaCl_2 \cdot 4H_2O}$ — ${ m \gamma}$ - ${ m CaCl_2 \cdot 4H_2O}$	29,9 29,5 29,2 42,0 39	50,7 50,4 53,0 56,3 55,8	

Рис. 17. Система MgCl₂—H₂O:

Особые точки	t, "C	C, %
Лед + MgCl ₂ • 12H ₂ O	(33,6)	(20,6)
MgCl ₂ • 12H ₂ O	-16,3	30,6
MgC_2 ! · $12H_2O + \alpha$ - $MgCl_2 \cdot 8H_2O$	16,7	32,2

	· 11 p	одолжение
Особые точки	t, •c	C, %
α -MgCl ₂ • 8H ₂ O + MgCl ₂ • 6H ₂ O	3,4	34,5
$MgCl_2 \cdot 6H_2O + MgCl_2 \cdot 4H_2O$	116,7	46,2
$MgCl_2 \cdot 4H_2O + MgCl_2 \cdot 2H_2O$	181—182	55,8
MgCl ₂ • 12H ₂ O + β-MgCl ₂ • 8H ₂ O (метаста- бильное состояние)	—17,4	32,3
MgCl ₂ • 12H ₂ O + MgCl ₂ • 6H ₂ O (метастабильное состояние)	-19,4	33,3
β·MgCl₂ · 8H₂O → MgCl₂ · 6H₂O (метастабильное состояние)	— 9,6	33,9
Точка кипения	193	55,6

Рис. 18. Система ${\rm CaSO_4-H_2O}$: $a-{\rm B}$ незамкнутом объеме: переходная точка— 40 °C, 0,210 %: $b-{\rm B}$ замкнутом объеме; $b-{\rm B}$ растворимость метастабильных форм.

В системе существуют следующие модификации: ангидрит α - и β -CaSO₄; полуводный гидрат α - и β -CaSO₅ . 0,5H₂O₅ гипс α - и β -CaSO₄ . 2H₂O₅

PHO. 19. CHCTEMA MgSO₄—H₂O:

Особые точки	t, °C	C, %
а — в незамкнутом объеме		
$Лед + MgSO_4 \cdot 12H_2O$	(-4,8)	(18,6)
$MgSO_4 \cdot 12H_2O + \alpha \cdot MgSO_4 \cdot 7H_2O$	1,8	21,1
α -MgSO ₄ · 7H ₂ O + MgSO ₄ · 6H ₂ O	48,1	33,1
$MgSO_4 \cdot 6H_2O + MgSO_4 \cdot H_2O$	70	37,2
$\text{Лед} + \alpha\text{-MgSO}_4 \cdot 7\text{H}_2\text{O}$ (метастабильное состояние)	5,2	19,4
${ m Heg} + { m \beta-MgSO_4} \cdot { m 7H_2O}$ (метастабильное состояние)	8,0	24
β -MgSO $_4$ · 7H $_2$ O + MgSO $_4$ · 6 H $_2$ O (метастабильное состояние)	(21)	30,3
${\sf MgSO_4\cdot 5H_2O+MgSO_4\cdot 4H_2O}$ (метастабильное состояние)	80	39
Точка кипения	104	40,8
б — в замкнутом объеме		

Рис. 20. Система $AlCl_8$ — H_2O (a) и $Al_2(SO_4)_3$ — H_2O (б):

Oco	бые точки	t• °C	C, %
a	· · · · · · · · · · · · · · · · · · ·		
Эвтектика		 55	25,3
6			
Эвтектика		—12	27,2

Рис. 21. Система FeCl₃—H₂O:

Особые точки	t, °C	C. %
Лед + FeCl ₃ • 10H ₂ O	-35,0	28,7
$\text{FeCl}_3 \cdot 10\text{H}_2\text{O} + \text{FeCl}_3 \cdot 6\text{H}_2\text{O}$	0	42,4
FeCl ₃ · 6H ₂ O	37	60,0
$FeCl_8 \cdot 6H_2O + FeCl_8 \cdot 3,5H_2O$	—27, 0	68,4
FeCl ₈ · 3,5H ₂ O	32,5	71,0
$FeCl_3 \cdot 3,5H_2O + FeCl_3 \cdot 2,5H_2O$	30,0	73,2
FeCl ₈ • 2,5H ₂ O	50	78, 5
$FeCl_3 \cdot 2,5H_2O + FeCl_3 \cdot 2H_2O$	55,0	78,6
FeCl ₃ • 2H ₂ O	73,5	81,8
FeCl ₃ • 2H ₂ O + FeCl ₃	66,0	84,0
Лед + FeCl ₃ · 6H ₂ O (метастабильное состояние)	55	~33,1
FeCl ₃ · 6H ₂ O + FeCl ₃ · 2,5H ₂ O (метастабильное состояние)	15	70,5

Рис. 22. Система FeSO₄—H₂O:

Особые точки	<i>t,</i> °C	C, %
г — в незамкнутом объеме		
Пед + $FeSO_4 \cdot 7H_2O$	-1,82	12,9
$FeSO_4 \cdot 7H_2O + FeSO_4 \cdot 4H_2O$	56,7	(35,3)
$FeSO_4 \cdot 4H_2O + FeSO_4 \cdot H_2O$	64,0	36,6
$FeSO_4 \cdot 7H_2O + FeSO_4 \cdot H_2O$	60,5	(36,7)
очка кипения	101	23,5

Рис. 23. Системы Na₂SO₃—H₂O (a) и Na₂S₂O₃—H₂O (б):

Ссобые точки	t, °C	C. %
a		
Лед $+ \text{Na}_2\text{SO}_3 \cdot 7\text{H}_2\text{O}$	-3,51	11,1
$Na_2SO_3 \cdot 7H_2O + Na_2SO_3$	33,4	28,0
6		
Лед $+ \alpha$ -N a_2 S $_2$ O $_3 \cdot 5H_2$ O	—10,6 °	(30,3)
α -Na ₂ S ₂ O ₃ · 5H ₂ O + α -Na ₂ S ₂ O ₃ · 2H ₂ O + α -Na ₂ S ₃ O ₃ · \times 0,5H ₂ O	×48,2 (65,5)	(61,5) (67,8)
α -Na ₂ S ₂ O ₃ · 0,5H ₂ O + Na ₂ S ₂ O ₃	(74)	(69,0)

Рис. 24. Системы фосфаты натрия — вода:

Особые точки	t, °C	C, %
$a - \text{Na}_2\text{HPO}_4 - \text{H}_2\text{O}$ Лед $+ \alpha \cdot \text{Na}_2\text{HPO}_4 \cdot 12\text{H}_2\text{O}$ $\alpha \cdot \text{Na}_2\text{HPO}_4 \cdot 12\text{H}_2\text{O} + \beta \cdot \text{Na}_3\text{HPO}_4 \cdot 12\text{H}_2\text{O}$ $\beta \cdot \text{Na}_2\text{HPO}_4 \cdot 12\text{H}_2\text{O} + \text{Na}_2\text{HPO}_4 \cdot 7\text{H}_2\text{O}$ $\text{Na}_2\text{HPO}_4 \cdot 7\text{H}_2\text{O} + \text{Na}_2\text{HPO}_4 \cdot 2\text{H}_2\text{O}$ $\text{Na}_2\text{HPO}_4 \cdot 2\text{H}_2\text{O} + \text{Na}_2\text{HPO}_4 \cdot 2\text{H}_2\text{O}$ Touka кипения	0,47 29,6 36,0 48,1 95,0 106.5	1,45 (17) (30) (44) (51) (50)
δ — NaH ₂ PO ₄ — H ₂ O Лед + NaH ₂ PO ₄ · 2H ₂ O NaH ₂ PO ₄ · 2H ₂ O + NaH ₂ PO ₃ · H ₂ O NaH ₂ PO ₄ · H ₂ O + NaH ₂ PO ₄	9,9 40,8 58,0	32,4 58,2 63,3

	П	родолокение
Особые точки	<i>ŧ</i> , ∘C	c. %
$e - Na_3PO_4 - H_2O$ $Na_3PO_4 \cdot 10H_2O + Na_3PO_4 \cdot 8H_2O$	—73,4	•••
 то же в замкнутом объеме Сведения об эвтектике и других точках перехода для в и г отсутствуют. 		•

Рис. 25. Система Na_2SiO_3 — H_2O :

Особые точки	t, °C	c, %
 а — диаграмма стабильных состояний 		
$ m Jle_{ m A} + Na_2SiO_3 \cdot H_2O$	-2.7	5,6
$Na_2SiO_3 \cdot 9H_2O + Na_2SiO_3 \cdot 6H_2O$	46,8	39,8
$Na_2^2SiO_3 \cdot 6H_2^2O + Na_2^2SiO_3 \cdot 5H_2^2O$	59,8	48,0
$Na_{9}SiO_{9} \cdot 5H_{9}O + Na_{9}SiO_{9}$	72,0	56,6
Na ₂ SiO ₂ • 6H ₂ O (метастабильное состояние)	62,9	53,0
Na ₂ SiO ₃ · 6H ₂ O (метастабильное состояние) Na ₂ SiO ₃ · 5H ₂ O (метастабильное состояние)	72,7	57,5
 б — диаграмма метастабильных состояний 		
$Na_2SiO_8 \cdot 9H_2O + Na_2SiO_8 \cdot 8H_2O$ $Na_2SiO_8 \cdot 9H_2O$	47,6	42,2
Na SiO 9HO	47.9	42,9
$Na_2^2SiO_8 \cdot 8H_2^2O$	48,4	45,9

Особые точки	t, °C	C, %	Tewnepamypa, °C 89 80	
Лед $+ \alpha$ -(NH ₄) ₂ SiF ₆	-1,2	10,2	Temne 99	β-(NH4)2SiF6
α -(NH ₄) ₂ SiF ₆ + + β -(NH ₄) ₂ SiF ₆	14	15,5	40	
Точка кипения	102,1	38,2	20	Q-(NH4)2 SLF6
			0	10 20 30 44 (NH ₄) ₂ Si F ₆ , %

Рис. 27. Системы NaClO—H₂O (a) и NaClO₂—H₂O (б):

t, °C	c, %
16,5	19,5 45,3

<i>t</i> , °C 23,0	C, %
23,0	40 5
•	48,5
57,5	(62,4)
37,4	53
	·

Рис. 28. Система КМпО ₄ —H ₂ O:		
Ос обые точки	<i>t,</i> °C	C, %
Эвтетика	-0,58	2,91

Рис. 29. Системы HCl—H₂O (а) и H₂SO₄—H₂O (б):

Ссобые точки	t, °C	C, %
a		1
Лед $+$ HCl \cdot 6H ₂ O	_74,7	23,0
HCI · 6H ₂ O	—70 .	25,0
$HCl \cdot 6H_2O + HCl \cdot 3H_2O$	—7 3	26, 6
HCl - 3H₂O	24, 9	40,3
$HCl \cdot 3H_2O + HCl \cdot 2H_2O$	27,9	44,0
HCl · 2H₂O	-17.7	50,3
$HCl \cdot 2H_2O + HCl \cdot H_2O$	— 23,5	57,3
HCl⋅H ₂ O	-15.0	66.5*
Лед + HCl · 3H ₂ O (метастабильное состояние)	 87 5	24,8
δ [*] .		
Лед $+$ $\mathrm{H_{2}SO_{4}\cdot 6H_{2}O}$	62,0	35,9
$H_2SO_4 \cdot 6H_2O + H_2SO_4 \cdot 4H_2O$	— 53,7	42,6
H ₂ SO ₄ · 4H ₂ O	-28,4	57,2
$H_2SO_3 \cdot 4H_2O + H_2SO_4 \cdot 3H_2O$	-36.6	64,7
$H_{2}SO_{4} \cdot 3H_{2}O + H_{2}SO_{4} \cdot 2H_{2}O$	_42,7	69,5
$H_2SO_4 \cdot 2H_2O$	— 39,5	73,1
$H_2SO_4 \cdot 2H_2O + H_2SO_4 \cdot H_2O$	-39,9	73,6
$H_2SO_4 \cdot H_2O$	8,56	84,5
$H_2SO_4 \cdot H_2O + H_2SO_4$	-34,9	94,2
H ₂ SO ₄	10,4	100
Лед+H ₂ SO ₄ ·4H ₂ O (метастабильное состояние)	—73,1	37,6
${ m H_2SO_4\cdot 4H_2O+H_2SO_4\cdot 2H_2O}$ (метастабильное состояние)	—47,5	67,8
$ m H_2SO_4\cdot 3H_2O + H_2SO_4\cdot H_2O$ (метастабильное состояние)	—52, 9	72,5
Азеотропная точка	338,8	98,3

• При концентрации Солее 66.5~% образуется вторая жидкая фаза, содержащая 99.9~% HC1; линии AB и CD ограничивают область расслоения.

Рис. 30. Системы NH₃—H₂O (а) и NaOH—H₂O (б):

	1	1
Особые точки	t, °C	C, %
a		
Лед + NH ₃ · 2H ₂ O NH ₃ · 2H ₃ O + NH ₃ · H ₂ O NH ₃ · H ₂ O NH ₃ · H ₂ O + NH ₃ · 0,5H ₂ O NH ₃ · 0,5H ₂ O NH ₃ · 0,5H ₂ O + NH ₃ NH ₃ Лед + NH ₃ · H ₂ O (метастабильное состояние)	-98 -98,8 -79 -85,1 -77,4 -92,2 -76,5 103,3	32,9 35,3 48,6 56,3 65,4 79,9 100 33,9
5 Пед + NaOH · 7H ₂ O NaOH · 7H ₂ O + NaOH · 5H ₂ O NaOH · 5H ₂ O + α-NaOH · 4H ₂ O ε-NaOH · 4H ₂ O + NaOH · 3,5H ₂ O NaOH · 3,5H ₂ O NaOH · 3,5H ₂ O + NaOH · 2H ₂ O NaOH · 2H ₂ O + NaOH · H ₂ O Гочка кипения	-29 -24 -18 5,10 15,9 6,20 12,9 314	18,5 22,3 24,7 32,4 38,8 47,0 50,5

Рис. 31. Системы $Ba(OH)_2$ — H_2O (*a*, *б*) и $Ca(OH)_2$ — H_2O (*b*):

Особые точки	t, °C	c, %
a		· .
$ \Pi_{\rm eg} + \text{Ba(OH)}_2 \cdot 8\text{H}_2\text{O} $	-0,35	1,52
$Ba(OH)_2 \cdot 8H_2O$ $Ba(OH)_2 \cdot 8H_2O + Ba(OH)_2 \cdot 3H_2O$	—78,3 78	(54) ⁻ 57
$Ba(OH)_2 \cdot 3H_2O + \alpha \cdot Ba(OH)_2 \cdot H_2O$	88	62,2
α -Ba(OH) ₂ · H ₂ O + β-Ba(OH) ₂ · H ₂ O β-Ba(OH) ₂ · H ₂ O + α-Ba(OH) ₃	185 199	(83) 88,2
α -Ba(OH) ₂ + β -Ba(OH) ₂	250	(90)
6 — то же в замкнутом объеме		
8		•
Эвтектика	-0,116	0,172
Сведения об эвтектиках и других точк ствуют.	ах перехода для с	и бот

670

9.5.2. Растворимость в бинарных системах (в граммах безводного вещества на 100 г раствора)

	001	}
		-
	80	
	09	
при 1, °С	50	
Массовая доля, %, при 1, °C	40	
Массовая	30	
	20	
	01	
	0	
Число	кристал- лизацион- ной воды	
	Вещество	

Наиболее распространенные неорганические соединения

	_																			
67.3	(10%)	1,0	39.0	} :	47.1	7,7	43,4	13.	9	37,0		2	(*)	74.0	25.6	}		45.3	ŀ	75,7
:	7 98		32,7	57.0	42,5	iro i xo	42.9	200	57,4	34.4	45,9	833	ŀ	:	21.4	503	?	40.2	ŀ	74,7
:	25.5) -	32.5	50.9	37.2	4.1	42.2	, 70 , 00	55,1	31,3	40.0	80,1	1	70.7	16,9	17.3	640	34,7	·	73,5
68,3	80.2	<u></u>	;	49.1	34,3	3,4	:	:	54.1	30,4	:	:]	70.1	14.6	11.6	58.6	33,0	۱.	:
069	77.0	1.0	32,1	46,3	31,4	2,9	41,6	တ	53,2	28,9	33,2	78,2	1	9.69	12,4	9.2	55,1	31,4	1	68,1
65,5	74,0	6,0	31,8	44,9	28,8	2,3	•	:	52,1	27,7	29,4	:	64,1	1	10,3	က်	52,3	29,6	1	ı
63,2	69,5	8,0	31,4	43,0	26,7	~ <u>`</u>	39,7	2,2	51,0	26,3	25,3	74,3	67,2	1	က္ျ	3,7	51,9	28,0 28,0	5 8 ,8	1
54,5	63,3	0,7	31,0	40,5	25,I	3,5		ر د ز	50,2 2,0,2	72,0	21,2	• •	64,8	6	, ,	4,7	50,1	27,3	0,70	1
46,2	55,6	9,0	30°	۵,′۵ هرم	80°	7,5	۵,'د د ا	-, :	4.0 C. 2.0	24,0 0,42	16,9	5.70 5.70	07,20	; ا	7,4	G	49,4	27,0	0,00	ŀ
67	l	!	۱۰	n <u>o</u>	0	l	1	١٩	7 6	ν.	⊶ ¢	, ,	7/1/	z -	١°	۰,	4, ,	4 u	>	* ~
Œ.	AgNO ₃	25.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1			(4) (4)	ື້ (. r	֓֞֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓			10,04/2					2(S) (S) (S) (S)	,	Br.	
Ag	4	×0×	<u> </u>	<u> </u>	ر در م	ζV	2	ີ່ເຂົ້	ğğ	g o	ž č	a l	Bal	Bo,	ğď	á	ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב	ชู้ เ	3	

61,4 15,5 81,0
78.7 78.0 78.0 78.0 78.0 97.0 87.0 87.0 87.0 87.0 88.0 88.0 68.0 68.0
57,8 14,9 74,0 14,9 74,0 0,12 60,4 60,4 45,0 69,4 69,4 69,4 65,1 65,1 665,1 665,1 665,1
1.1
53.4 14.5 70.8 66.2 70.4 70.4 70.4 70.4 70.4 66.2 67.5 66.2 66.2 66.2 66.2 66.2 66.3 75.0 60.9
50,1 50,1 69,0 60,4 60,4 60,4 60,4 60,4 60,4 60,4 60
42.7 14,3 67,6 67,6 67,6 67,0 17,3 49,7 43,4 43,4 43,4 43,4 43,4 43,4 49,3 60,0 60,0 60,0 60,0 60,0 60,0 60,0 60
39,4 66,0 66,0 66,0 67,5 77,4 77,4 77,4 13,2 13,4 14,5 16,5 16,5 17,5 17,5 17,5 17,5 17,5 17,5 17,5 17
37,3 14,2 64,6 64,6 50,19 0,176 36,0 47,3 44,0 55,1 10,176 43,0 43,0 43,0 49,7 45,7 45,7 45,7 62,0 62,0 61,7 62,0 61,7 63,0 64
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
CaCl ₃ Ca(HCO ₃) ₂ Ca(NO ₃) ₂ Ca(NO ₃) ₂ CaSO ₄ CdBr ₂ CdCl ₃ CdCl ₃ CdCl ₂ CoCl ₃

vanav	100	66,3 66,3 71,2 71,2 71,2 71,2 60,8 84,3 60,8 80,8 81,0	90.0 90.0
кение таблицы	80	57,3 67,8 67,8 67,5 67,5 47,5 19,1 19,1 78,3 19,1	41,5 41,5 41,5 41,5 41,5 41,3 41,3 40,1
Продолжение	09	45,6 66,7 66,7 12,9 12,9 13,9 14,0 14,0	91 98 4 4 6 6 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6
% €.	20	39,9 66,1 66,1 63,2 25,0 25,0 25,0 10,4 10,4 10,2 10,2	41.744.65.65.65.65.65.65.65.65.65.65.65.65.65.
исп - %	ė	22, 24, 44, 40, 40, 40, 40, 40, 40, 40, 40, 4	10.5 10.5
Массовая		25,3 41,8 56,1 56,1 61,0 61,0 61,0 61,0 61,0 61,0 61,0 6	7,84 4 8,54 7,74 8,50 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7
	20	18,7 64,1 65,1 65,1 17,2	88.55.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
	01	13.0 (15°) (15°) (3.44 (15°) (3.44 (1.56) (1.70) (1	8.77.6. 88.0.0.1. 88.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
	0	8,5 62,6 51,8 51,8 62,7 70,7 81,0 13,5 10,3 3,5 3,5 3,5	3,00 3,00 3,00 3,00 3,00 3,00 1,00
	число молекул кр истал- лизацио н- ней воды		50
672	Вещество	CSNO3 CS, SO, CuBr, CuCl, CuCl, CuCl, CuSO, FeBr, FeCl, HaBO, HIO3 HaBO, HaBO, HaBO, HaBO, HaBO, HaBC, HaBC, HaBC, HaBC, HaBC, HaBC, HaBC, HaBC, HaBC, HaBC, HaBC, HaBC, HaBC, HaCl, Macci, Macci, Color Col	KANTOO) KANCLA KBFO KREN KCO KCO KCO KCO KCO KCO KCO KC

Вещество кристал- пизацион- пизацио	0 49,0 1,52 1,58 0,08 58,8	26,6 2,6 0,11 	80,8 4,5 0,16 63,9	83,7 7,1 1,2 1,9 1,9 1,5 1,6	ę l	90	09	80	5
80	49,0 1,2,1 1,8 0,08 58,8	26,6 2,6 0,11 62,4	60,8 30,9 4,5 0,16 63,9	63,7 7,1 0,21 1,9 65,6	ļ				3
3	22,1 1,8 0,08 2,9 8,8 1,8	26,6 2,6 0,11 62,4	30,8 30,9 4,5 0,16 63,9	63,7 7,1 0,21 1,9 65,6	1				
	22,1 1,8 2,9 2,9 8,8 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	26,6 2,6 0,11 62,4	30,9 4,5 0,16 63,9	7.1. 0.21 0.21 0.55		1	1	1	1
	22.1 0.08 2.9 58.8	26,6 2,6 0,11 62,4	30,9 4,5 0,16 63,9	7,1 0,21 0,21 65,6	67,2	68,3	70,4	74,6	l
89	8,00 6,08 6,08 8,0 1,00 1,00 1,00 1,00 1,00 1,00 1,	2,6 0,11 62,4	4,5 0,16 63,9	7,1 0,21 65,6	39,7	:	45,4	51,6	:
89	0.08 6.89 1.	0,11 62,4 –	0,16 63,9	0,21 65,6	66	: 6	: 6		: 3
3		62,4	63,9	0.19 65.6	0,26	0.30	0,36	0,47	Q, C
	ي ا ي	62,4	63,9	65,5	: 6	J,5	:	:	'
	1	l	-	* ! !	2,70	1 5	1 6	15	20 CZ
		;] =	18	1 =	1,51	1,0	2,0	, C
	7,07	1,41		46.3	47.3	48.3	49.6	52,8	56.2
	2,0	. :	0,27	0.13	:	:	:	:	:
	60,2	61,1	62,2	63,1	64,2	65,2	6'99	1	1
	.]	1	1	ļ	1	i	1	81,3	87,8
	34.8	37.9	42,7	57,0	1	1	1	l	1
	.	- 1	1	1	59,2	61,0	63,6	1	
·	ł	1	ì	Ì	1	1	.	66,0 (70°)	1
ГІОН	10,6	10,8	0,11	11,3	11,7	12,1	12,8	14,2	16,0
Li.SO.	26,2	:	25,7	:	24,5	: ;	24,0	73,1	277
MeBr	49,4	49,7	50,3	50,9	51,6	52,1	52,7	: 6	5 5 6
MgCl. 6	34,6	34,9	35,3	35,8	36,5	37,2	37,9	80 80 80 80 80 80 80 80 80 80 80 80 80 8	42,3
MgI, 1	54,7	:	58,3	: !	63,4		: ţ	00,0	l
Mg(NO ₃) ₂ 6	: 6	8 6 6 6 7	41,2	42,7	44,1	45,8	41,1	0,10 -	l !
(7	18,0	22,0	7,07	0,83 0,83	0,00	33.4	35. 1 5.	1	1
MENO.	ļ	1	l	1		5	}	35.8	33.5

					•				-2: -		
2 2		4	56,0	57,6	59,5	61,1	62,8	64,5	66,3	1	!
*	WHOL2	7 ~	1	.	1	1	.	1	.	69.2	69.5
	Man Cl	4	38,8 8,8	40,5	42,5	44,7	47,0	49,5	-	.	
	• Times	~ ~	1	1	ļ		1	1	52,1	53,0	53.5
	W.CNO.	9 5	50,5	54,1	58,8		1	I	- 1	1	1
	1,500(103/2	ر س	ł	ı	ı	67,4	1	I	1	1	1
		7)	34,7	37,5	İ]	1	1	1	1	1
	No.	ı.	ı	.	38,6	40.4	j	1	1	Ì	I
	MHDO4	4	I	ı	39,2	39,9	40.8	42.1		1]
		-	ı	.1	ı	.	.	36,8	35.5	32.4	25.4
	MoOs	ı	1	1	0,1	0,3	0.5	0.7	1.2	2.1	;
	NH4AI(SO4)2	12	2,6	4,7	7,2	6,6	12,9	16,7	21,1	35,0	54.5
	NH, Br	1	37,7	40,5	43,3	45,4	47.7	49.8	51,9	55.7	59,3
	ID, HZ	!	22,70	24,9	27,1	29,3	31,4	33,5	35,6	39.6	43.6
	NH, CNS	١	54,5	29,0	63,0	66,5	70,1	74,0	9,77	:	1
	(NH4), CrO4	1	20,0	:	24,8	:	:	34.2	:	43.3	İ
	(NH4)2 Cr2O,	1	15,4	20,7	26,2	31,7	36,9	42,0	46,2	53,5	6.09
	NH4Сг(SO4)2 (фио-	12	တ တင်	:	:	10,6	15,5	. 1	. 1	.]	1
	NH C+(SO) (2010	. 61	OI CT			16.0	6				
	1114 (1 (3 (4)2 (3ene-	71	0,0	:	:	10,0	7,47	ļ	1	i	l
	NH"E	I	41.5	42.6	45.2	47.0	49.0	50.1	52.6	54.0	
	(NH4),Fe(SO4),	9	11,1	14,8	18,4	20,7	24.8	28,5	31.4	2	J
	NH4Fe(SO4),	12	:	:	22	:	• :	. :	:	:	&
	NH HCO.		10,6	13,9	17,8	22,1	26,8	31,6	37,2	52,2	78.0
	NH4H2PO4	ı	18,5	22,8	27,2	31,7	36,2	:	45,2	54.2	63.4
	(NH4)2HPO4	1	30,0	38,6	40,8	42,9	45,0	47,2	49,3	.]	1
	L.H.	l	2,09	62,0	63,3	. 64,5	65,6	9,99	67,6	9,69	71,4
	NH NO.	1	54,2	60,1	65,2	6,69	73,7	77,0	80,7	86,4	91,4
	(NH4) PtCI	i	e, 0	0,4	0,5	9,0	8,0	0,1	1,4	2,1	8°
	(NH4)	1	41,2	42,1	43,0	43,8	44,8	45,8	46,6	48,5	50,4
	(NH4)251F6	1:	0,11	13,9	15,7	20.1	23,2	26,1	58 ,8	33,6	37,5
. (ı								

	Число				Миссовая доля,	. 40ля, %.	при 1, 9.			
Вещество	молекул кристал- лизацион- ной воды	c	01	20	30	01	99	00	09	100
NH ₄ VO ₃	1	:	:	4,6	7,7	11,7	15,1	23,4		l
NaAl(SO ₂),	12	27.2	28,2	28.4	29.4	30.6	. 1	<u> </u>	. 1	١
NaAuCI,		· :	58,2	60,2	64,0	69,4	77,5	8	Í	1
Na.B.O.	0¹ `→	-:	1,6	2,2	3,7	6,2	9,4	16,0	1	1;
	۵ م 	144.5	46.0	47.6	1 67	1 2	53.7	16,0	53 3	34,4
NaBr	. l	<u>}</u> 1	2 1	<u>.</u> 1	2	5 1	ğ l	Ē l	54.9	7.4
NaBro _s	. 1	21,6	23,2	26,7	59,9	32,8	35,6	38,5	43,1	47,6
NaCN	15	: 0	32,5	36,8	41,7	1	1	1	1	1
Na,CO,	2-	လို	1,1	1,,1	28,4	18	1 8	į	1	1 2
i Cen	- -	1 96	၂ ဇွ	ا م	ا ا ا	95.7 7.80	7,70 0,70 0,00	راد 700	داره 4 بر	2,12 2,13 1,00
NaCio	1	22,7	26,7	34,5	20.0	52.5	56.5	5	2 5	į l
NaClO,		44,1	47,1	50,2	53,0	55.7	583	8'09	65.4	889
NaClO,	1	62,6	64,5	66,5	68,7	6,07	73,2	74,3	76,0	76,8
	01	24,1	33,4	44,2	-	1	1	ı	1	ı
Na ₃ CrO ₄	9	:	:	44,2	47.0	1		ı		1
•	- .	: ;	:	•	47.0	49,0	51,2	53,5	55,5	55,7
Nag Cr30,	23	62,0	030	42 6.0	66,3	68,3 6,3	70.5	72.9	79.0	80,6 6,6
Nar No Goldon	1 =	ນ ວັ	رن د د د	ນ ນິດ	4. č	4.6 2.0	4.0 	4. c	7.4.6	4. č
NaHCO.	2	, e 5 rc	7,0		# C	1.30	0,01 10,01		o,o, .	6,65 10,1
le N	- 5	61,4	62,8	64.1	65,6	67.2	69.5	72,0	1	İ
	1!	1	1	l i	ï	i	1	1	74.7	75,2
Naios	ı.o	2,4	4,4	7,8	9,6	11,7	14,0	16,5	21,0	24,8

45.6	8,3	43.5		9, 	Ļ	11	21,0	29,8 	١٤	2	20,0	42,1	2, 4,	49,3 60,3	}	١٩	0,0
43.8 57,0	59.7	37,5	48,0		67,5	32,9 1	22,5	30,4	. 1 5	- 1	47,0	42,7	20 8,03	47,6 60,6	}	19	40,1
42,0	54,5 63,5	28,5	45,3		64,2 	78,1	24,5	31,2	67,4	1 1	44,4	43,8	24.8	45,6	į l	44,8	1
14.12 5.13	55 50 50 50 50	22,7	44,5	61.8		26,7	25,7	8,1 <u>8</u>	62,3	1 1	: 1	44,5	22.8	44,6 6,6	}	43,2	1
10,0	50,0 56,3	16,8	35,0	186	2	11	27,2	32,8 50,6	} I	11	41,6	45,2	20°0 80°0 80°0	8,0 8,0	; ;	42,3	
39.8 47,8	48,7 54,3	14,0 16,9	11	51,6	18,4	25,7	29.0	33 25 25 26	Î	l. I		<u>}</u>	. 60	43,0	3 I	41,6	1
39,5 45,8	46,7 52,2	10,8 1,7,	11	45,2	15.8	-0° -0°	16.3	1 2	}	1 1	39,5 31,5	<u>}</u> -	0,7	42,1	37.9	<u>}</u>	
39,3 8,3 8,5	44,7 34,0	7,6 3,4	11	41,5	13,4	16.0	တ က	12	31	Ιĺ	100	ا و	19.6	41,8 8,13	36.0	}	
30,6 1,9 6,13	42,2 29,6	6,1 6,1	11	1 % 1	8.8	12,6	4	34.4	ξl	31.3	1=	<u>.</u>	0,4	41,6	3, 24	; J.	1
211		12 21	~ 67	12-) 6 } 7	<u> </u>		20	<u> </u>	۱ <u>۶</u> 	? I ~_	[]	010	9	4.0	2
						. •											
Na_MeO.	NaNO, NaOH	Na ₃ PO ₄	Na, HPO,	NaH.PO.	• 0	Ma ₂ S	Na ₂ SO ₃	Na ₂ SO	Na2S2O3	VI.	14423205	Na ₂ SeO ₄	Na ₂ SiF ₆ NaVO.	Na ₂ WO ₄	2011	NiCi,	

64,8 65,2 — 61,2 65,5 69,2 —
58,2 61,2
დ გ 4. დ დ. დ
2.00 2.00 2.00
27.4

80,5 59,8 16,1 16,1 16,3 2,32 70,4 70,4 70,4 1 1 87,0 86,0	117.77
86,6 83,0 83,0 83,0 83,0 83,0 83,0 83,0 83,0) 1
31,6 42,2 99,9 1,01 76,1 86,1 82,4 87,8	E
23.3 84. 60.13 60.2 60.2 85.8 81.2 81.2	ය 4 : ෆුහු 4 ග් ෆ් : ඉහි 6
17,3 33,1 7,1 7,1 0,10 0,60 0,60 62,3 85,5 1,9 1,9 1,7 1,1 81,9	41,4 5,7 7,7 1,9 1,9 1,9
28,55 28,58 5,88 0,07 0,46 57,9 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1	88. 1 07: 1 1 1 88.
8.7 4.6 0.05 0.33 0.33 1.8 1.8 1.8 1.8 1.45 1.8	85,0 1,9 1,7 1,3,2
5.9 90.03 11,8 76,8 76,8 76,8 11,3	32,0 11,5 11,5 11,5 11,5
3,8 20,2 2,6 2,6 0,02 0,17 49,4 1,18 1,18 1,18	29,4 17,3 15,9 13,0 33,4
1111 00000 1 12 1 0 1 000	4 4 4 4 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9
Thno, Tioh Tiso, Tiso, Tebr Teci Uo,(No,), Uo,so, ZnBr, ZnCl, ZnI,	ZnSO ₄ Coam perkosem Ce ₂ (SO ₄) ₃ Dy[(CH ₃) ₂ PO ₄] ₃ Er ₂ (SO ₄) ₃ Gd(BrO ₃) ₃

	Число			=	Maccoba	Массовая доля, %, пря 1, °С	при 4, °С			
Вещество	кристал. лизацион- ной воды	0	01	20	30	Q‡	. 20	09	98	60
Gd ₂ (SO ₄) ₂	0 0	8,6	3,2	2,3		İ	1		1	
Ho ₂ (SO ₄) ₃	Í,	1	i	6.3 9.3 9.3	1	1	İ	- 1	1	1
Nd(BrO _s) ₃ Nd ₂ (SO ₂) ₂	l∝	30,5	37,1	(2) (0,5) (0,9)	48,8 0,7	53,7	16	16	i T	15
Pr(BrO ₃); Pr ₂ (SO ₃);	11	35.9 16.5	42,2	47,9	(6) (6) (7)	59,0 7.2	318	۽ اڇ	1 %	315
Sm(BrO ₃) ₃	1	25,5	32,2	38.5	44,1	69,6	318	<u></u>	*	<u>5</u>
Tb(BrO ₃), Tb[(CH ₃) ₂ PO ₄];	ا ه ا	39,9 19,5	47,3	53,9 11,2	609	66,5	7,5	ΗÍ		
Tm(C,H3BrNO2SO3)3	1	ı	ì	(50.0 (50.0)	1	1	1	ı	· †	. 1
YCI, Y ₂ (SO ₄),	I∞	43.6	43,8	(22) (44) (1,8)	44,3	44,7	45,1 5,1	11		
Yb[(CH ₃) ₂ PO ₄] ₃	·	2,6	:	(S. 6)	1		ŀ	1		1
$Yb_{\mathfrak{g}}(SO_{\mathfrak{g}})_{\mathfrak{g}}$	I.	30,6	:	26,6 (25°)	16,0 (35°)	:	10,3	9,4	6,5	5,

9.5.3. Растворимость в тройных системах

Приведены значения растворимости в массовых долях (%) для насыщенных водных растворов двух соединений и состав твердой фазы.

Принятые обозначения: I — массовая доля (%) первого в строке соединения системы; II — массовая доля (%) второго в строке соединения системы; I — температура.

	Жидкая	н фаза	
t, °C	I	Щ	Твердая фаза
H ₂ SO ₄ -	— CaSO ₄ — H	₂ O	
20	25,00 17,49 7,19 1,61 0,49	0,132 0,208 0,272 0,236 0,214 0,213	CaSO ₄ · 2H ₂ O
43	25,04 17,54 7,22 1,62 0,49 0,00	0,213 0,320 0,399 0,312 0,25 0,22	CaSO ₄ · 2H ₂ O
H ₂ SO ₄ -	— FeSO ₄ — H	₂ O	
50	10,38 21,27 28,49 41,92 51,90 61,16 71,25	26,23 15,63 10,11 2,91 0,67 0,16 0,09	FeSO ₄ · H ₂ O
50	82,04 83,40 91,30	0,36 0,45 0,21	$FeSO_4 \cdot H_2O + FeSO_4$ $FeSO_4$
90	10,28 20,12 29,07 44,37 63,27 73,31 84,13 91,39	19 44 14,93 9,99 2,71 0,36 0,26 0,82 0,58	$\begin{cases} FeSO_4 \cdot H_2O \\ FeSO_4 \cdot H_2O + FeSO_4 \end{cases}$
K ₂ SO ₄	$ \widetilde{MgSO_4}$ $ I$	H ₂ O	
25	10,75 10,85 10,99	0 5,05 12,63	$ \begin{cases} K_2SO_4 \\ K_2SO_4 + K_2SO_4 \cdot MgSO_4 \cdot 6H_2O \end{cases} $

			11 росолжение таблицы
	Жидка	я фаза	
£, °C	Ι.	11	Твердая фаза
K ₂ SO ₄ -	– MgSO ₄ – 1	H ₂ O	
25	9,89 7,32 4,90 4,93 3,4 0	14,28 20,32 26,02 26,26 26,61 26,65	$ \begin{cases} K_{2}SO_{4} \cdot MgSO_{4} \cdot 6H_{2}O \\ K_{2}SO_{4} \cdot MgSO_{4} \cdot 6H_{2}O + MgSO_{4} \cdot \\ \cdot 7H_{2}O \\ \end{cases} MgSO_{4} \cdot 7H_{2}O $
50	14,14 14,34 13,47 12,95 13,06 5,57	0 5,95 13,86 17,02 17,36 29,31	$ \begin{cases} K_{2}SO_{4} \\ K_{2}SO_{4} + K_{2}SO_{4} \cdot MgSO_{4} \cdot 4H_{2}O \\ K_{2}SO_{4} \cdot MgSO_{4} \cdot 4H_{2}O \end{cases} $
50	4,21 4,40 2,60 0	32,28 32,43 32,76 33,50	$ \begin{cases} K_2SO_4 \cdot MgSO_4 \cdot 4H_2O + MgSO_4 \cdot \\ \cdot 6H_2O \end{cases} MgSO_4 \cdot 6H_2O $
99,5	19,25 19,46 18,9	0 7,34 14,50	K_2SO_4 (метаетабильное состояние) $K_2SO_4 + K_2SO_4 \cdot 2MgSO_4$
99,5	14,26 5,54 3,31 0	18,12 27,44 31,00 33,27	$ \begin{cases} K_2SO_4 \cdot 2MgSO_4 \\ K_2SO_4 \cdot 2MgSO_4 + MgSO_4 \cdot H_2O \\ MgSO_4 \cdot H_3O \end{cases} $
NaCl —	CaSO ₄ — H ₂	0 *	
25	0 0,71 5,67 15,78 47,36 129,6 161,6 196,4 246,2	2,08 2,25 3,14 4,33 6,10 7,48 6,96 6,64 6,28	•••
NaCl —	KCl — H ₂ O		
25	26,48 22,11 20,42 13,45 0	0 8,16 11,14 15,17 26,52	} NaCl NaCl + KCl } KCl

Растворимости	ъВ	г/дм³.	

		Продолжение таблицы
Жидк	ая фаза	
I	i ii	Твердая фаза
Cl—H ₂ O	·	
26,93	0	NaC!
19,09		NaCl + KCl
28,29		NaCl
10,85		NaCl + KCl
		{ KCl
	52.9	KCI
		NaCl
13,2	74,8	KCI
lgCl ₂ —H ₂ O		
2,78	25,83	NaCl
	35,44	$NaCl + MgCl_2 \cdot 6H_2O$
-	35,65	$MgCl_2 \cdot 6H_2O$
	36,94	NaCl + MgCl ₂ · 6H ₂ O
2,50 0,47	31,72 41,65	NaCl NaCl + MgCl ₂ · 6H ₂ O
0,8	40,85	NaCl
		$NaCl + MgCl_2 \cdot 4H_2O$
		NaCl
		$NaCl + MgCl_2 \cdot 2H_2O$
$la_2CO_3 - H_2CO_3$	O _	
21,3	7,9	NaCl
15,45		$NaCl + Na_2CO_3 \cdot 7H_2O$
		$Na_{2}CO_{3} \cdot 7H_{2}O$ $Na_{2}CO_{3} \cdot 7H_{2}O + Na_{2}CO_{3} \cdot 10H_{2}O$
		$Na_2CO_3 \cdot 7H_2O + Na_2CO_3 \cdot 10H_2O$
		1
		Na ₂ CO ₃ 10H ₂ O
		NaCl + NacCOa + HaO
		$NaCl + Na_2CO_3 \cdot H_2O$ $Na_2CO_3 \cdot H_2O$
10,9)
7,2	24,0	Na ₂ CO ₃ · H ₂ O
٠,٠		
0	31,8	. .
0 Ia ₂ SO ₄ —H ₂ 0	o .	
0 Ia ₂ SO ₄ —H ₂ (22,8	0,12	NaCl · 2H ₂ O + Na ₂ SO ₄ · 10H ₂ O + ле,
0 Ia ₂ SO ₄ —H ₂ 0 22,8 23,0	0,12 0,24	$NaCI \cdot 2H_0O + Na_0SO_1 \cdot 10H_0O$
0 Ia ₂ SO ₄ —H ₂ O 22,8 23,0 21,6	0,12 0,24 0,37	$NaCI \cdot 2H_2O + Na_2SO_4 \cdot 10H_2O$ $Na_2SO_4 \cdot 10H_2O + лед$
0 Ia ₂ SO ₄ —H ₂ 0 22,8 23,0 21,6 21,7	0,12 0,24 0,37 0	$NaCI \cdot 2H_2O + Na_2SO_4 \cdot 10H_2O$ $Na_2SO_4 \cdot 10H_2O + лед$ Лед
0 Ia ₂ SO ₄ —H ₂ O 22,8 23,0 21,6	0,12 0,24 0,37	$NaCI \cdot 2H_2O + Na_2SO_4 \cdot 10H_2O$ $Na_2SO_4 \cdot 10H_2O + лед$
	I Cl—H ₂ O 26,93 19,09 28,29 16,85 13,35 0 17,6 37,4 13,2 IgCl ₂ —H ₂ O 2,78 0,34 0 0,41 2,50 0,47 0,8 0,1 1.05 Следы Ia ₂ CO ₃ —H ₂ O 21,3 15,45 13,0 11,8 10,8 5,6 0 17,8 14,5 10,9	СІ—H ₂ O 26,93 19,09 14,78 28,29 0 16,85 21,74 13,35 24,38 0 36,03 17,6 52,9 37,4 56,1 13,2 74,8 IgCl ₂ —H ₂ O 2,78 25,83 0,34 35,44 0 35,65 0,41 36,94 2,50 31,72 0,47 41,65 0,8 40,85 0,1 1,05 Cледы 56,8 Ia ₂ CO ₃ —H ₂ O 21,3 7,9 15,45 7,25 13,0 18,4 11,8 19,0 10,8 18,8 5,6 19,6 0 22,7 17,8 13,9 14,5 16,6 10,9 20,2

•	Жилі	сая фаза	11 россижение так	элицы
		1		i
t, °C	1	II.	Твердая фаза	
NaCl—	Na ₂ SO ₄ —H ₂	0		Vici
0	25,3	1,39	$NaCl \cdot 2H_2O + Na_2SO_4 \cdot 10H_2O$	• •
-	14,8	1,11	1140. 21120 11142504 101120	
	0	4,32	Na ₂ SO ₄ · 10H ₂ O	
0,1	25,3	1,41	NaCl + NaCl · 2H ₂ O + Na ₂ SO ₄	10H-C
10,2	26,0	0	Naci	10172
	24,3	3,39	$NaCl + Na_2SO_4 \cdot 10H_2O$	
•	17,2	3,26		
	8,78	4,07	$Na_2SO_4 \cdot 10H_2O$	
15	0 26,36	8,42	N-Cl	7.4
10	23,2	0 5,41	NaCl Na SO 1011 O	
	0	11,97	$NaCl + Na_2SO_4 \cdot 10H_2O$ $Na_2SO_4 \cdot 10H_2O$	
17,9	2 2,3	7,57	$NaCi + Na_2SO_4 + Na_2SO_4 \cdot 10H$	^
20	26,4	0,0.		,U
	24,5	3,63	NaCl	
	22,5	7,36	NaCl + Na ₂ SO ₄	
	20,4	9,16	$Na_2SO_4 + Na_2SO_4 \cdot 10H_2O$	
	13,7	8,76	1	
	7,91	10,59	$Na_2SO_4 \cdot 10H_2O$	
OF.	0	16,2	. J	
25	26,6	0	NaCl	
	24,6	3,35	.	
	22,65 18,4	7,06	NaCl + Na ₂ SO ₄	
•	14,50	10,4 14,50	Na ₂ SO ₄	
	7,66	16,0	$Na_2SO_4 + Na_2SO_4 \cdot 10H_2O$	4.4
	0,00	21,7	$Na_2SO_4 \cdot 10H_2O$	
3 0	22,95	6,68	NaCl + Na ₂ SO ₄	* .
•	18,0	9,70		
	12,2	16,2	Na ₂ SO ₄	•
	5,68	25,0	$Na_2SO_4 + Na_2SO_4 \cdot H_2O$	
	3,35	26,0	Na ₂ SO ₄ · 10H ₂ O	
50	0	29,0	j ragoog v rorigo	
30	26,9 25,4	0	NaCi	
	24,1	2,56 2,55	J .	
	16,1	11,3	NaCl + Na ₂ SO ₄	
	7,85	20,8	Na ₂ SO ₄	
	0	31,8	1482504	
7 5	27,4	0) y a	
	26,4	2,14	} NaCl	
	25,25	4,95	$NaCl + Na_2CO_4$	
	16,5	10,2	}	
•	7,76	19,7	Na ₂ SO ₄	
100	0 .	30,3	Į ·	
100	28,6 27.2	0	NaCl	
	27,2 25,9	1,84	•	
	20,3	4,51	NaCl + Na ₂ SO ₄	

<u> </u>	Жили	сая фаза	Продолжение таблицы
t, °C -	1 (1.1.1)	п	Твердая фаза
100	18,4	8,75	
	7,67	18,6	Na ₂ SO ₄
	0	29,7	J
105	28,3	. 0	NaCl
	26,1	4,44	· · · · · · · · · · · · · · · · · · ·
109,1	26,4	5,01	NaCl + Na ₃ SO ₄
150	27,5	4,85) }
	22,60	7,25	
	18,85	8,8	
	14,65	11,95	
	7,1	19,5	Na ₂ SO ₄
	3,45	24,3	
200	22,45	8,75	
250	20,85	11,2	
300	22,15	11,7	
	22,10 gCO ₃ *—H ₂ C		
0	3,410		
5	2,962	1,526 1,363	MgCO ₃ · 5H ₂ O
Ū	3,232	1,530	MgCO ₃ · 3H ₂ O
10	2,736	1,314	1
20	2,109	0,986	MgCO ₃ · 3H ₂ O
	2,606	1,256	MgCO ₃ 5H ₂ O
30	1,572	0,763)
40	1,206	0,602	MgCO ₃ · 3H ₂ O
50	0,922	0,472	

^{*} В пересчете на МдО.

99 9.6. РАСТВОРИМОСТЬ В ВОДЕ ОРГАНИЧЕСКИХ ВЕЩЕСТВ

9.6.1. Растворимость твердых органических веществ [в граммах безводного вещества на 100 г раствора)

	Примечание
	100
	08
O	09
Массовая доля, %, при t, °C	09
вая доля,	
Macco	30
	20
	10
	0
Число	молекул кристал- лизацион- ной воды
	Вещество

大人ないまでは	= 98°C (∞)										• •															
	 - -		74.7	, ,		1	2,9	108	<u>}</u>]	1	15	£,5	1	1	1 28		6,15	2,7	44.9	6,1	;	: -		68,3	•	
	45,8		82,1 41,5 54	_			-	505			•	••			26.5			18,3		5,4		•	:	₩ :	59,5	
	30,7	0,35	73,3 96.4	*, '\		ł	42,9	6 85	<u>}</u>	8,77	24,6	1 5	26,0	ı	1 :			12,2		4,7	70 0	40°2	:	61,2	56,8	
	23,9		68,9 10,6	0,00		i	43,5	45,4	1, 1	77,1	. :	ij	47,1	9,70	27.2	ì.	38,1	2'6	32.6	4,4	0.77	44,9	:	59,8	55,4	
	17,7		64.6 9.0 9.0	D,U		1	44,0	9,62	76.4	1	24,9	1	4.0 6.0 1.0	7,50	1 :		1,37	9,7	30.4	4,0	130	43,3	÷	58,2	52,7	
-	12,5	0,27	60 9 5	٥,0	•	ı	42,9	35,3	73.9	: 1.	25,3	1	40,6	41,1	28.3	<u>}</u>	0,95	2,7	28.5	3,7	6	41,3	50,2	56,2	51,9	
•	8,69	0,24	55,8 6,28	0710		41,6	1 6	31,7	6,17	. 1	25,8	1 8	85 C 20 C 20 C 20 C	/'nc	28.4		0,57	4,3	26.7	3,3	200	38,5	38,8	52,3	20,0	
	5,73	::	51.4 4.31	2,		38,7	1 6	29,0	70,0	. 1	26,5	1 2	57,4 0,00	0,72 3,08	30°5	1	0,39	3,1	24.2	3,0	n n	0,00	:	49,5	30,0	
	3,42	0,19	47,0 2,72	i	КИСЛОТ	36,9	ا ا	8 I	68,4	1	27,2	lŝ	36,2 16,2	10,0 97.0	2		0,34	2,3	20.3	2,6		0,18	:	44,1	22,0	
, o	63	1	1,1	1	неских	£.	_ ;	ا د	, f 1,5	(0,5	~		4. 6.	. 4	0,5		٥.	-		ì		Į.	4	ı	ı	
	Щавелевая	Энантовая	иолочная Янтарная		Соли органич	Апетат бария	יישלפום: מפלטשי	натрия		Kalika	Кальция		Магния	СВИНЦА	стронция	Гидротартрат	Калия	Оксалат аммо-	ния Калия		Тартрат аммо-	ния Калия-нат-	ркя	Салицилат калия ((<i>opmo</i>) натрня	

										11 0000	Продолжение таблицы
	Число			j	Массова	Массовая доля, %	%, при t, °C		***		
Вещество	молекул кристал- лизацион- ной воды	0	2	20	30	40	20	09	08	100	Примечание
Формиат калия	0	:	:	0,77	78,2	79,4	80,7	82,3	85,3	86,8	
натрия -	e 0	30,5	38,5	44,8	50,6	52,0	53,4	55,0	57,6	61;4 61;4	
Некоторые	другие с	органические	чески		вещества	_					
Гидрохинон		(6,5)	:	6,7	•	(13)	:	(22)	(53)	29	$t_{-} = 173 ^{\circ} \text{C} (\infty)$
Глицин	ļ	12,4	15,3	18,4	21,6	24,9	28,1	31,1	:	40.2	TO IT
Глюкоза	-	35	:	:	54,6	62	:	:	•	:	
Маннит	1	6,39	12,0	15,6	20,1	25,7	32,2	39,2	53,5	. 66.3	•
Молочный са- хар		10,6	•	•	:	24,4	30,5	37,1	(20)		
Мочевина	ř	40,0	46.0	52,0	57,5	62,5	67,0	71,5	80.0	88.0	$t_{} = 132 ^{\circ}\text{C} (\infty)$
Пирокатехин	ļ	6	(17)	31	49	63	73	80	. 1	. 1	
Резорцин	ļ	40	22	82	99	73	28	83	91	26	= 109 °C
Сахароза	1	64,2	65,6	67,1	68,7	70,4	72,3	74,2	78,4	83,0	
Сульфаниламид	1	•	•	0,53	:	:	2,63	:	:	· (61)	
Фенол	1	- :	:	8,12	:	9,84	:	16,1	8		J. 7 = 99.4 °C
Фурфурол	ı	15,6	23,7	69,3	:	80,3	:	91	:	:	la d
	•										

9.6.2. Взаимная растворимость жидких органических веществ и воды

Приведены графические и табличные данные. Биноидальные кривые взаимной растворимости вода — органическая жидкость отграничивают гетерогенную область A от гомогенной области B (рис. 32). На

Рис. 32. Биноидальные кривые ограниченной взаимной растворимости систем органическая жидкость (о. ж.) — вода, имеющие НКТР (а), ВКТР (б), замкнутый контур (в).

Рис. 33. Бинарные системы метилпиридины — вода: 1-2.4,6-триметилпиридин; 2-2.6-диметилпиридин; 3-3-метилпиридин. Рис. 34. Бинарные системы o-крезол — вода (1); m-крезол — вода (2); n-крезол — вода (3).

Рис. 35. Бинарные системы амины — вода: l — этилизопропиламин (62,5); l — этилизопропиламин (36,1); l — диизопропиламин (27,2); l — триэтиламин (17,6—18,7); l — диметилизопропиламин (66,2); l — диетилистиламин (49,4); l — диметилистиламин (37—35); l — диметилистиламин (15,5). В скосках приведены значения нижней критической температуры растворения.

Рис. 36. Бинарные системы нитробензол — вода (1); анилин — вода (2); фенол — вода (3).

кривых наблюдаются нижняя критическая точка растворения (НКТР) и верхняя критическая точка растворения (ВКТР), ниже и выше их вода смешивается с органической жидкостью в любых соотношениях. На графиках состав жидких фаз дается в массовых долях воды (%).

Рис. 37. Бинарные системы метилпиперидины — вода: 1-1-метилпиперидин; 2-3-метилпиперидин; 3-2-метилпиперидин; 4-4-метилпиперидин.

Рис. 38. Бинарные системы изобутиловый спирт — вода (1); бутиловый спирт — вода (2); вторичный бутиловый спирт — вода (3).

В таблице приведены составы бинарных систем на граничной кривой гетерогенной области: I — слой воды, насыщенной органической жидкостью; II — слой органической жидкости, насыщенной водой; состав I и II слоев приведен в массовых долях (%).

72	

Вещество с с с с с с с с с с с с с с с с с с с	86T305	01 01 01 01 01 01 01 01 01 01 01 01 01 0	20 3.1 95.0 99.95 3.41 0,0134 0,0111 0,85 99.91	3,31	40 9,3,3 0,206 99,90 3,33	50 0.225 99,85 3,42 	60 94,2 94,2 0,250 99,74 0,023 0,020 0,020	2 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	80 5,5	100	9	Cocras
Анилин II — - Бензол , II — - Бензол , II — - О-Дихлорбензол I — - м-Дихлорбензол I — - м-Дихлорбензол I —	0668		3.1 95.0 0,175 99.95 3.41 0,0134 0,0111 0.85 99.91	0,190 99,93 3,31 	3,3 94,7 0,206 99,90 3,33	0.225 99,85 3,42 	94.2 94.2 0.250 99.74 	20.277.	5,5	2.2	2.0	
Бензол.	1		95,0 90,175 3,41 0,0134 0,0111 0,85 99,91 4,60	99,93 3,31 	94.7 0.206 99.90 3.33	99,85 3,42 	94,2 0,250 99,74 0,234 0,0201	0,277	1	ų		46,8
Бром 1 — . о-Дихлорбензол 1 — . м-Дихлорбензол 1 — . п-Дихлорбензол 1 — .]		94,95 0,0134 0,0111 0,0111 1,60		06.66 06.66 06.66	3,42	0,234 0,0201		93.5 0,325	٠ و	V4 :	
o-Дихлорбензол I —			0,0134 0,0111 0,85 99,91 4,60	: : : 5		:::9	0,234 0,0201	5 77,66 t		ecic.	. = } 	-
n-Anxiopoenson I			0,85 99,91 4,60	: : 5	: : ;	: : : 5	0,0201	1. 4. 1. E.	•		1	1
		::::	0,85 99,91 4,60	5	100	105	2	٠٠ ١٠ ١٠	de.			1
1,2-Дихлорэтан I — -	1		99,91 4,60	10,00	76,0) i	ر 1,180 را	5 1,34	10x : :	:	 	*.c
лэтилкетон I — -		:		28,63	99,81 3,43	99,74	99.62 3.08 8.08	99.46	11 c	3.68	، رم ل ا	4
11			98,55	:	97,42		96,18	:	ىن. :	33,10 ×	ب وداد : ادو	، و ا
0-Kpeson 1		:	2,45	:	3,08	3,22		3,74	ິດ : ເຄ	· (*	168,9	4
м-Крезол I — -	1	: :	2,18	: :	2,51	2,72	2.98	3.35	р _О		148.8	/ 88
			: : :	85,9	85,5	84,6	83,6	82,6		11	. 7)
Kchaoa I		0.0076	0.0130	::	2,26	2,43	્રે.69 ું	ું 3,03 કે કે કે		H.	142,6	ဗ္ဗ
	66		9196'66	:	99,94	':	-	99,850	۶ ۲.	60.		۶ ۱ -
Метилэтилкетон I			(25°) 27.3	24.1	(41°) 	:		(₆₉)	15.7	4.9	55	45.0%
	•	:	88,4	88,2	:	:	:	:	85,8	32,6	•	
Нитробензол I	1	:	0,19	:	0,3	:	4.0	•	٦, j :	!	244,5	50,1
Сероуглерод	0		99,76 0,179	0,155	99,6 0,111	0,014	66 • • • • • • • • • • • • • • • • • • •	.)	ۍ : :	38,7 ∴	1	
Спирт амиловый I — -	1	: :	2,6 90,6		2,1 20,5	(49°)	25.0	: :		2		1

		74												
и зо змило- Вый	_=	1	1	: :	2,82 90,40	2,56 89,85		. : :	::	::	::	::	187.5	36,61
бутиловый	- II	1.	1	8,91 80,33	7,81 79,93	7, 98 79,38	6,60 78,59	6,46 77,58	6,52 76,38	6,73	· : :	8,2 66,4	124,8	32,4
<i>втор-</i> бути- довый	1	I	1	:	•	•	:	:	. . .	:	:		113,8	36,0
изобутило- вый	- - -	1	1	9,8 84,4	8,5 83,6	7,5 82,7	7,0 81,6	6,6 80,4	6,4 79,0	6,6 77,2	7,2	8,1 70,2	132,8	37,0
гексило- вый	—	- 1	1.	29'0	0,59	0,54	0,52	0,51	0,53	0,56	:	:	1	ı
циклогек- силовый	ı I	f	1	4, 57 89,46	4,00 88,93	3,60 88,37	3,33	3,14 87,11	86,42	3,19	::	. : :	. 1	
Толуол	-=	1	i	0,035	0,045 99,955	0,057 99,940	0,075 99,927	0,10	0,15	0,21	::	: :	r,	. 1
2,4,6-Триме- тилпиридин	_=	5,7	,7 17,2	::	3,42 54,92		: :	.::	: ;	::	::	17,8 88,07	1	
Фенол	I	ı	1	::	8,12 71.8	: :	9,84 66,1	::	16,1 55,1	-11	11	1.1		34,6
Фурфурол	ı	1	ı	7,9 96,1	95,2 95,2	8,8 94,2	93,5 93,3	10,4 92,4	11,7 91,4	13,2 90,3	::	33,9 69.4	122,8	1,23
Хлороформ	-=	1 1	<u> </u>	0,888 99,957	0,815 99,935 (22°)	0,770 99,891 (31°)	99,882	99,835	• : :		: :			· • • • • • • • • • • • • • • • • • • •
Четыреххло- ристый угле-	_ =	1	1	0,077	0,077 (25°) 90,999	0,081	00 085	920 00	•		•		1	
род Этиловый эфир	=-=	1	4.	98,88	6,5 98,80	5,1 5,1 98,68	4,5 98,50	98,30	3,7 98,2	98.9 0,0			1	ĺ

9.6.3. Распределение органических веществ между водой и органическим растворителем

Приведены вначения отношений равновесных концентраций растворенного органического вещества C_1/C_2 в двух слоях нерастворимых или ограниченно растворимых жидкостей; C_1 и C_2 — соответственно концентрация (моль/дм³) в воде и органическом растворителе. Значения P — отношения концентрации неассоциированных молекул в органической жидкости к концентрации их в воде с учетом диссоциации в ней — вычислены по формуле

$$K_a = \frac{[PC_1 (1-\alpha)]^2}{C_2 - PC_1 (1-\alpha)},$$

где K_a — константа ассоциации в органической жидкости; α — степень диссоциации в воде.

Распределяемое вещество	t, °C	C ₁	C.	C ₁ /C ₂	Примечание
Вода — амилов	ый сп	ирт .			
Кислота масляная	25	0,01552 0,04667	0,17338 0,51912	0,0895 0,0899	
муравьиная	25	0,14386 0,48989		1,73 1,92	
пикриновая	25	0,00553 0,06423		0,595 0,252	٠.
трихлоруксус- ная	25	0,0045 0,1225	0,0208 1,8635	0,216 } 0,066 }	Нижний слой воды
		0,2114 0,8736	2,7359 3,7121	0,077 0,235	Верхний слой водь
уксусная	25	0,08838 1,320	1,208	1,100 1,093	
х лоруксусная	25	0,0718 0,3024	0,2577 1,6285	0,279 0,186	*
янтарная	25	3,7117 0,02684		0,644 1,422	
Метиламин	25	1,1555 0,1155 1,0613	0,7119 0,3804 0,3974	1,623 3,03	•
Гриэтиламин	25	0,00875 0,02474	0,2273	2,67 0,0385 0,0385	
Фенол	25	0,0047 0,383	0,075 5,41	0,0626 0,0708	
Вода — бензол					
Циметиламины	25	0,3212 0,9061	0,0394 0,07 8 3	8,152 11.50	
e de la companya de l		1,2001	0,0763	11,31	

				∏ро∂	олжение таблицы
Распределяемое вещество	t, °C	C ₁	С,	C ₁ /C ₂	Примечание
Дипропиламин	25	0,0143	0,0755 0,1898	0,189 0,100	
		0,0130	0,1650	0,088	
Диэтиламин	25	0,0726	0,0653	1,112	
•		0,1979	0,1877	1,053	
• •		0,2652	0,2501	1,060	
Кислота валериа-	25	0,00150	0,00144	1,041	P = 0.814
новая	~ "	0,02661	0,14079	1,189	$K_{\rm a} = 3.60 \cdot 10^{-3}$
валериано-	25	0,00510	0,00526	0,913	P = 0.582
вая(изо)		0,02231	0,06254	0,348	$K_{\rm a} = 3,17 \cdot 10^{-3}$
•		0,1784 0,4125	2,6983 7,2252	0,0661	
капроновая	25	0,00263		0,0571 0,098	P = 4.27
капроповая	20	0,00568	0,10310	0,056	$K_a = 6.64 \cdot 10^{-3}$
капроно-	25	0,00615	0,0874	0.0704	P = 3.4
вая(изо)	20	0,00922	0,1800	0,0512	$K_a = 5.97 \cdot 10^{-3}$
масляная	25	0,00440	0,00110	4,00	P = 0.22
масилпал		0,2163	0,4897	0,44	$K_a = 5.02 \cdot 10^{-3}$
		1,1261	6,6454	0,169	1/a - 0,02 - 15
масляная(изо)	. 4	0,00774		3.63	P = 0.189
	25	0,0364	0,00213	1,57	$K_a = 2.7 \cdot 10^{-3}$
		0,1906	0,5014	0.38	** ***********************************
Фенол		0,00202		0,433	Димеризация моле
	25	0,1013	0,279	0,36	кул в бензоле
		0,5299	6,487	0,08	
iga et la distribution de la constantial de la constantial de la constantial de la constantial de la constantia Bandantial de la constanti		_			
Вода — диэтил	овый	эфир	٠		•
Кислота бензойная	10	0,00090	0,0639	0,0141	. * .
,		0,00249		0,0110	
валериановая	22	0,0032	0,0675	0,0474	and the second
20200110	16 17	0,0164	0,4155	0,0395	
валериано- вая(<i>из</i> о)	10—17	0,0051 0,012 5	0,0993 0,2570	0,0513	
масляная	23	0,00366		0,0487 0,0113	1 1 F 4
	-0	0,00978		0.0101	
	21	0,0121	0,0744	0,163	at skyl skyl skyl
-		0,0407	0,2763	0,147	the state of the state of
Хинон	19,5			0,326	•
V	00	0,00842	0,02714	0,310	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Хлоральгидрат	20	0,180	0,766	0,235	
Вода — изоами́л	овый	спир	T		
		•		0.667 1	
Кислота трихлор-	овый 25	0,0284	0,0426	0,667	Нижний слой водь
		•		0,667 0,0785 } 0,091	Нижний слой воды Верхний слой воды

			<u> </u>	- 11 pod	олжение таблицы
Распредел яемое вещество	rt, ℃	C ₁	C.	C1/C2	Примечание
Кислота хлорук- сусная	25	0,0170 1,2889 2,7910	0,1242 3,3537 4,4419	0,137 0,384 0,628	
Вода — толуол		-			
Анилин	25	0,0232 0,102 0,230	0,181 1,006 4,428	0,128 0,101 0,052	Димеризация моле- кул в толуоле
Кислота бензойная	25	0,0057 0,0096 0,0135	0,0336 0,0825 0,1620	0,170 0,116 0,083	$P = 2.29$ $K_a = 6.33 \cdot 10^{-3}$
валериановая	25	0,00132 0,00195 0,00711 0,01546 0,02889	0,00098 0,00168 0,01192	1,35 1,16 0,596 0,341 0,208	$P = 0.63$ $K_a = 0.0243$
валериано- вая(изо)	25	0,00555 0,00874 0,01307 0,02418 0,0778	0,00492 0,01016 0,02061 0,06067 0,6222	1,119 0,860 0,501 0,396 0,125	$P = 0.445$ $K_a = 2.17 \cdot 10^{-8}$
		0,0265 0,493	4,735 8,507	0,056 0,058	Andrews (Andrews)
капроновая	25	0,00236 0,00385 0,00607 0,09039	0,01956 0,04531 0,10236 7,703	0,121 0,085 0,059 0,0017	$P = 3.45$ $K_a = 4.72 \cdot 10^{-3}$
Гриэтиламин	25	0,0046 0,1042 0,3577	0,0239 1,0804 5,5340	0,14 0,10 0,065	
Ренол	25	0,0724 0,7706 0,9651	0,1244 4,7003 9,0287	0,582 0,164 0,107	Полимеризация мо- лекул в толуоле
Вода — хлорофо	р м		•		-
Кислота капроно- вая	25	0,00102 0,00308 0,00440	0,01625 0,0944 0,1725	0,0618 0,0326 0,0255	$P = 11,22$ $K_a = 0,0101$
капроновая <i>(иэо</i>)	25	0,00021 0,00163 0,00351	0,00148 0,02708 0,09298	0,142 0,060 0,038	$P = 7.90$ $K_a = 9.2 \cdot 10^{-8}$
Ренол Мар Мар — — — — — — — — — — — — — — — — — — —	25	0,0737 0,163 0,247 0,436	0,254 0,761 1,85 5,43	0,290 0,214 0,177 0,080	Димеризация моле- кул в хлоро- форме

9.7. РАСТВОРИМОСТЬ ГАЗОВ В ВОДЕ

9.7.1. Растворимость газов при давлении 101325 Па

Принятые обозначения: α — растворимость газов, $\mathrm{cm^3/дm^3}$ воды, при разных температурах (объемы газов приведены и иормальным условиям — $0\,^{\circ}\mathrm{C}$ и $101325\,^{\circ}\mathrm{Ta}$); q — растворимость газов, массовые доли, %.

	¥ 2				Тем	пература	a, °C			
Газ	Вели-	0	10	20	30	40	50	60	80	100
Ar	α	56,0	40,5	33,6	28,8	25,2	22,3	••• ,		
CH.	α	55,6	41.8	33,1	27,6	23,7	21,3	19,5	17.7	17,0
C ₂ H ₆	α	93,7	65,5	49,6	37,5	30,7	•••		• • •	
7 7 3	٠	$(1,5^{\circ})$	(10.5°)	$(19,8^{\circ})$	(29.8°)	$(39,7^{\circ})$		•••	• • •	
C ₈ H ₈	α		•••	39,4	28,8		• • •	• • •	• • •	
		4	ì	$(19,8^{\circ})$	$(29,8^{\circ})$	• • •	•••			• • •
C_4H_{10}	æ		• • • •	32,7	23,3	• • • •	• • •			• • •
				$(19,8^{\circ})$	$(29,8^{\circ})$				•••	• • •
C_2H_2	α	1730	1310		850	710	610		• • •	
C_2H_4	α	226	162	122	98		• • •		• • •	
CO -	α	35,2	27,8	22,7	19,2	16,5	14,2	12,0	7,6	0,0
CO ₂	ά	1713	1194	878	665	530	436	359		
Cl ₂ °	q	1,44	0,95	0.71	0,56	0.45	0,38	0,32	0,22	0,00
_			(9°)				•	•	• • •	•
ClO ₂	q	2,76	6,01	8,70	· · · · ·			• • •	• • •	• • •
H_2^-	ά	21,4	19,3	17,8	16,3	15,3	14,1	12,9	8,5	0,0
HČl	a	45,15	43,55	41,54 (23°)	40,25	38,68	37,34	35,94	•••	•••
HBr	ą	68,85	67,76		65,88 (25°)	•••	63,16	•••	60,08 (75°)	56,52
H ₂ S	α	4370	3590	2910	2330	1860			`•••	• • •
He	α	,	8,9	8,8	8,6	8,4			• • •	
			(15°)	•		(37°)				5
Kr	α	110,5	81,0	62,6	51,1	43,3	38,3	35,7	• • ,•	• • •
N ₂	α	23,3	18,3	15,1	12,8	11,0	9.6	8,2	5,1	0,0
NH_3	q	46,66	40,44	34,47	28,72	23,49	18,63	15,61		• • •
			•	•	• •	•	•	(56°)		
N_2O	α		947	675	530	449	• • •	`	• • •	
						(36°)				
NO	α	73,8	57,1	47,1	40,0	35,1	31,5	29,5	27,0	26,3
Ne	, α	• • •	10,8	10,4	9,9	9,6	•			
			(15°)	•	•	(37°)				
O ₂	α	48,9	38,0	31,0	26,1	23,1	20,9	19,5	17,6	17,0
O ₃	α	17,4	14,6	9,2	4,7	2,0	0,5	0,0		•••
Rn	α	510	326	222	162	126	100	85		
SO ₂	q		13,34	9,42	7,23	5,48	4,30	3,15	2,08	• • •
Xe	ά	242	174	123	98	82	73	-,	_,	

9.7.2. Газогидраты

Газогидраты относятся к большому классу соединений — клатратам, или нестехиометрическим соединениям включения. Они представляют собой молекулярные соединения, в которых один компонент образует структуры, содержащие в своих полостях другой компонент.

Кристаллические решетки газогидратов I и II структур относятся к кубической сингонии. Модели каркасов этих структур можно составить с помощью пентагонального додекаэдра в комбинации соответ-

ственно с 14- и 16-гранными полиэдрами.

Элементарная ячейка I структуры содержит 46 молекул воды и имеет восемь полостей: две додекаэдрические и шесть тетрадекаэдрических. При заполнении всех пустот газогидрат имеет стехнометрическую формулу $8M_1 \cdot 46H_2O$, или $M_1 \cdot 5$ 3/4 H_2O , где M_1 — молекула таких газов, как метан или сероводород. Для структуры I возможно образование двойного газогидрата состава $2M_1 \cdot 6M_3 \cdot 46H_2O$. В случае нескольких больших молекул (оксид серы (IV), метилбромид, хлор) заполняются лишь шесть больших полостей и формула газогидрата имеет вид $M_2 \cdot 7$ 2/3 H_2O ; такую структуру называют переходной I структурой.

Элементарная ячейка II структуры состоит из 136 молекул воды, образующих восемь гексаэдрических и шестнадцать додекаэдрических полостей. Их формируют гидратообразующие вещества с большими молекулами, которые заполняют только восемь больших полостей; стехиометрическая формула при этом имеет вид $8M_3 \cdot 136 \; \text{H}_2\text{O}$, или $M_3 \cdot 17 \; \text{H}_2\text{O}$. При заполнении больших пустот крупными молекулами (CCl₄, C₆H₈) и малых — небольшими молекулами (H₂S, CO₂, N₂, O₂)

образуются двойные газогидраты состава $M_3 \cdot 2M_1 \cdot 17H_2 \circ 1.00$

Соединения клатратного типа являются потенциально нестехнометрическими, так как некоторые полости в них могут оставаться незаполненными. Одной из причин этого может быть сама вода, молекулы которой способны внедряться в пустоты структуры, ею образованной.

Гидратообра-			ические ловия	Инвар точка с	и а нтная Со льдом	Ству	ктура
зователь	Формула	Т, К	р, кПа	7, K	р, кПа	rasore	драта
Бромистый ме- тил (бром- метан)		287,88	153,43	279,91	24,13	Перех	одная 1
Бутан (<i>изо</i>) (2-метилпро- пан)	C ₄ H ₁₀ C ₄ H ₁₀	274,65 275,75	•••	•••	•••	II	
Пропан	C_3H_8	278,85	551,99	• • •		II	
Фреон-11	CCl ₃ F	281,45	62,12		• • •	II	
Фреон-12	CCl_2F_2	285,60	458,15	273,03	34,52	II	
Фреон-21	CHČI, F	281,84	101,34	273,02	14,66	II	
Фреон-22	CHCIF,	290,95	860,05		• • • •	Перех	олная І
Фреон-31	CH ₂ CIF	291,03	286,19	263,95	22,53	Перех	олная
Фреон-12В1	CCIBrF,	283,05	169,56	273,15	19,59	II	
Фреон-13В1	CBrF,	~ 285		• • •		ĪĪ	
Фтористый метил (фтор- метан)	CH₃F	290,95	53,32	•••		•••	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Хлор	Cl ₂	301,45	851,79	272.91		T	. *
Хлористый метил (хлор- метин, фре- он-40)	CH₃CI	293,55	485,21	292,97	35,86	Î ·	•
Этан Этилен	C ₂ H ₆ C ₂ H ₄	287,95 291,45	•••	•••	•••	I I	

9.8. РАСТВОРИМОСТЬ РАЗЛИЧНЫХ ВЕЩЕСТВ В НЕКОТОРЫХ ОРГАНИЧЕСКИХ РАСТВОРИТЕЛЯХ [г/100 г РАСТВОРА ПРИ 15—25 °C]

	1				
Вещество	Этиловый спирт	Метиловый спирт	Ацетон	Глицерин	Пиридин
AgCl	1,38 · 10-5	5,59 - 10-5	0,13 · 10-5	•••	1,87
AgNO _a	3,0	3,58	0,44	•••	25.2
AlBr ₃	• • •	• • •	•••		3,86
BaBr ₂	3,96	29,6	0,03		0,00
BaCl ₂		2,13	• • • •	8,87	
Ba(NO ₃) _a	0,002	0,57	0,005		
Bili ₃	3,5	• • •	•••	•••	
CaBr ₂	34,8	39,9	2,67	• • •	
CaCl ₂	20,5	22,6	0,01	• • •	1,63
Ca(NO ₃) ₂	33,9	57,3(10°)	14,4	• • •	• • •
CdBr ₂	23,1	13,9	15,30	• • •	
CdCl ₂	1,50	1,68	• • •	• • •	0.80
CdI,	52,6	67,3	30,0	• • •	0,43
CeCi ₃	• • •	• • •	• • •	•••	1.55
CoCl ₂	• • •	• • •	2,8	•••	0,6
CoSO ₄	• • •	1,04	• • • •	•••	• • •
CoSO ₄ · 7H ₂ O	2,5	5,5	• • •	• • •	
Cu(CH ₃ COO) ₂	• • •	0,48	0.28	9,1	1,03
CuCl ₂	35,7	36,5	2,9	• • •	0.35
Cul ₂	• • •		• • •	•••	1,74
CuSO ₄	•••	1,40	• • •	•••	•••
CuSO ₄ · 5H ₂ O	1,1	15,6	• • •	• • •	
H_3BO_3	11	• • •	0,5	22,2	65,55
HCl (газ)	41	88,7	•••		
HgBr,	22,9	39,8	34,76		8,0(30°)
Hg(CN) ₂	9,25	32,01	9,34	21,7	15.9
HgCl ₂	32,0	34,0	58,5	34,4	19,78
Hgl ₂	2,06	3,08	3,25	•••	32
KBr	0,14	2,04	0,02	15	
KCN	0,86	4,67	•••	24,2	
KCI	0,034	0,5	8,7 - 10-5	3,58	•.•
KI	1,72	14,16	1,30	28,6	0,26(10°)
КОН	27 ,9(28°)	35,5(28°)	•••	•••	
LiBr	72	53,9		• • •	
LiCl	19,57	30,4	1,17	10,0	7,22
MgCl ₂	5,30	13,8	• • • •	•••	• • • •
MgSO ₄	0,025	0,276	• • •	•••	
$MgSO_4 \cdot 7H_2O$		29,1	• • •		
NH ₃ (газ)	11,5	19,2		• • • •	
NH ₄ Br	3,12	11,1	•••	•••	•••
$(NH_4)_2CO_3$	21,2	•••	• • •	16,7	• • •
NH ₄ Cl	0,6	3,24	9	• • •	• • •
NH ₄ ClO ₄	1,87	6,4	2,2	• • •	• • • .
NH ₄ I	26,3	• • •	-,-		• • •
NH ₄ NO ₃	3,8	17,1		• • •	0,35
NaBr	2,27	14,4	0,095		-,

Продолжение таблицы

Вещество	Этиловый спирт	Метиловый спирт	Ацетон	Глицерин	Пиридин
NaCl	0,07	1,39	4,0 · 10-5	•••	
Na _a CrO ₄	• • •	0,35	• • •		• • •
Nai	29,86	42,16	23,1	• • •	
NaNO.	0,31	4,24	• • •	• • •	• • •
NaNO ₃	0,036	0.41	* • • •	·	
NaOH	14,7(28°)	23,6 (28°)	• • • •		• • • •
NiCl ₂	10				
NICI. 6H.O	53,7				
NISO4	• • •	. 4	1 5		• • • •
$NISO_4^2 \cdot 7H_2O$	2,2	20	·		
PbCl ₂	• • •	• • •		2 .	0,46
PbI.		• • • •	· • • •	0,002 (59°)	0,21
$Pb(NO_3)_2$	0,4	1.36		.,,	6,35
SrCl ₂		38,8 (6°)			
SrCl ₂ · 6H ₂ O	•••	63,3			
ZnCl,			30,3	33,3	2,55
ZnSO ₄	0.038	0,64		25,9	
ZnSO ₄ · 7H ₂ O		5,9		35	
2		ĊS ₂	CCI		- f
Иод	21,33	14,62	22,5	~1	
Cepa	0.05	29,5	0,72	0,14	1,48
Фосфор	0,32	89,8 (10°)	1,25	0,25	• • •

9.9. ДАВЛЕНИЕ ПАРОВ ВОДЫ НАД РАСТВОРАМИ

9.9.1. Давление паров воды над растворами H_2SO_4

Массовая		*	p, 10° I	Па, при t , ${}^{\circ}$ С		
доля Н₂SO ₄ , %	10	15	20	25	30	35
10	11,7	16,4	22,9	30,3	40,5	53,7
20	10,8	15,1	20,5	27,9	37,3	49,6
25	10,0	14,0	19,3	26,1	35,1	46,5
30	9,2	12,9	17,6	23,9	32,0	42,5
35	8,3	11,6	15,5	21,1	28,3	37,6
40	6,9	9,7	13,1	17,9	24,1	32,3
45	5,6	7,9	10,7	14,7	19,7	26,5
50	4,3	6,0	8,3	11,3	15,3	20,7
55	3,1	4,3	5,9	9,2	11,2	15,1
60	2,0	2,8	3,7	5,2	7,2	9,9
65	1,1	1,6	2,1	3,1	4,3	5,9
70	0,4	0,7	1,1	1,2	1,7	2,5
7 5	0.13	0,3	0,4	0,5	0,8	1,1
80	0,05	0,08	0,13	0,13	0,3	0,4
85	0.013	0,03	0,04	0,05	0,08	0,12
90	0,003	0,004	0,007	0,011	0,013	.0,027

Примечание: 10° Па = 0,750 мм рт. ст.; 1 мм рт. ст. = 133,3 Па.

9.9.2. Давление паров воды над растворами NaOH и NaCl

.	p, 10° I	Та, при содержа	ании NaOH, г/1	00 гводы	р, 10 ² Па,
t, •C	10 (9,1)*	20 (16,7)*	30 (23,1)*	40 (28,6)*	над насынсен- ным раство- ром NaCl
5	8,1	7,6	6,9	6,1	6,5 8,1
8	10,0	9,3	8,5	7,6	8,1
10	11,5	10,7	9,7	8,7	9,2
12	13,1	12,3	11,1	9,9	10,5
15	15,9	14,8	13,5	12,0	12,9
18	19,3	17,9	16,4	14,5	15,6
20	21,9	20,3	18,5	16,5	17,6
22	24,7	22,9	21,1	18,7	20,0
25	29,6	27,6	25,2	22,4	23,9
28	35,5	32,9	30,1	26,9	28,3
30	- 39,6	36,9	33,7	29,9	32,0

^{*} В скобках приведено содержание КОН, г/100 г раствора.

9.9.3. Давление паров воды над насыщенными растворами Na_2SO_4

	16 15,5	18 17,2	20 19,6	22 22,3	24 25,2	26 28,5
t, °C	28	30	32,4	35	39	
p. 10º ∏a	31.7	36.3	41.1	48,0	59,5	

9.10. ПЛОТНОСТЬ ВОДНЫХ РАСТВОРОВ

9.10.1. Плотность водных растворов кислот при 20 °C

	Азотна	кислота	Серная	кислота	Соляна	и кислота
Массовая доля кислот, %	Плот- ность, кг/м ³	Массовая концентрация НNО ₃ , г/дм ³	Плот- ность, кг/м ³	Массовая концент- рация НСІ, г/дм ³	Плот- ность, кг/м ⁸	Массовая концент- рация Н ₂ SO ₄ , г/дм ⁸
1 .	1004	10,04	1005	10.05	1003	10,03
2	1009	20,18	1012	20,24	1008	20,16
4	1020	40,80	1025	41,00	1018	40,72
6	1031	61.87	1038	62,31	1028	61,67
8	1043	83,42	1052	84,18	1038	83,07
10	1054	105,4	1066	106,6	1047	104,7
12	1066	127,9	1080	129,6	1057	126,9
14	1078	150,9	1095	153,3	1068	149,5
16	1090	174,4	1109	177,5	1078	172,4
18	1103	198,5	1124	202,3	1088	195,8
20	1115	223,0	1139	227,9	1098	219,6
22	1128	248,1	1155	254,1	1108	243,8

	Азотная	кислота	Серная	кислота	Соляна	я кислота
Массовая доля кислот, %	Плот- ность, кг/м ³	Массовая концентрация НNО ₃ , г/дм ³	Плот- ность, кг/м ⁸	Массовая концент- рация ТСІ, г/дм ³	Плот- ность, кг/м ³	Массовая концент- рация Изсо 4, г/дм ⁸
24	1140	273,7	1170	280,9	1119	268,5
26 28	1153	299,9	1186	308,4	1129	293,5
30	1167 1180	326,6	1202	336,6	1139	319,0
30 32	1193	354,0	1219	365,6	1149	344,8
32 34	1207	381,9	1235	395,2	1159	371,0
36	1207	410,4 439,4	1252 1268	425,5	1169	397,5
- 3 8	1234	439,4 468,7	1286	456,6	1179	424,4
40	1246	498,5	1303	488,5	1189	451,6
42	1259	528,8	1321	521,1	1198	479,2
44	1272	559,6	1338	554,6 588,9	_	_
46	1285	591,0	1357	624,2		_
48	1298	622.8	1376	660.5		
50	1310	655,0	1395	697,5		_
52	1322	687,4	1415	735.8	_	
54	1334	720,1	1435	774,9	_	_
56	1345	7 53,1	1456	815,2	_	
58	1356	786,5	1477	856,7	_	_
60	1367	820,0	1498	898.8	-	
62	1377	853.7	1520	942,4		
64	1387	887,4	1542	986,9		
66	1396	921,3	1565	1033		
68	1405	955,3	1587	1079		
70	1413	989,4	1611	1127		
72	1422	1024	1634	1176		
74	1430	1058	1657	1226		-
7 6	1438	1093	1681	1278		· · · — · · .
78	1445	1127	1704	1329		
80	1452	1162	1727	1382		· <u> </u>
82	1459	1196	1749	1434		
84	1466	1231	1769	1486		
86	1472	1266	1787	1537	, . -	- .
88	1477	1300	1802	1586		 '
90	1483	1334	1814	1633	_	
92	1487	1368	1824	1678	•	
94	1491	1402	1831,2	1721		
96	1495	1435	1835,5	1762		_
98	1501	1471	1836,5	1799	-	_
100	1513	1513	1830,5	1831		. —
	1.0					

9.10.2. Плотность олеума при 20 °C

Плот- ность, кг/м³	Массовая доля свобод- ного SO ₂ , %	Массовая доля общего SO ₂ , %	Плот- ность, кг/м ³	Массовая доля свобод- ного SO ₂ , %	Массовая доля общего SO ₃ , %
1831	0	81,63		. _	_
1837	2	81,99	1904	22	85,67
1843	4	82,36	1911	24	86,04
1849	6	82,73	1917	26	86,40
1856	8	83.09	1924	28 .	86,77
1862	10	83,47	1931	30	87,14
1869	iž	83,83	1937	32	87,51
1876	14	84,20	1943	34	87,87
1883	16	84,57	1949	36	88,24
1890	18	84,94	1955	38	88,61
1897	20	85,30	1961	40	89,0

9.10.3. Пересчет массы олеума в массу моногидрата серной кислоты

$${
m H_2SO_4 + nSO_3 + nH_2O} = (n+1) {
m H_2SO_4}$$
 олеум моногидрат

Принятые обозначения: A — массовая доля в олеуме свободного SO_3 , %; k — переводной множитель; B — масса олеума данной крепости; C — масса моногидрата, соответствующая B; $C = B \cdot k$.

-	А	k	Aı	k	A	k	A	k
	1 2 3 4 5 6 7 8	1,0023 1,0045 1,0068 1,0090 1,0112 1,0135 1,0158 1,0180	9 10 11 12 13 14 15	1,0203 1,0225 1,0248 1,0270 1,0292 1,0315 1,0338 1,0360	17 18 18,5 19 20 21 22 23	1,0382 1,0405 1,0416 1,0428 1,045 1,0472 1,0495 1,0518	24 25 26 27 28 29 30	1,0540 1,0562 1,0585 1,0608 1,0630 1,0652 1,0675

9.10.4. Плотность (ρ) водных растворов фосфорной и хлорной кислот при 20 °C

ģ	Ф	осфорная кисло	ота	Хлорна	я кислота
Массовая доля кисло- ты, %	' ρ, κτ/m ³	Массовая концентрация Н ₃ РО ₄ , г/дм ³	Массовая доля Р ₂ О ₅ , %	ρ, κ r/ м³	Массовая концентрация НСІО ₄ , г/дм ³
1	1004	10,04	0;72	1005	10,1
2	1009	20,18	1,4	1010	20,5
4	1020	40,80	2,9	1022	41,0
6	1031	61,85	4,3	1035	61,5
8	1042	83,36	5,8	1047	85,0
10	1053	105,3	7,2	1060	106,0
12	1065	127,8	8,7	1073	128,6
14	1076	150,7	10,1	1086	142,7
16	1089	174,1	11,6	1100	176,9
18	1101	198,1	13,0	1113	201,0
20	1113	222,7	14,5	1127	223,1
22	1126	247,8	15,9	1142	2 51,3
24	1140	273,5	17,4	1158	277,4
26	1153	299,8	18,8	1173	305,5
28	1167	326,6	20,3	1190	3 33,6
30	1181	354,2	21,7	1206	361,8
35	1216	425,6	25,4	1250	438,2
40	1254	501,6	29,0	1299	518,6
45	1293	581,9	32,6	1352	609,0
50	1335	667,5	36,2	1408	703,5
55	1379	758,5	39,8	1472	812,0
60	1426	855,6	43,5	1539	925,6

ė l	Ф	осфорная кисло	ота	Хлорна	я кислота
Массовая доля кисло- ты, %	ρ, kr/m³	Массовая концентра- ция Н ₃ РО ₄ , г/дм ³	Массовая доля Р₂О₅, %	р, кг/м³	Массовая концентрация НСЮ ₄ , г/дм ³
65	1475	958,8	47,1	1606	1045,2
70	1526	1068	50,7		-
75	1579	1184	54,3	– .	. –
80	1633	1306	58,0	. —	
85	1689	1436	61,6		_
90	1746	1571	65,2	_	
92	1770	1628	66,6	_	
94	1794	1686	68,1		-
96	1819	1746	69,6		√ - *
98	1844	i 807	71,0	_	_
100	1870	1870	72,4		

9.10.5. Плотность $\{ \rho \}$ водных растворов некоторых неорганических и органических кислот, $\kappa r/m^3$

		ρ	, KΓ/M ³ ,	при мас	совой доле	кислоты,	%
Кислота	t, °C	2	6	10	14	18	20
HBr	20	1012	1042	1072	1105	1140	1158
HCN	18	996	990	982	972 (15 %)	• • •	958
HF	20	1005	1021	1036	1050	1064	1070
ĤÏ	$\frac{1}{20}$	1013	1043	1075	1109	1146	1165
HIO ₃	18	1016	1052	1090	1131	1174	1197
H ₂ SiF ₆	17,5	1015	1048	1082	1117	1154	1173
d-Винная	20	1007	1025	1044	1063	1084	1094
Лимонная	18	1007	1022	1038	1054	1071	1080
Шавелевая	17,5	1007	1021	1035	1046	-	
					(13 %)		

		ρ,	кг/ м³ ,	при массов	ой доле в	ислоты, 9	ó
Кислота	t, °C	24	30	35	40	45	50
HBr	20	1196	1258	1315	1377	1445	1517
HCN	18	943 (25 %)	925	90 8	892	876	860
HF	20	1084	1102	1114 (34 %)	1128	1144	1155
HI	20	1206	1274	`1336′	1403	1476	1560
HIO,	18	1245	1322	1390	1464	• • •	
H ₂ SiF ₆	17,5	1212	1272	1314 (34 %)	•••	•••	•••
d- Винная	20	1115	1148	`1170´ (34 %)	1206	1240 (46 %)	1266
Лимонная	18	1097	1124	(34 %)	1171	1202 (46 %)	1222
Щавелевая	17,5		<u> </u>	— / U		`	

9.10.6. Плотность (ρ) водных растворов уксусной и муравьиной кислот при 20 $^{\circ}$ C

ова я кис %	Уксус	ная кислота	Муравьи	ная кислота
Мас совая доля кис- лоты, %	ρ, кг/м³	Массовая кон- центрация СН ₃ СООН, г/дм ³	ρ, κ г/ м³	Массовая кон- центрация НСООН, г/дм ³
1	999,6	9,996	1002	10,02
5	1005,5	50,28	1012	50,58
10	1012,5	101,3	1025	102,5
15	1019,5	152,9	1037	155,6
20	1026,3	205,3	1049	209,8
25	1032,6	258,2	1061	265,2
30	1038,4	311,5	1073	321,9
35	1043,8	365,3	1085	379,6
40	1048,8	419,5	1096	438,5
45	1053,4	474,0	1109	498,8
50	1057.5	528,8	1121	560,4
55	1061,1	583,6	1132	622,6
60	1064,2	638,5	1142	685,4
65	1066,6	693,3	1154	750,3
70	1068,5	748,0	1166	815,9
75	1069,6	802,2	1177	882,7
78	1070,0	834,5	1182	921,8
80	1070,0	856,0	1186	948,8
82	1069.8	877,2	1190	975,5
84	1069,3	89 8, 2	1193	1002
85	1068,9	908,6	1195	1016
86	1068,5	918,9	1198	1030
88	1067.5	939,4	1201	1057
90	1066,1	959,5	1204	1084
92	1064,3	979,2	1208	1111
95	1060,5	1007	1214	1153
100	1049,8	1050	1221	1221

9,10.7, Плотность (р) водных растворов щелочей при 20 °C

2	* <u>,440,246 :</u>		l dereser l		700000	11pm 20 C
		Аммиак	Гидро	ксид натрия	Гидрок	сид калия
Массовая доля ще- лочи, %	ρ, κτ/m³	Массовая концентрация NH ₄ OH, г/дм ³	ρ, κr/m³	Массовая концентрация NaOH, г/дм ³	ρ, κr/m³	Массовая концентрация КОН, г/дм ³
1	994	9,94	1010	10,10	1007	10
2	990	19,79	1021	20,41	1011	20
. 4	981	39,24	1043	41,71	1033	41
2 4 6 8	973	58,38	1065	63,89	1049	62
	965	77,21	1087	86,95	1065	84
10	958	95,75	1109	110,9	1082	108
, 12	.950	114,0	1131	135,7	1100	132
14	943	132,0	1153	161,4	1119	157
16	936	149,8	1175	188,0	1137	181
18	930	167,3	1197	215,5	1156	208
20	923	184,6	1219	243,8	1176	235
22	916	201,6	1241	273.0	1196	264
24	910	218,4	1263	303,1	1218	292
26	904	235,0	1285	334,0	1240	322
28	898	251,4	1306	365,8	1263	353
30	892	267,6	1328	398,4	1287	387
32		· · · <u></u>	1349	431.7.	1311	420
34		_	1370	465,7	1336	454
36			1390	500,4	1361	489
38	_		1410	535,8	1386	524
40	-	- `	1430	572,0	1411	564
42	-		1449	608,7	1436	604
44	, 	_	1469	641,1	1461	644
46	_	<u></u>	1487	684,2	1485	684
48			1507	723,1	1510	625
50	_ ·		1525	762,7	1538	666

9.10.8. Плотность (ρ) известкового молока при 20 °C

Содерж СаО,	ание г	Массовая доля	-	Содерж СаО,	кание г	Массовая	t Mi
в 100 г	в 1 дм³	Ca (OH),	ρ, кг/м³	в 100 г	в 1 дм ³	доля Ca(OH), %	0 √ KΓ/M³
0,99	10	1,31	1009	14,30	160	18.90	1119
1,96	20	2,59	1017	15,10	170	19,95	1126
2,93	30	3,87	1025	15,89	180	21,00	1133
3,88	40	5,13	1032	16,67	190	22,03	1140
4,81	50	6,36	1039	17,43	200	23,03	1148
5,74	60	7,58	1046	18,19	210	24.04	1155
6,65	70	8,79	. 1054	18,94	220	25,03	1162
7,54	80	9,96	1061	19,68	230	26,01	1169
8,43	90	11,14	1068	20,41	240	26,96	1176
9,30	100	12,29	1075	21,12	250	27,91	1184
10,16	110	13,43	1083	21,84	260	28,8 6	1191
11,01	120	14,55	1090	22,55	270	29.80	1198
11,86	130	15,67	1097	23,24	280	30,71	1205
12,68	140	16,76	1104	23,92	290	31,61	1213
13,50	150	17,84	- 1111	24,60	300	32,51	1220

8 9.10.9. Плотность [р] водных растворов некоторых неорганических веществ

	50	1668	i	1	ı	1	. 1	ĭ	1	1505	. 1	1551	l	1613	J	1540	!	ı	ı	
	40	1470	i		ı	1	1396	1547	ı	1371	1	1471	- 1	1449	1374	1414	ı	1396	l	
	30	1320	. 1	1	1	·J	1282	1381	1	1260	ł	1291	1	1307	1259	:	1	1278	ı	一方の一方では大きな大きな
ства, %	20	1194	. I	1226	1203	1	1177	1224	1205	1163	ı	1182	1213	1181	1160	1190	1132	1174	ļ	A Company of the Comp
р, кг/м³, при массовой доле вещества,	10	1088	1090	1105	1092	1066	1083	1102	1095	1076	1107	1085	1100	1054	1074	1090	1063	1082	1070	
три массово	a	1069	1071	1083	1072	1052	1066	1080	1075	1060	1084	1067	1078	1067	1058	1071	1050	1064	1055	
ρ, KΓ/M³, 1	9	1050	1052	1001	1052	1038	1049	1059	1055	1045	1062	1049	1057	1050	1042	1053	1036	1047	1040	
	4	1032	1034	1040	1034	1025	1032	1038	1036	1030	1040	1032	1037	1033	1027	1034	1023	1031	1026	
	2.	1015	1016	1019	1015	1011	1015	1018	1017	1014	1019	1015	1018	1016	1012	1016	1011	1014	1012	
	1	1007	1007	1009	:	:	1007	:	1008	1006	1009	1007	1008	1007	1005	1007	1004	. 9001	1005	
	TBO	(20°)	(18°)	(19°)	(20°)	(18°)	(50°)	(18°)	(18°)	(15°)	(20°)	(20°)	(18°)	(17,5°)	(20°)	(20°)	(20°)	(18°)	(20°)	
q	рещество	AgNO3	AICI ₃	$\mathrm{Al}_2(\mathrm{SO}_4)_3$	$BaCl_2$	BeCl ₂	CaC1 ₂	CdSO ₄	CoC12	CrO_3	CuSO ₄	FeCl3	${ m FeSO_4}$	$\mathrm{Fe}_2(\mathrm{SO}_4)_3$	KBr	K_2CO_3	KCI	K2CrO4	$K_2Cr_2O_7$	

	KI	(50°)	1005	1013	1028	1043	1059	1076	1466	•	1395	1545
	KMnO4	(15°)	1006	1013	1027	1041	i	ı	ł	1	1	i,
	K_2SO_4	(20°)	1006	1014	1031	1047	1064	1081	1	1	J	. 1
	LiCl	(20°)	1004	1010	1021	1033	1044	1056	1115	:	1254	1
	LiOH	(20°)	1010	1021	1043	1065	1086	1107	1	1	1	ļ
	Li ₂ SO ₄	(20°)	1006	1015	1032	1050	1068	1086	1178	ı	1	
	MgCl ₂	(20°)	:	1015	:	:	1065	1084	1176	1267	:	:
	MgSO4	(20°)	:	1019	1039	1060	1082	1103	1220	1	ļ	i
	MnCl ₂	(18°)	1007	1015	1032	1050	1068	1085	1185	1299	ı	j
	MnSO ₄	(12°)	1009	1019	1039	1060	1081	1102	1220	1356	I	1
	NH,CI	(50°)	1001	1004	1011	1017	1023	1029	1057	j	1	1
	Na ₂ CO ₃	(50°)	1008	1019	1039	1060	1081	1102	ı	1	1	i
	NaCi	(50°)	1005	1012	1026	1041	1056	1071	1148	1	1	j
	NaHCO ₃	(18°)	1006	1013	1028	1043	1058	l		ı	1	1
	NaH ₂ PO ₄	(25°)	1004	1012	1027	1042	1057	1073	1	1	1	1
	Na ₂ HPO ₄	(.81)	1009	1020	1043	1067	1	1	J.	i	1	1
	Na_3PO_4	(15°)	1009	1019	1040	1062	1085	1108	ı	ı	J	1.
	Na_2SO_4	(50°)	1008	1016	1035	1053	1072	1001	ı	1		i
	Na ₂ S ₂ O ₃	(20°)	1006	, 1014	1031	1048	1065	1082	1174	1273	1382	·j
	NiSO4	(18°)	1009	1020	1042	1063	1085	1109	1	1	I	ı
	Pb(NO ₃) ₂	(18°)	1007	1016	1034	1052	1072	1001	1203	1328	. J	1
	$Sr(NO_3)_2$	(20°)	:	1015	1031	1048	1065	1083	1179	1290	1419	. 1
	TI ₂ SO ₄	(20°)	1007	1017	1036	1	1	1	1	i	1	1
	$ZnCl_2$	(20°)	:	1016	1035	1053	1071	1090	1187	1293	1417	1568
709	ZnSO4	(20°)	:	1019	1040	1062	1084	1107	1232	1378		1
)												

	Метиловый спи	рт		Этиловый сп	ирт
р, кг/м³	Массовая доля, %	Объемная доля, %	р, кг/м³	Массовая доля, %	Объемная доля, %
997	1	1,25	997,6	0,8	1
995	2	2,50	996,2	1,6	2
992	4	4,99	993,3	3,2	4
989	6 .	7,45	990,6	4,6	6
985	8	9,91	988,2	6.4	. 8
982	10	12,35	985,8	8,1	10
979	12	14,77	983,5	9,7	12
977	^ Î4	17,18	981,3	11,3	14
974	16	19,85	979,2	13,0	16
971	18	21,96	977,2		
968	20	24,33	974,2	14,6	18
965	22	26,69	973,2	16,3	20
963	24	20,09 29,03	970,2	17,9	22
960	2 6		971,2	19,6	24
		31,35	969,1	21,3	26
957	28	33,66	966,9	23,0	28
954	30	36,95	964,7	24,7	30
951	32	38,22	962,3	26,4	32
947	34	40,48	959,8	28,1	34
944	36	42,71	957,1	29,9	36
941	38	44,92	954,2	31,6	38
937	40	47,11	951,2	33,4	40
934	42	49,28	948,1	35,2	42
930	44	51,42	944,8	37 ,0	44
926	46	53,54	941,3	38,8	46
922	48	55,64	937,7	40,6	48
919	50	57,71	933,9	42,5	50
915	52	59,76	929,9	44,4	52
910	. 54	61,78	925,9	46,3	54
906	56	63,78	921,7	48,2	56
902	58	65,75	917,4	50,2	58
898	60	67,69	913,1	52,2	60
893	62	69,61	908,6	54,2	62
889	64	71,49	904.0	56,2	64
884	66	73,34	899,3	58,2	66
880	68	75,17	894,5	60,3	68
875	70	76,98	889,6	62,4	70
870	72	78,75	884,6	64,6	72
865	74	80,48	879,5	66,8	7 4
860	76	82,12	874,3	69,0	76
855	78	83,86	869,0	71,2	78
850	80	85,50	863.5	73,5	80
845	82	87,11	859,9		82
840	84	88,68	852,1	75,9	82 84
835	86	90,21		78,2	86
829	88	90,21	846,2	80,7	
824	90		840,0	83,1	88
818	90 92	93,19	833,6	85,7	90
010	94	94,63	826,8	88,3	92

Метиловый спирт			Этиловый спирт			
ρ, KΓ/M ⁸	Массовая доля, %	Объемная доля, %	ρ, кг/м³	Массовая доля, %	Объемная доля, %	
813	94	96,02	819,6	91,0	94	
807 801	96	97,37	811,7	93,9	96 98	
796	98 100	98,70 100,0	803,3 793,6	96,8 100,0	100.0	

9.10.11. Плотность [ρ] водных растворов органических веществ при 20 °C

_	1:		ρ, кг	/M ³ , n	ри ма	совой	доле	вещес	гва, %		
Вещество	1	2	4	6	,8	10	20	40	60	80	100
Ацетон	999		•••	•••		985	972	941	899	850	793
Винная кислота	1003	1007	1016	1025	1034	1043	1094	1205			· —
Глицерин	1001	1003	1008	1012	1017	1022	1047	1099	1153	1208	1261
Муравьиная кислота	1002	1004	1009	1014	1020	1025	1049	1097	1143	118 6	1221
Пропиловый спирт	997	996	993	990	988	985	972	933	· 887	840	789
Сахароза	1002					1038	1081	1176	1287	1412	,
Уксусная кислота	1000								1064	1070	1050
Формальдегид	1002		•••	•••	•••	1028	1056	1111	••••	•••	•••

🖔 9.11. ВЯЗКОСТЬ ВОДНЫХ РАСТВОРОВ

9.11.1. Относительная вязкость растворов неорганических веществ при 25°C (относительно воды)

		ная вязкость п вещества эквие	ри молярной ко залента, моль/л	нцент рации
Вещество	0,125	0,25	0,5	1,0
1/6 Al ₂ (SO ₄) ₃	1,0381	1,0825	1,1782	1,4064
1/2 BaĈl,	1,0128	1,0263	1,0572	1,1228
1/2 CaCl ₂	1,0172	1,0362	1,0764	1,1563
1/2 CuSÕ,	1,0384	1,0802	1,1603	1,3580
/3 FeCl ₃	1,0302	1,0602	1,1334	1,2816
HC1	1,0095	1,0166	1,0338	1,0671
/2 H ₂ SO ₄	1,0082	1,0216	1,0433	1.0898
/2 K,CO,	1,0192	1,0391	1,0784	1.1667
KČI	0.9928	0,9903	0,9874	0.9872

	Относитель	ная вязкость пр вещества эквив		нцентрации
Вещество	0,125	0,25	0,5	1,0
KI		****	• • •	0,912
/2 K ₂ SO ₄	1,0078	1,0206	1,0486	1,1051
/2 MgCl	1,0206	1,0445	1,0445	1,2015
/2 MgSO4	1,0320	1,0784	1,1639	1,3673
/2 MnCl ₂	1,0230	1,0481	1,0982	1,2089
/2 MnSO ₄	1,0366	1,0761	1,1690	1,3640
NH ₄ Cl	0,9999	0,9990	0,9976	0,9884
NH, OH	1,0030	1,0058	1,0105	1,0242
$/2 (NH_{4}^{1}_{2}SO_{4})$	1,0148	1,0302	1,0552	1,1114
$/2$ Na_2CO_3	1,0310	1,0610	1,1367	1,2847
NaČl	1,0126	1,0239	1,0471	1,0973
NaOH	1,0302	1,0560	1,1058	1,2291
/2 Na ₂ SO ₄	1,0235	1,0522	1,1058	1,2291
/2 Pb(NO ₃) ₂	1,0066	1,0174	1,0418	1,1010
/2 ZnCl	1,0238	1,0526	1,0959	1,1890
/2 ZnSO₄	1,0358	1,0824	1,1726	1,3671

9.11.2. Динамическая вязкость [η] растворов органических веществ при 20 °C

•	1	r	, мПа	с, при	массов	ой дол	е веще	ства,	%	
Вещество	10	20	30	40	50	60	70	80	90	100
Глицерин	1,311	1,769	2,501		6,050				234,6	1499
Метиловый спирт	1,32	1,58	1,78	1,84	1,76	1,60	1,39	1,14	0,86	0,58
Пропиловый спирт	1,59	•••	2,62	•••		3,14	•••	2,79	2,53	2,18
Сахароза	• • •	1,96		6.20		56, 5				
Уксусная кислота	1,21	1,41	1,63	1,87	2,13	2,39	2,64	2,69	2,31	1,26
Этиловый спирт	1,54	2,18	2,71	2,91	2,87	2,67	2,37	2,01	1,61	1,20
			•							

9.11.3. Вязкость (η) водных растворов глицерина

Относительная	Массовая доля	η , мПа с, при t , °C				
плотность по воде, 25°/25 °C	глицерина, %	20	25	30		
1,26201	100	1495,0	942,0	622,0		
1,25945	99	1194,0	772,0	509,0		
1,25685	98	971,0	627,0	423,0		
1.25425	97	802,0	521.5	353,0		
1,25165	- · · 96	659,0	434,0	295,8		

Относительна я					
плотность по воде, 25°/25°C	глицерина, %	20	25	30	
1,24910	95	543,5	365,0	248,0	
1,20925	80	61,8	45,72	34,81	
1,12720	50	6,032	5,024	4,233	
1,06115	25	2,089	1,805	1,586	
1,02370	10	1,307	1,149	1,021	

9.12. ВРАЩЕНИЕ ПЛОСКОСТИ ПОЛЯРИЗАЦИИ

Вращение плоскости поляризации света в чистых жидкостях или растворах изменяется в зависимости от длины световой волны и от температуры, в растворах — также от природы растворителя и концентрации раствора.

Удельное вращение $[\alpha]_t^{\lambda}$ (для длины волны λ и при температуре t) равняется:

$$[\alpha]_t^{\lambda} = \frac{\text{Вращение на 1 дм раствора}}{M_{\text{асса активного вещества (г/см³ раствора)}}$$

Для чистых жидкостей

$$[\alpha]_t^{\lambda} = \frac{A}{lo} 1000.$$

Для раствора активного вещества

$$[\alpha]_t^{\lambda} = \frac{100A}{lc} = \frac{A}{l\rho\rho} 1000,$$

где A — угод вращения плоскости поляризации (градусы) для длины световой волны λ и температуры жидкости t; l — длина столбика жидкости, дм; p — масса активного вещества в 100 г раствора, г; ρ — плотность (кг/м³) жидкости или раствора при температуре t; $c = \frac{\rho p}{1000}$ — масса (г) вещества в 100 см³ раствора при температуре t.

Молекулярное вращение равняется произведению удельного вращения на массу молекулы активного вещества (г).

В растворах сахаристых веществ часто наблюдается явление муторотации, которое состоит в том, что удельное вращение, наблюдаемое в свежеприготовленных растворах, впоследствии сильно изменяется и достигает в конце концов некоторого постоянного значения; иногда наблюдается даже изменение знака вращения (например, левое вращение переходит в правое). В таблице первое значение относится к свежеприготовленным растворам, стрелка указывает на значение вращения после достижения равновесного состояния.

Все значения даны для желтой линии D натрия. Знак «+» обозначает правое вращение: знак «-» — левое вращение. q=100-p; e=q/100.

Вещество	<i>t</i> , ∘C	Концент- рация	[α] ^D
Водные растворы			
d -Винная кислота $C_4H_6O_6$	20	с от 8 до 50	$-1,3292 + 19,061 e -3,0888 e^2$
d -Галактоза $C_6H_{12}O_6$ α -форма β -форма d -Глюкоза $C_6H_{12}O_6$	20 20	c = 5 $c = 4$	$+150,7 \rightarrow +80,2$ $+52,8 \rightarrow +80,2$
α-форма β-форма равновесная смесь	20 20 20	$\begin{array}{c} c = 4 \\ c = 4 \end{array}$	$+112,2 \rightarrow +52,7$ $+18,7 \rightarrow +52,7$ +52,50 + 0,0188 p +
Инвертный сахар $C_{\mathfrak{g}}H_{12}O_{\mathfrak{g}}$	20	* * * * * * * * * * * * * * * * * * *	$ \begin{array}{l} + 0.000517 p^{2} \\ - (19.415 + 0.07065c - \\ - 0.00054 c^{2}) \\ [\alpha]_{t^{0}}^{D} = [\alpha]_{20}^{D} + \end{array} $
Лактоза			+ (0.283 + 0.0014 c)
α-гидрат С ₁₂ Н ₂₄ О ₁₂ β-форма безводная	20 20	c=8 $c=4$	$+85,0 \rightarrow +52,53$ $+34,9 \rightarrow +55,4$
$C_{12}H_{22}O_{11}$ равновесная смесь (гидрат)	20		+52,53 (не зависит от концентрации)
Мальтоза β-гидрат C ₁₂ H ₂₄ O ₁₂ равновесная смесь, как C ₁₂ H ₂₂ O ₁₁	20 20	c=4	$+111,7 \rightarrow +130,4$ +138,475 - 0,01837 p
d -Манноза $C_6 \tilde{H}_{24} \tilde{O}_6$ α -форма β -форма	20 20	c=4 $c=4$	$+29.3 \rightarrow +14.2$ $-17.0 \rightarrow +14.2$
Миндальная кислота С ₈ Н ₈ О ₃	20	p = 3.2	+156,2
Hukotuh C ₁₀ H ₁₄ N ₂	.20	с от 0 до 10	—79,4
Сахароза C ₁₂ H ₂₂ O ₁₁ Сегнетова соль	20	с от 0 до 65	$+66,462 + 0,0087 c - 0,000235 c^2$
KNaH ₄ C ₄ O ₆ · 4H ₂ O Соль калия	20 }	с от 8	+29,7
$K_2H_4C_4O_6 \cdot 1/2H_2O$ d -Фруктоза $C_6H_{12}O_6$	20)	до 50	$27,14 + 0,0992 c - 0,00094 c^2$
β-форма равновесная смесь	20 20	c=4	$-132,2 \rightarrow -92,4$ -113,96 + 0,258q
Хинин сернокислый С ₂₀ H ₂₄ N ₂ O ₂ ·H ₂ SO ₄ ·7H ₂ O	15	c = 1,06	—211,7 (для безвод- ной соли)
$egin{array}{llll} { m Xuhuh} & { m coлshorhchh} \\ { m C_{20}H_{24}N_2O_2 \cdot HCl} \\ { m \cdot 2H_eO} \end{array}$	20	c = 1,3	—149,8 (для безвод- ной соли)
<i>l-</i> Яблочная кислота С ₄ Н ₆ О ₅	20		5,89 - 0,0896q

Вещество	<i>t</i> , °C	Концент- рация	[α] ^D
Неводные раство	ры (в этилов	ом спирте)	
Бруцин С ₂₃ Н ₂₆ N ₂ О ₄ d-Камфора С ₁₀ Н ₁₆ О	18 20	c = 2 $p = 10.5$; 20: 10*	+43,32; +44,22; -143.01*
1-Ментол С ₁₀ Н ₂₀ О	17,5; 17.5*; 20**	c = 2,314; 10.1*: 5**	-50,6; -46,02*; 48,91**
Стрихнин С ₂₁ Н ₂₂ N ₂ О ₂	18	c = 2,25; $0,254$	—139,3; —104,3
Чистая жидкост	ь		
Диэт илма лят Никотин (С ₁₀ Н ₁₄ N ₂)	18,5 20	_	10,12 168,6;169,4

^{*} В бензоле. ** В хлороформе.

9.13. ДИФФУЗИЯ В ВОДНЫХ РАСТВОРАХ

9.13.1. Диффузия неорганических веществ

Принятые обозначения: t — температура; c — концентрация; D — коэффициент диффузии.

Веществ	o t, °C	с, моль/ л	D, cm ² /cyt	Вещество	t, °C	с. моль/л	<i>D</i> , см²/сут
\mathbf{Br}_2	25	0,00105 0,00309	1,078 1,036	K ₂ CO ₃ KCl	10 18,5	3,0 0,05	0,6 1,348
C-Cl	9	0,00501	1,019			0,50	1,331
CaCl ₂	9	0,29 0 ,37	0,68 0,94			1.0 2 ,0	1,386 1,489
		1,5	0,72	K ₂ SO ₄	19,6	0,02	1,01
CdSO ₄	16,8	0,5	0,292		-	0.28	0,86
		1,0	0,282			0,95	0,76
		2,0	0,374	MgSO ₄	15,5	0,5	0,461
CoCl ₂	18	7,0	0,410	4		1,0	0,453
CoCl2	. 10	0,0062 0,0127	0,600 0,629	Na ₂ CO ₂	10	4,5 2,4	0,627 0,39
CuCl ₂	10	1,5	0,623	NaCl	18,5	0 ,05	1,08
CuSO ₄	iř	0,10	0,39	11401	,-	0,40	1,03
		0,50	0,29			1,00	1,07
		1,95	0,23			5,00	1.23
D_2O	25		2,16	NaOH	12	0,02	1,12
HCI	10	0,02	1,77			0,90	1,045
-		0,05	1,74	N . CO	10	3,9	0,985
	11	0,20	1,77	Na ₂ SO ₄	10 5	1,4 0,025	0,66 0,50
•	20	6,5 0,11	2,67 0,768	ZnSO ₄	19,5	0,025	0,36
H_2O_2	20	0,99	0,703			0,95	0,33

Вещество	t, °C	с, моль/л	D, 6M²/cyw
Амиловый спирт (1-пентанол)	18	0,25*	0.76
Бутиловый спирт (1-бутанол)	18	0,25*	21-2
Глицерин	20	0,125	0,76 0,72
Глюкоза	18	0,25*	0,49
Метиловый спирт (метанол)	18	0,25*	1,18
Мочевина ``	20	0,25	1,18 1,02 0,97 0,57 0,85
Муравьиная кислота	12	1,0	ō,97
Пирогаллол	18	0,25*	0.57
Пропиловый спирт (1-пропанол)	18	0,25*	0.85
Уксусная кислота	13,5	0,2	ŏ.77
Фенол	18	0.25*	0.69
Этиловый спирт (этанол)	18	0,25* 0,25*	0,905

[•] Массовая доля, % (г/100 г раствора).

9.13.3. Диффузия газов

Вещество	t, °C	<i>с</i> , моль/л	D, см²/сут	Вещество	t∘, C	с, моль/л	D, см ³ /ст
CO ₂	18 12 16,3	0,1 0,1	1,26 1,22 1,10	$egin{array}{c} H_2 \ N_2 \ NH_3 \end{array}$	18 18 4	0,686	3,10 1,40 1,06

9.14. ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ ВОДНЫХ РАСТВОРОВ ВЕЩЕСТВ

Значения о приведены в мН/м (дин/см или эрг · см²).

9.14.1. Поверхностное натяжение растворов неорганических веществ

Раство-		σ ис-		σ при массо	вой доле в	ещества, %	6
ренное вещество	t, °C	ход- ной воды	5	10	15	20	50
AgNO ₃ Al ₂ (SO ₄) ₃	18 18	73,3 73,3	73,8 74,5	7 4,3 75,2	74.4	7 5, 3	78,9 —
BaCl ₂	30	74,1	71,7	(7,8 %) 72,6	73,5	74,6	75,6
CaCl ₂	30	71,1	72,8	74,8	77,0	79,2	(24,6 %) 86,4
CdCl ₂ CuSO ₄	15 30	73,3 71,1	73,4 71,7	73,7 72,3	74,4 72,8	75,1 73,5	(31,9 %)

Продолжение таблицы

Растворен- ное веще- ство		σис-		σ при масс	овой доле ве	щества,	%
	<i>t,</i> °C	ход- ной воды	5	10	15	20	50
FeSO ₄	18	72,5	73,3	73,9	74,7	•••	•••
HCl	20	73,0	72,5	72,2	72,0	71,4	· —
HNO ₃	20	• • •	• • •	72,6	• • •	72,4	59,6
H ₂ SO ₄	20	• • •	73,2	73,4	73,8	.74,6	(70 %) 53,7
H_2O_2	18	73,0	73,1	73,3	73,4	73,5	(98,7 %) * 75,8
K ₂ CO ₃	20	72,7	74,9	75,1		78,6	(90,6 %) 103,8
KCl	18	72,4	73,6	74,5	• • •	77,2	100,0
K ₂ SO ₄	18	72,7	73,7	74,8	75,7	• • • •	
MgCl ₂	30	71,1	73,0	74,0	77,1	79,3	80,1
MgSO ₄	18	72,5	·	74,4	75,9	77,3	(21,5 %) 78,6 (23,3 %)
MnCl ₂	18	73,3	74,4	75,8	77,3	79,2	87,6
_	. 18	72,5	73,3	74,5		•	(37,8 %)
NH₄Cl NH₄OH	18	73,0	66,5	63,6	61,3	59,3	57,7
14114011	10	10,0	_ 00,0	00,0	- 01,0	03,0	(25 %)
(NH ₄) ₂ SO ₄	18	73,3	74,2	75,1	76,0	77,0	83,2
(11114/8 00-1		•		•	,	· .	(39 %)
NaCl	18	72,4	73,9	75,6	76,9	. •••	` • • • • • • • • • • • • • • • • • • •
NaOH	20	72,8	74,6	77,3	(13,7°%) 80,8	85,8	99,7 (35 %)
Na ₂ SO ₄	18	72,5	73,8	75,1	• • •	• • •	• • •
ZnŠO ₄	18	72,5	73,2	73,9	74,8	75,9	76,5 (22,4 %

^{*} Максимум $\sigma = 76,7$ мН/м при массовой доле $H_2 SO_4 47 \%$.

9.14.2. Поверхностное натяжение растворов органических веществ

_		σ при молярной концентрации вещества, моль/л						
Вещества	tº, C	0,0078	0,0156	0,0625	0,250	0,50	1,00	
Спирт	•					*		
'Аллиловый	15			69,0	63,2	57,2	50,1	
Бутиловый	25	70,7	69.2	61,5	46,5	• • •		
Бутиловый (изо)	18		69.8	60,9	54,2	(0,125)		
Метиловый `	18		• • •		70,2	`68,4	65.1	
Пропиловый	15	• • •		66,8	57,7	50,5	42,4	
Фенолы		•		,-	,-		•	
Гидрохинон	12		73,5	72,8	70,8			
о-Крезол	21	69,6	67	55,2	47,3	(0,125)		

		тросонжение таблица							
Вещества	t. °C	σ при молярной концентрации вещества, моль/л							
		0,0078	0,0156	0,0625	0,250	0,50	1,00		
Пирокатехин	12	•••	73,2	71,7	66,4	64,2			
Фенол	20		71,0	66,3	52,5	45,0			
Альдегиды и кетоны			,.		,•-	10,0			
Ацетон	15			69,5	63,6	59,4	54,1		
Диэтилкетон	16	70,6	68.4	60.8	48.6		01,1		
Метилэтилкетон	19	71.0	70,3	65,5	57,3	50,3	43,0		
Пиральдегид	15	• • •	68,3	62,1	50,1	42,0	10,0		
Кислоты			00,0	·-,.		12,0	• • •		
Валериановая	20	67,0	62,8	50,0					
Валериановая	15	66,9	63,3	50,7	35,0				
(u30) [.]		00,0	00,0	00,1	00,0		•••		
Малеиновая	13		·	71,0	69,8	40,1			
Масляная	15	69,9	68,6	71,0	47,9	40,1	20.4		
Масляная (изо)	iš	69,9	68,3	60,5	47,3	39,6	32,4		
Муравьиная	15	•••	00,0	00,0	70,0	607	31,9		
Пропионовая	15	• • • •	70,4	67,5	60,1	68,7	66,9		
Уксусная	15		70,4		66,8	54,1	47,3		
Эфиры	10	• • • •	•••	70,0	00,0	63,3	59,2		
Пропионовомети- ловый	15	69,8	68,4	62,1	49,9	40,5	•••		
Пропионовопропи- ловый	15	61,2	55,8	49,1 (0,0312)		•••	•••		
Уксусноаллило- вый	15	68,6	66,4	57,7	50,4 (0,125)				
Уксуснометило- вый	15 .	•••	•••	67,3	60,0	54,1	46,2		
Уксуснопропило- вый	15	66,4	62,5	51,4	43,6 (0,125)		•••		
Уксусноэтиловый Амины	15	69,6 .	68,0	61,5	49,7	41,5	• • • •		
Анилин	15	••••	••••	68,3	61,5	•	•••		
Пропиламин	15		•••	66,6	(0,125) 57,9	51,6	45,4		

9.15. ОСМОТИЧЕСКИЕ КОЭФФИЦИЕНТЫ ВОДНЫХ РАСТВОРОВ, ПРИМЕНЯЕМЫХ В КАЧЕСТВЕ СТАНДАРТОВ ПРИ ИЗОСТАТИЧЕСКИХ ИЗМЕРЕНИЯХ [ПРИ 25 °C]

Практически применяемый осмотический коэффициент φ в растворе электролита выражается отношением $\gamma r \varphi = \ln{(\rho_0/p)}$, где r — молярное отношение электролита к растворителю; γ — число ионов электролита; p — наримальное давление пара растворителя над раствором; p_0 — давление наров чистого растворителя. В водных растворах молярное отношение r связано с моляльностью m, выраженной в моль/кг воды, соотношением m = 55,61r.

		φ.			φ				
m	NaCl	қсі	CaCl,	m	NaC1	KC1	CaC1,		
0,1	0.9324	0,9266	0,854	3,6	1,0867	0,9531			
0,2	0,9245	0,9130	0,862	3,8	1,1013	0,9588			
0,3	0,9215	0,9063	0,876	4,0	1,1158	0,9647	2,182		
0,4	0,9203	0,9017	0,894	4,2	1,1306	0,9707	-,		
0,5	0,9209	0,8989	0,917	4,4	1,1456	0,9766	,		
0,6	0,9230	0,8976	0,940	4,5			2,383		
0,7	0,9257	0,8970	0,963	4,6	1,1608	0,9824			
0,8	0,9288	0,8970	0,988	4,8	1,1761	0,9883			
0,9	0,9320	0,8971	1,017	5,0	1,1916		2,574		
1,0	0,9355	0,8974	1,046	. 5,2	1,2072				
1,2	0,9428	0.8986	1,107	5,4	1,2229	_			
1,4	0,9513	0,9010	1,171	5,5	•••	_	-2,743		
1,6	0,9616	0,9042	1,237	5,6	1,2389				
1,8	0,9723	0,9081	1,305	5,8	1,2548				
2,0	0,9833	0,9124	1,376	6,0	1,2706		2,891		
2,2	0,9948	0,9168	• • •	6,5	<i>'</i> —	_	3,003		
2,4	1,0068	0.9214		7,0			3.081		
2,5	• • •		1,568	7,5	_		3,127		
2,6	1,0192	0,9264	• • •	8,0	_		3,151		
2,8	1,0321	0,9315		8,5	_	_	3,165		
3,0	1,0453	0,9367	1,779	9,0	·		3,171		
3,2	1,0587	0,9421	• • •	9,5	-	_	3,171		
3,4	1,0725	0,9477		10,0	<u> </u>	_	3,169		
3,5	•••		1,981	•					

9.16. ТЕМПЕРАТУРА ЗАМЕРЗАНИЯ И КИПЕНИЯ РАСТВОРОВ

9.16.1. Температура замерзания растворов MgCl_2 , NaCl и CaCl_2

KT/M ⁸		Растворы солей										
, KT		MgC 1 ₂			NaCl			CaCl.				
Плотность, (при 15 °С)	г/100 г раствора	г/100 г воды	tg, °C	г/100 г раствора	г/100 г воды	t ₃ , °C	г/100 г раствора	г/100 г воды	ر پور روم			
1010 1020 1030 1040 1050 1060 1070 1080	1,4 2,6 3,7 4,9 6,1 7,2 8,3 9,4	1,4 2,7 3,9 5,2 6,5 7,8 9,1	-0,7 -1,4 -2,2 -3,1 -4,0 -5,0 -6,0 -7,2	1,5 2,9 4,3 5,6 7,0 8,3 9,6 11,0	1,5 3,0 4,5 5,9 7,5 9,0 10,6 12,3	-0,9 -1,8 -2,6 -3,5 -4,4 -5,4 -6,4 -7,5	1,3 2,5 3,6 4,8 5,9 7,1 8,3 9,4	1,3 2,6 3,7 5,0 6,3 7,6 9,0 10,4	-0,6 -1,2 -1,8 -2,4 -3,0 -3,7 -4,4 -5,2			

1100 11,0 13,1 -10,3 13,6 15,7 -9,8 11,5 13,0 -110 12,7 14,5 -12,3 14,9 17,5 -11,0 12,6 14,4 -1120 13,8 16,0 -14,5 16,2 19,3 -12,2 13,7 15,9 -1130 14,9 17,5 -17,1 17,5 21,2 -13,6 14,7 17,3 -1140 16,0 19,1 -19,9 18,8 23,1 -15,1 15,8 18,8 -15,0 17,0 20,5 -22,9 20,0 25,0 -16,0 16,8 20,2 -1150 17,0 20,5 -22,9 20,0 25,0 -16,0 16,8 20,2 -1150 17,0 20,5 -22,9 20,0 25,0 -16,0 16,8 20,2 -1150 17,0 20,5 -22,9 20,0 25,0 -16,0 16,8 20,2 -1150 17,0 20,5 -12,0 20,0 25,0 -16,0 16,8 20,2 -1150 17,0 20,5 -12,0 20,0 25,0 -16,0 16,8 20,2 -1150 17,0 20,5 -12,0 20,0 25,0 -16,0 16,8 20,2 -1150 17,0 20,5 -12,0 20,0 25,0 -16,0 16,8 20,2 -1150 17,0 20,5 -12,0 20,0 25,0 -16,0 16,8 20,2 -1150 17,0 20,5 -12,0 20,0 25,0 -16,0 16,8 20,2 -1150 17,0 20,5 -12,0 20,0 25,0 -16,0 16,8 20,2 -1150 17,0 20,5 -12,0 20,0 25,0 -16,0 16,8 20,2 -1150 17,0 20,5 -12,0 20,0 25,0 -16,0 16,8 20,2 -1150 17,0 20,5 -12,0 20,0 25,0 -16,0 16,8 20,2 -1150 17,0 20,5 -12,0 20,0 25,0 -16,0 16,8 20,2 -1150 17,0 20,5 -12,0 20,0 25,0 -16,0 16,8 20,2 -1150 17,0 20,5 -12,0 20,0 25,0 -16,0 16,8 20,2 -1150 17,0 20,5 -12,0 20,0 25,0 -16,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0 2			
1090 10,5 11,7 -8,7 12,2 14,0 -8,6 10,5 11,7 -1100 11,6 13,1 -10,3 13,6 15,7 -9,8 11,5 13,0 -1120 13,8 16,0 -14,5 16,2 19,3 -12,2 13,7 15,9 1130 14,9 17,5 -17,1 17,5 21,2 -13,6 14,7 17,3 1140 16,0 19,1 -19,9 18,8 23,1 -15,1 15,8 18,8 150 17,0 20,5 -22,9 20,0 25,0 -16,0 16,8 20,2 -16,0 20,5 -16,0 20,5 -16,0 20,5 -16,0 20,5 -16,0 20,5 -16,0 20,5 -16,0 20,5 -16,0 20,5 -16,0 20,5 -16			
1090 10,5 11,7 —8,7 12,2 14,0 —8,6 10,5 11,7 — 1100 11,6 13,1 —10,3 13,6 15,7 —9,8 11,5 13,0 — 1110 12,7 14,5 —12,3 14,9 17,5 —11,0 12,6 14,4 — 1120 13,8 16,0 —14,5 16,2 19,3 —12,2 13,7 15,9 — 1130 14,9 17,5 —17,1 17,5 21,2 —13,6 14,7 17,3 — 1140 16,0 19,1 —19,9 18,8 23,1 —15,1 15,8 18,8 — 1150 17,0 20,5 —22,9 20,0 25,0 —16,0 16,8 20,2 —	CaCl,		
1100 11,6 13,1 -10,3 13,6 15,7 -9,8 11,5 13,0 -1110 12,7 14,5 -12,3 14,9 17,5 -11,0 12,6 14,4 -1120 13,8 16,0 -14,5 16,2 19,3 -12,2 13,7 15,9 -1130 14,9 17,5 -17,1 17,5 21,2 -13,6 14,7 17,3 -1140 16,0 19,1 -19,9 18,8 23,1 -15,1 15,8 18,8 -1150 17,0 20,5 -22,9 20,0 25,0 -16,0 16,8 20,2 -	9° •8⁴		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6,1 7,1 8,1 9,1 110,2 111,4 12,7 14,2 15,7 17,4 19,2 23,3 25,7 281,2 814,6 88,6		

9.16.2. Температура замерзания водных растворов органических веществ

Глицерин								
Массовая доля, %	10	20	30	40	50	60	70	80
t ₃ , °C	-1,6	 5,0	- 9,5	-15,4	—23, 0	34,7	-38,9	20,3
Этиловый	спир	т						,
Массовая доля, %	11,3	18,8	20,3	22,1	24,2	26,7	29,9	
t_3 , $^{\circ}$ C	 5,0	-9,4	-10,6	—12,2	-14,0	-16,0	-18,9	•
Массовая доля, %	33,8	39	46,3	56,1	72,9			
t_3 , °C	-23,6	28,7	-33,9	-41,0	51,3			
Этиленгли	коль							
Объемная доля, %	12,5	17,0	25,0	32,5	38,5	44,0	49,0	52,5
t₃, °°C , 70	-3,9	6,7	-12,2	1	— 23,3	-28,9	-34,4	-40,4

9.16.3. Максимальные температуры кипения водных растворов солей

Принятые обозначения: c — массовая доля вещества в насыщенном растворе при данной температуре (г/100 г воды); t — температура кипения насыщенного раствора (°C) при нормальном атмосферном давлении.

Вещество	с	· t	Вещество	c	. t
Ba(NO ₃) ₂ CaCl ₂ CuSO ₄ KCl KClO ₃ KI KNO ₃ K ₃ SO ₄ LiCl MgSO ₄ MnSO ₄	27,5 305 82,2 57,4 69,2 220 338,5 31,6 151 75 68,4	101,7 178 104,2 108,5 104,4 185 115 102,1 168 108 102,4	NH ₄ Cl (NH ₄) ₂ SO ₄ NaC ₂ H ₃ O ₂ Na ₂ CO ₃ NaCl NaNO ₃ Na ₂ S ₂ O ₃ Na ₂ SO ₄ Pb(NO ₃) ₂ ZnSO ₄ Sr(NO ₃) ₂	87,1 115,3 207 51,2 40,7 222 348 - 46,7 137 116,5 85,7	114,8 108,2 125 105 108,8 120 126 103,2 103,5 106,3

9.17. КРИОСКОПИЧЕСКИЕ И ЭБУЛИОСКОПИЧЕСКИЕ КОНСТАНТЫ

$$K = \frac{M\Delta T}{C}$$
, $C = \Delta t = \frac{KC}{M}$, $M = \frac{KC}{\Delta T}$,

где K — криоскопическая или эбулиоскопическая константа; $\Delta T = \Delta t$ (K или °C) — понижение точки плавления или повышение точки кипения раствора по сравнению с точкой плавления или кипения чистого растворителя; M — масса молекулы растворенного вещества (нелетучего), r; C — моляльность растворенного вещества (r/1000 r растворителя).

9.17.1. Криоскопические константы

Принятые обозначения: $K_{\rm kp}$ — криоскопическая константа (молярное понижение точки плавления раствора); $t_{\rm nn}$ — точка fiлавления чистого растворителя, °C.

Растворитель	K _{kp}	$t_{\Pi J}$	Растворитель	K _{KP}	t _{IIJI}
Анилин Ацетон Ацетофенон Бензол Бромоформ		-94 ,6 20 ,5	Диоксан Инден	1,85 4,63 7,28 40,0	0 11,7 —1,76 174,4

Растворитель	Ккр	^t n.n	Гастворитель	Ккр	^t пл
	2,77	8,4	Триметилкарбинол	8,37	25,1
капроновая	4,47	-1,5	Фенол	7,3	41
серная	4,8	8,4	Формамид	3,85	0
трихлоруксусная	12,1	57	Хлороформ	4,9	63,
уксусная	3.9	16,55	п-Хлортолуол	5,6	7
о-Крезол	5,6	30	Циклогек са н	20,2	6,2
п-Крезол	7.0	37	Циклогексанол	38,2	23,6
п-Ксилол	4,3	16	Четыреххлористый	2,98	-23
Нафталин	6,899	80,1	углерод		
Нитробензол	6,90	5,7	Этилен бромистый	12,5	9,9
Пиридин	4,97	-40	Эфир дибензиловый	6,27	36
<i>n</i> -Толуидин	5,372	5,2	Эфир дифениловый	8,0	28
Тринитротолуол	10.0	81			

9.17.2. Эбулиоскопические константы

Принятые обозначения: K_{96} — эбулиоскопическая константа (молярное повышение точки кипения раствора); $t_{\rm кип}$ — точка кипения чистого растворителя, °C.

Растворитель	K ₉₆	t _{кип}	Растворитель	K _{a6}	.t _{KBD}
Анилин	3,22	184,4	Нитроэтан	2,60	114,8
Ацетон	1,48	56,0	н-Октан	5,71	125,7
Ацетонитрил	1,30	81,6	Пиридин	2,687	115,8
Бензол	2,57	80,2	Пропионитрил	1,87	98
Бензонитрил	3,87	191	Сероуглерод	2,29	46,3
Бромбензол	6,26	156,2	Оксид серы (IV)	1,45	-10
2-Бутанон	2,28	79,6	Спирт амиловый	2,58	131,5
Вода	0,516	100	бутиловый	1,94	104,6
Декалин	5,76	191,7	метиловый	0,84	64,7
Диоксан	3,27	100,3	пропиловый	1,73	97,3
Дихлорметан	2,6	40-41	этиловый	1,2	78,4
Дихлорэтилен	3,44	60	Тетралин	5,58	207,3
Диэтиловый эфир	2,16	35,6	Тетрахлорэтилен	5,5	121,9
Иодметан	4,19	42,5	п-Толуидин	4,14	200,3
Иодэтан	5,16	72,4	Толуол	3,29	110,6
Кислота масляная	3,94	163,2	Трихлорэтилен	4,43	87,5
муравьиная	2,4	100,8	Уксусный ангидрид	3,53	140,0
пропионовая	3,51	139,6	Фенол	3,60	182,1
уксусная	3,07	118,5	Хлорбензол	4,15	132,1
Камфора	6,09	204	Хлороформ	3,88	61,2
Метилацетат	2,06	56, 5	Хлорэтан	1,95	12,2
Метилпропилкетон	3,14	102	Циклогексан	2,75	81,5
Метилэтилкетон	2,28	80	Четыреххлористый	5,3	76,7
Нафталин	5,8	218	углерод	,	•
Нитробензол	5,27	210,9	Этилацетат	2,79	75,5
Нитрометан	1,86	102	Этиленбромид	6,43	78,3

9.18. ТЕПЛОЕМКОСТЬ И ТЕПЛОПРОВОДНОСТЬ ВОДНЫХ РАСТВОРОВ

9.18.1. Теплоемкость растворов солей

Приведена удельная теплоемкость (c_p) для растворов, в которых 1 моль вещества растворен в n молях воды при давлении $101325~\Pi a$.

			<i>с_р,</i> кД	Įж/(кг∙K)	
Вещество	t, °C	n=25	n=50	n=100	n=200
CaCl _a	21—51	3,16	3,56	3,84	4,00
K,CÖ,	21-52	3,18	3,56	3,83	3,99
KCI -	18	3,46	3,78	3,97	4 4,06
K ₂ SO ₄	19—52		•••	3,77	3,96
LiCl	11	3,75	3,94	4,07	-,-
MgCl ₂	22 —52	3,23	3,62	3,86	4,01
MgSO ₄	18	3,24	3,59	3,84	3,99
MnCl ₂	0—98	3,29	3,60	3,83	· · ·
MnSO ₄	19—51	•••	3,53	3,82	3,99
NH₄CI	18	3,67	3,92	4,04	4,11
$NH_4)_2SO_4$	19—51	3,36	3,68	3,90	• • •
Va ₂ CO ₃	21—52	3,62	3,80	3,95	4,06
VaCI	18	3,68	3,90	4,03	4,09
Na ₂ HPO ₄	16—20		• • • •	3,92	4,03
Va ₂ SO ₄	21 - 52	3,43	3,67	4,02	
$Pb(NO_3)_2$	18—51		3,14	3,56	•••
ZnČl,	19—51	3, 33	3,70	3,90	
ZnSO ₄	20— 52	•••	3,52	3,81	•••

9.18.2. Коэффициенты теплопроводности $\{\lambda\}$ растворов солей при 20 °C

		λ, Bτ/(м · K)	, при массо	вой доле ве	щества, %	1.1
Вещество	0	10	20	30	40	50
BaCl ₂	0,599	0,5896	0,578		_	
CaCl ₂	0,599	0,587	0,578	0,560	0,545	<u> </u>
K_2CO_3	0,599	0,592	0,583	0,564	0.509	0,540
KČI	0,599	0,580	0,559		_	
KC1 (30 °C)	0,617	0,595	0,574	<u></u>		
K ₂ SO ₄	0,599	0,5896	· —			_
LiCl	0,599	0,577	0,554	0,538	. <u> </u>	
Li ₂ SO ₄	0,599	0,593	0,587		_	<u> </u>
MgCl ₂	0,599	0,573	0,547	0,516		
MgSO ₄	0,599	0,592	0,583		_	
NH ₄ Ci	0,599	0,566	0,531			·
Na ₂ CO ₃	0,599	0,607	_			
NaCl	0,599	0,5896	0,578	_		
NaCl (30 °C)	0,618	0,063	0,5896		<u> </u>	_
Na ₃ PO ₄	0,599	0,613	_	_	·	
Na ₂ SO ₄	0,599	0,600				
Na ₂ SO ₄ (30 °C)	0,617	0,619	 .			
ZnCl ₂	0,599	0,577	0,551	0,521	0,486	
ZnSO ₄	0,599	0,587	0,574	0,559		· -

9.19.1. Интегральная теплота растворения (ΔH_m) кислот и щелочей при 25 °C

ей Н ₂ О кисло- лочи	лей кис- щелочи воды		•	Δ <i>H_m</i> , κ	Дж/моль		
Число молей Н ₂ О на 1 моль кислоты или щелочи	Число молей кислоты или шелочи на 1000 г воды	нсі	H ₂ SO ₄	HNO ₈	NH _s (r)	NaOH	КОН
0,5 1 2 3 4 4 5 6 8 10 15 20 30 40 50 75 100 200 2000 5000 10000 50000 50000	110,02 55,51 27,75 18,50 13,88 11,10 9,25 6,94 5,55 3,70 2,78 1,85 1,39 1,11 0,74 0,56 0,28 0,011 0,0056 0,0028 0,0011 1/∞	-26,225 -48,820 -56,852 -61,204 -64,049 -65,890 -68,233 -69,488 -70,990 -71,774 -72,592 -73,023 -73,279 -73,647 -73,647 -74,203 -74,521 -74,609 -74,684 -74,822 -74,931 -74,994 -75,040 -75,078 -75,145	-15,73 -28,07 -46,92 -48,99 -54,06 -58,03 -60,75 -64,60 -67,03 -70,17 -71,50 -72,68 -73,09 -73,35 -73,68 -73,97 -74,94 -76,73 -77,57 -78,58 -80,83 -84,43 -87,07 -89,62 -92,34 -96,19	-13,113 -20,083 -23,882 -26,142 -27,891 -29,836 -31,125 -31,840 -32,459 -32,761 -32,752 -32,764 -32,744 -32,740 -32,748 -32,889 -32,899 -32,941 -32,978 -33,049 -33,133 -33,187 -33,267 -33,338	-29,54 -32,05 -32,76 -33,60 -34,27 -34,43 -34,48 -34,48 -34,52 -34,60 -34,64		

9.19.2. Интегральная теплота растворения (ΔH) солей при 18 °C

Вещество	Число молей Н ₂ О на 1 моль соли	∆ <i>Н</i> , кДж/моль	Вещество	Число молей Н _г О на 1 моль соли	∆ <i>H</i> , кДж/моль
LiBr (25 °C)	400	$\begin{array}{r} -48,49 \\ -36,40 \\ -0,29 \\ +4,27 \\ +20,29 \end{array}$	KCl (25 °C)	400	+17,57
LiCl (25 °C)	400		KI (25 °C)	400	+20,67
NaBr (25 °C)	400		K ₂ SO ₄ (25 °C)	400	+24,69
NaCl (25 °C)	400		NH ₄ Cl (25 °C)	400	+15,06
KBr (25 °C)	400		HgSO ₄	400	-84,94

10				-		
	Вещество	Число молей Н ₂ О на 1 моль соли	∆ Н, кДж/моль	Вещество	Число молей Н _г О на 1 моль соли	Δ Н, кДж/моль
	HgSO ₄ · H ₂ O HgSO ₄ · 4H ₂ O MgSO ₄ · 4H ₂ O MgSO ₄ · 6H ₂ O MgSO ₄ · 7H ₂ O ZnSO ₄ · H ₂ O ZnSO ₄ · 6H ₂ O ZnSO ₄ · 6H ₂ O ZnSO ₄ · 7H ₂ O CuSO ₄ · H ₂ O	400 400 400 400 400 400 400 400 800 800	-55,65 -46,23 -17,74 +0,42 +16,17 -77,57 -4,18 +3,51 +17,70 -66,53 -39,04	CuSO ₄ · 3H ₂ O CuSO ₄ · 5H ₂ O BaCl ₂ BaCl ₂ · H ₂ O BaCl ₂ · 2H ₂ O Na ₂ SO ₃ Na ₂ SO ₃ · 7H ₂ O Na ₂ HPO ₄ Na ₂ HPO ₄ · 2H ₂ O Na ₂ HPO ₄ · 7H ₂ O Na ₂ HPO ₄ · 12H ₂ O	800 800 400 400 400 800 800 400 400 400	-15,10 +11,72 -8,66 -6,49 +18,49 -11,30 +46,86 -23,64 +1,59 +48,58 +95,14

9.19.3. Термодинамические величины для ионов в водных растворах

Принятые обозначения: ΔH_{298}^0 — изменение энтальпии (тепловой эффект) при образовании соединений из простых веществ в стандартных условиях; ΔZ_{298}^0 — изменение свободной энергии Гиббса (изобарного потенциала) при тех же условиях; S_{298}^0 — стандартное значение энтропии.

Ион	ΔH ⁰ ₂₉₈ , Дж/моль	ΔZ ⁰ ₂₉₈ , кДж/моль	S ₂₉₈ , Дж/(моль К)
Ag+	105,90	77,111	73,93
Δ[3+	-524,7	— 481,2	313,4
AsO_4^{3-}	849	— 636	-144,8
Ba ²+ Br⁻¯	—538,36 —120,92	—560,7 —102,818	12,6 80,71
3rO₃¯	4 0,2	45,6	161,1
CH₃COOT CNT	-488,871 151,0	375,39 165,7	92,0
CO3 ^{2~} ~	676,26	-528,10	-53,1
$C_2O_4^{2}$	-824,2	674,9	51,0
Ca2+ Cd2+	— 542,96	- 553,04	-55,2
Ži-	72,38 167,456	—77,74 —131,17	61,1 55,10
210-	-107,65	<u></u> 38,53	47,53
CIO_2^{T}	-69,0	14,6	100,4
ClO_3	— 98,32	-2,59	163,2

Ион	ΔH ⁰ ₂₉₈ , Дж/моль	Δ2 ⁰ ₂₉₈ , кДж/моль	S ₂₉₈ , Дж/(моль К)
CIO ₄	—131,42	-10,75	180,7
Co2+	67,4	-51,3	-111,7
CrO ₄ ²⁻	863,2	—706,3	38,5
Cs ⁺	-247,7	282,04	133,1
Cu+	-71,5	50,2	39,3
Cu ³⁺	64,39 329,11	64,98 276.48	98,7 9,6
r Fe ²⁺	329,11 87,9	8 4, 93	<u></u> 3,0 113,4
Fe ³⁺	-135,6	-10,54	-293,3
H+	0	0	0*
HCOO-	-410,0	334,7	91,6
HCO ₃	-691,11	587,06	95,0
Hg ₂ ²⁺	168,2	154,18	74,1
Hg ²⁺	174,0	164,77	22,6
HPO4	-1298,7	-1094,1	36,0
H ₂ PO ₄	-1002,5	-1135,1	89,1
HS-	—17,66	-12,59	61,1
HSO3	-627,98	— 527 , 31	132,38
HSO₄	885,75	-752,87	126,86
1- 1-	55,94	— 51,67	109,37
10-	-230,1	-135,6	115,9
K+	251,21	-282,278	109,5
Li+	—278,462	-293,80	14,2
Mg ²⁺	461,96	-456,01	-118,0
Mn ²⁺	218,8	223,4	— 79,9
MnO ₄	-518,4	425,1	190,0
NH_4^+	132,80	79,49	112,84
NO ₂	-106,3	— 35,35	125,1
NO_3	-206,572	-110,50	146,4
Na+	-239,655	— 261,87 2	60,2
Ni ²⁺	-64,0	-46,4	-123,0
OH~	229,940	157,297	10,539
PO ₄	-1284,1	-1025,5	<u>218</u>
Pb ²⁺ Rb+	1,63 —264,4	24,31 —282,21	21,3 124,3
S2-	41,8	83,7	-26,8
SO ₄ -	 907,5	—741,99	17,2
Sr ²⁺	545,51	 557,3	-26,4
U 3+	514,6	520,5	-125
U4+	-613,8	579,1	-326 50
UO+ Zn²+	1030,1 152,42	—994,1 —147,210	50 106,48
711-·	—15Z,4Z	-147,210	-100,10

^{*} Для H+ абсолютная энтропия $S^0_{298} = -14,2$ Дж/(моль K).

9.20. ЭЛЕКТРОХИМИЧЕСКИЕ СВОИСТВА РАСТВОРОВ

9.20.1. Степень диссоциации

Степень диссоциации α — отношение числа распавшихся молекул электролита к общему числу его растворенных молекул.

Принятые обозначения: *с* — концентрация; *t* — температура.

Электролит	с, моль/л	t, °C	8	Электролит	с,	t, °C	8
Кислоты HBr HCl HF HI H ₃ BO ₃ HClO ₃ HNO ₃ 1/3 H ₃ PO ₄ H ₂ S 1/2 H ₂ SO ₄ HCN H ₂ CO ₃ CH ₃ COOH C ₂ O ₄ H ₂ C ₄ H ₄ O ₆ H ₂	0,5 1 0,5 1 0,5 0,1 0,5 0,1 1 0,1 0,1 0,1	25 18 25 18 25 18 25 18 25 18 18 18 18	0,899 0,784 0,876 0,070 0,901 0,0001 0,880 0,170 0,0007 0,500 0,0001 0,0017 0,004 0,500 0,082	Основания 1/2 Ва(ОН) ₂ 1/2 Са(ОН) ₂ КОН LiOH NH ₄ OH NAOH 1/2 Sr(ОН) ₂ Соли типа A+B-(КСІ) 1/2A ²⁺ (B-) ₂ (1/2BaCl ₂) или (A+) ₂ B ²⁻ (1/2K ₂ SO ₄) 1/2A ²⁺ B ²⁻ (1/2MgSO ₄)	1 1/64 1/64 1 1 1 1 1/64 0,0 0,01 0,001 0,01 0,01 0,01 0,001 0,001	18 25 25 18 18 18 18 25	0,69 0,92 0,90 0,77 0,63 0,004 0,73 0,93 0,98 0,75 0,88 0,75 0,88 0,95 0,43 0,66 0,87

9.20.2. Коэффициенты активности различных ионов

Активность ионов (a) — эффективная концентрация ионов, зависящая от ионной силы раствора (μ)

$$a_{K} = \gamma_{+} (K), \ a_{A} = \gamma_{-} (A),$$

$$\mu = \frac{1}{2} (c_{1}z_{1}^{2} + c_{2}z_{2}^{2} + \ldots + c_{n}z_{n}^{2}),$$

$$\gamma_{\pm} = \sqrt[V_{+} + V_{-}]{\gamma_{+}^{V_{+}} + \gamma_{-}^{V_{-}}},$$

где γ_+ и γ_- — коэффициенты активности катионов и анионов; c_1 , c_2 , ... , c_n — моляльность водного раствора электролита (моль/1000 г воды); z_1 , z_2 , ..., z_n — заряд ионов; γ_\pm — средний коэффициент активности ионов в растворе электролита; V_+ , V_- — число катионов и анионов, образующихся при диссоциации электролита.

,	7	o
,	4	u

728					н иdи + v	n nd			
	ЛОНЫ	0,0001	0,001	0,0025	0,005	10.01	0,025	0,05	0,1
	Ионы неорганических соедине	нений				,	•		
	H+ Li+	0,975	0,967	0,950	0,993	0,914	0,88	0,86	0,83
	Rb ⁺ , Cs ⁺ , NH ⁺ , Ag ⁺ , Tl ⁺	0,975	0,964	0,945	0,924	0,898	0,85	08.0	0,30
	Br-, I-, CN-, $NO_{\frac{1}{2}}$, 1	0,975	0,964	0,945	0,925	0,899	0,85	0,805	0.755
	OH-, F-, CNS-, CNO-, HS-, CIO ₃ -,	0,975	0,964	0,946	0,926	0,900	0,855	0,81	0,76
-	CIO_4^{-} , BrO_3^{-} , IO_4^{-} , MnO_4^{-}						<u>'</u> _		
	$H_a^*PO^*$ HSO^* $H_s^*PO^*$	0,975	0,964	0,947	. 0,928	0,902	98'0	0,82	0,775
	$H_{g_3}^{2+}$, SO_2^{2-} , $S_3O_2^{2-}$, $S_3O_2^{2-}$.	0.903	. 0 867	.0.803	0.740	0 660	0 FAE	0.448	1
	$-$, CrO_4^2 , HPO_4^2			2	0.1.0	3	0 * 0*0	0,440	0,355
	CO_3^2 -, SO_3^2 -, MoO_4^2 -	0,903	0,868	0,805	0,742	0,665	0,55	0.455	0.37
	Sr^{2+} , Ba^{2+} , Ra^{2+} , Cd^{2+} , Hg^{2+} , S^{2-} , $S \xrightarrow{\circ} G^{2-}$, WO^{2-}	0,903	0,868	0,805	0,744	29'0	0,555	0,465	0,38
-	Ca ²⁺ , Cu ²⁺ , Zn ²⁺ , Sn ²⁺ , Mn ²⁺ , Fe ²⁺ , Ni ²⁺ ,	0,905	0,870	0,809	0,749	0,675	0.57	0.485	0.40
	Co2+,				•		1	3	60,400
	Mg^{2} , be^{2}	0,906	0,872	0,813	0,755	0,69	0,595	0,52	0,45
		08/0	0,738	0,612	0,505	0,990	0,25	0,16	0,095
	s+, Prs+, Nds+, Sms+	70000	00.70	7000	*c*0	0,445	0,325,0	0,245	0,18
	$[Fe(CN)_6]^{4-}$ $Th^{4+}, Z_{\Gamma^{4+}}, Ce^{4+}, S_{\Pi^{4+}}$	0,668	0,57	0,425	0,31	0,20	0,10	0,048	0,021
	•) ;	330	2016	9	0070	0,130	01,0	0,000
		I							
ć									
· ·	Ионы органических соединений				•				
I	HCOO-, $H_2C_6H_5O_7^-$, $CH_3NH_3^+$, $(CH_3)_2NH_7^+$	0,975	0,964	0,946	0,926	006'0	0,855	0,81	92'0
Ì	7 7 7								
	$CCC_{12}NH_{3}^{1}$, $(CH_{3})_{3}NH^{+}$, $C_{2}H_{5}NH_{3}^{+}$	0,975	0,964	0,947	0,927	0,901	0,855	0,815	22.0
O	CH ₃ COO ⁻ , (CH ₃) ₄ N+, CH ₂ CICOO ⁻ , NH ₂ CH ₂ COO ⁻	0,975	0,964	0,947	0,928	0,902	98'0	0,82	0,775
Ö	CHCl ₂ COO-, CCl ₃ COO-, (C ₂ H ₆) ₃ NH+,	0,975	0,964	0,947	0,928	0,904	0,865	0,83	62,0
ŭ	3,1,1,113 C,H,COO-, C,H,OHCOO-, C,H,CICOO-,	0,975	0,965	0,948	0.929	0 907	0.87	2835	G
ŭ									3
2	[OC ₆ H ₂ (NO ₂) ₃]-, (C ₃ H ₇₎₈ NH+	0,975	0,965	0,948	0,930	606'0	0,875	0.845	0.81
	$(COO)_2^{2-}$, $HC_6H_5O_7^{2-}$	0,903	0,867	0,804	0,741	0,662	0,55	0.45	0.36
H	$H_2C(COO)_2^{2-}$, $(CH_2COO)_2^{2-}$, $(CHOHCOO)_2^{2-}$	606'0	0,868	0,805	0,744	29'0	0,555	0,465	0,88
ۣڽ	$C_6H_4(COO)_2^2-$, $H_2C(CH_2COO)_2^2-$,	0,905	0,870	608'0	0,749	0,675	0,57	0,485	0,405
	$\mathrm{CH_2CH_2(COO)_2^{2-}}$				•				
ن ت	C,H,O ² ,	962'0	0,728	0,616	0,51	0,405	0,27	0,18	0,115
1									

9.20.3. Коэффициенты активности электролитов

E					Y	PNaCl . npu t, °C	ပ္				
	0	10	20	30	40	20	09	02	80	96	50
0,1	0,781	0,781	0,779	0,777	0,774	0,770	0.766	0.769	0.757		3
0,2	0,731	0,734	0,733	0,731	.0.728	(0.725)	0.791	20.00	/6/'n	0,752	0,746
0,5	.0,671	0,677	0,679	0.679	(0.678)	(0,575)	1710	0,717	0,711	0,705	0,698
1,0	0,637	0,649	0,654	0.657	0.657	(0,0,0)	(170'0)	0,667	0,660	0,653	0,644
1,5	0,626	0.642	0.659	9890	600	(000,0)	(0,654)	0,648	0,641	0,632	0,622
9.0	000			000,	(100,0)	(0,662)	(0,659)	(0,655)	0,646	0,638	0,629
}	0,030	0,652	0,665	0,674	(0,678)	(0,678)	(0,676)	0,672	0,663	0,651	0,641
2,5	0,641	0,667	0,684	0,695	(869'0)	(669'0)	(9696)	(0,692)	0,685	0.674	0.649
3,0	0,660	0,691	0,711	0,724	(0,728)	(0,728)	(0,726)	(0,721)	(0.712)	0 200	0,000
3,5	0,687	0,721	0,744	0,756	0,761	(0,762)	(0,760)	(0,758)	0,742	0.730	700°0
0,4	0,717	0,751	0,783	262'0	(0,802)	(0,802)	(0,799)	(0,791)	(0,777)	0,763	0.746
,	4	: ,				•:	*		•		?

На рис. 39 приведены средние значения коэффициентов активности ионов некоторых электролитов при 25 °C; вертикальной чертой на графиках отмечены концентрации с минимальными значениями γ_±.

В таблице приведены коэффициенты активности хлорида натрия при разных температурах; в скобках указаны приближенные значения.

Принятые обозначения: тыми положивом постыра обозначения: тыми положивом постыра обозначения: тыми положивом положивами посты хлорида натрия.

Рис. 39. Коэффициенты активности электролитов при 26 °C: I-HCl; 2-LiCl; 3-Nal; 4-NaBr; 5-NaCl; 6-KCl; $7-NH_4Cl$; 8-NaF; 9-CsCl; $10-Na_2CO_3$; $11-K_2SO_4$; $12-H_2SO_4$; $13-Na_2SO_4$; $14-K_2SO_4$; $15-AlCl_3$; $16-MgCl_3$; $17-CaCl_3$; 18-KOH; 19-NaOH; $20-NaH_2PO_4$; $21-Na_3P$

9.20.4. Активность воды в растворах хлорида натрия и хлорида кальция при 25 °C

П р и н я т ы е о б о э н а ч е н в я: m — моляльность растворов NaCl и CaCl $_2$, моль/1000 г раствора, $a_{\rm H_2O}$ — активность воды.

m	^a H₂O B F	астворе		ан,Овра	створе	i	aH,O B I	астворе
	NaCi	CaC1,	m	NaCI	CaC1,	m	NaC1	CaC1,
0,1	0,996646	0,99540	2,2	0.9242		4,6	0.8250	
0,2	0,993360	0,99073	2,4	0,9166		4,8	0,8160	•••
0,3	0,99009	0,98590	2,5		0,8091	5,0	0,8068	0.4000
0,4	0,98682	0,98086	2,6	0.9089	0,0001	5,2	0,7976	0,4988
0,5	0,98355	0,97552	2,8	0,9011		5,4	0,7883	• • •
0,6	0,98025	0,96998	3,0	0,8932	0,7494	5,5	0,7000	0,4425
0,7.	0,97692	0,96243	3,2	0.8851	•,	5 ,6	0,7788	0,4420
0,8	0,97359	0,95818	3,4	0.8769		5,8	0.7693	•••
0,9	0,97023	0,95174	3,5		0,6875	6,0	0,7598	0.3916
1,0	0,96686	0,94504	3,6	0.8686		6,5	0,7000	0,3482
1,2	0,9601	0,93072	3,8	0,8600		7,0		0,3117
1,4	0,9532	0,91521	4,0	0,8515	0,6239	7,Š		0,2815
1,6	0,9461	0,8986	4,2	0,8423	• • •	8,0		0,2561
1,8	0,9389	0,8808	4,4	0,8339		9,0		0,2139
2,0	0,9316	0,8618	4,5	• • •	0,5262	10,0		0,1804

9.20.5. Числа переноса

Число переноса указывает, какая часть общего количества электричества, прошедшего через электролит, перенесена соответственно анионом или катионом.

В таблице приведены числа переноса ионов некоторых электролитов в водных растворах при 20 °С. Молярная концентрация вещества эквивалента — 0,01 моль/л (разведение в дм³/моль эквивалента ≈ 100).

Принятое обозначение: n_a — число переноса аниона $(n_{\kappa}=1-n_a$ — число переноса катиона).

Электролит	na	Электролит	n _a	Электролит	$n_{\mathbf{a}}$
AgNO ₃ BaCl ₂ CaCl ₂ Ca(SO ₄ CdSO ₄ CoCl ₂ CsCl CuCO ₂ CuSO ₄ HCl HNO ₃ H ₂ SO ₄	0,53 0,55 0,55 0,55 0,56 0,57 0,61 0,59 0,51 0,60 0,63 0,17 0,16 0,18	KBr K ₂ CO ₃ KCl KClO ₃ KI KNO ₃ K ₂ SO ₄ KOH LaCl ₃ LiCl MgCl ₂ MgSO ₄ NaBr Na ₂ CO ₃	0,50 0,44 0,51 0,46 0,51 0,49 0,51 0,74 0,53 0,67 0,62 0,61 0,61 0,59	NaCl NaCH ₃ COO NaNO ₃ NaOH Na ₂ SO ₄ NH ₄ Cl Pb(NO ₃) ₂ RbCl SrCl ₂ TlCl Tl ₂ SO ₄ ZnCl ₂ ZnSO ₄	0,61 0,43 0,63 0,80 0,61 0,51 0,52 0,56 0,52 0,52 0,60 0,65

9.20.6. Эквивалентная электрическая проводимость растворов электролитов при 25°C

Эквивалентная электрическая проводимость (λ) равна удельной электрической проводимости, умноженной на объем, в котором растворен 1 моль эквивалента вещества.

 Π ринятые обозначения: λ — эквивалентная электрическая проводимость; m — молярная концентрация эквивалента вещества.

2		λ.1	0-4, см	м ² /мол	ь, при <i>п</i>	и, моль/	дм ³	
Электролит	0	0,0005	0,001	0,005	0,01	0,02	0,05	0,1
HCI	426,16	422,74	421,36	415.80	412.24	407.24	399.09	391.39
LiCl	115,03	113,15	112,40	109,40	107.32	104.65	100.11	95,8
NaCl		124,50	123,74	120,65	118.51	115.76	111,06	106.7
KCl	149,86	147,81	146,95	143,55	141,27	138.34	133,37	128.9
NH₄Cl	149,7			• • •			133,29	
KBr ⁻	151,90			146,09	143,43	140.48	135,68	131.3
NaI	126,94	125,36		121,25				108.7
ΚI	150,38						134,97	
KNO ₃	144,96	142,77	141,84				126,31	

		λ-1	0-4, см	· м²/мол	ь, при <i>п</i>	г, м оль/	дм ⁸	
Электролит	0	0,0005	0,001	0,005	0,01	0,02	0,05	0,1
КНСО3	118,00	115,10	115,34	112,24	110,08	107,22	·	_
NaCH ₃ COO	91,00	89,2	88,5	85,72	83,76	81,24	76,92	72,80
NaOH	247,8	245,6	244,7	240,80	238,0	• • •	• • • •	• • •
AgNO ₃	133,36	131,36	130,51	127,20	124,76	121,41	115,24	109,14
1/2 MgCl ₂	129,40	125,61	124,11	118,31	114,55	110,04	103,08	97,10
1/2 CaCl	135,84	131,93	130,36	124,25	130,36	115,65	108,47	102,4
1/2 SrCl.	135,80	131,90	130,33	124,44	120,29	115.54	108,25	102,19
1/2 BaCl	139.98	135,96	134,34	128,02	123,94	119,09	111,48	105,19
1/2 Na ₂ SO ₄	129,9	125,74	124,15	117,15	112,44	106,78	97,75	89,9
1/2 CuŚO,	133,6	121,6	115.26	94,07	83,12	72,20	59,05	50.5
1/2 ZnSO	132,8	121,4	115.53	95,49	84,91	72,24	61,20	52,6
1/3 LaCl ₃	145,8	139,6	137,0	126.5	121,8	115.3	106,2	99,1
1/3 K ₄ Fe(CN) ₆	174,5	166,4	163,1	150,7				
1/4 KaFe(CN)	184,5		167,24	146,09	134.83	122,82	107,70	97,8

9.20.7. Ионная проводимость при бесконечном разбавлении [при 25 $^{\circ}$ C]

Ионная проводимость (λ_{∞}) при бесконечном разведении равна эквивалентной электрической проводимости электролита при бесконечном разведении, умноженной на число переноса соответствующих ионов при бесконечном разведении. В таблице приведены значения ионной проводимости $\lambda_{\infty} \cdot 10^{-4}$, См · м²/г/моль.

Ион	λ	Ион	λ	Ион	λ	Ион	λ∞
Катионы				Анион	ы		
H+		1/2 Mg ²⁺	,	OH-	198,3	HCO_3^-	54,6
Li+		1/2 Ca ²⁺	59,5		55,6	$CH_3CO_2^-$	40,9
Na+		1/2 Sr ²⁺	59,4		76,4	1/2 CO ₃	69,
K+ -		$1/2 \text{Ba}^{2+}$. *	Br-	78,1	$1/2 C_2 O_4^{2-}$	74,
Rb+		1/2 Co ²⁺	,	I-	78,8	$1/2 \text{ CrO}_4^{2}$	85
Cs+	(78)	1/2 Cu ²⁺	56,6	ClO_4^-	67,4	1/2 HPO ₄ ²	57
NH_4^+	73,6	1/2 Ni ²⁺	54,0	MnO_4^-			
Ag ⁺	61,9	1/2 Zn ²⁺	56,6	NO ₂	62,8	$1/2 \text{ SO}_{4}^{2}$	80,0
T!+		1/3 Al ³⁺	63	NO_3	72,0	$1/2 \text{ SO}_3^{2-}$	72
1/2 Fe ²⁺		1/3 Fe ³⁺	68	HCO ₃	71,5	1/3 Fe(CN) ₆ ³	
1/2 Mn ²⁺	,	1/3 Cr ³⁺	67	HS-	44,5	1/4 Fe(CN)6	110,
1/2 Pb ²⁺	70	1/3 La ³⁺	69,7	H ₂ PO ₄	65 36	1/4 P ₂ O ₇ ⁴	95,9

9.20.8. Удельная электрическая проводимость (x) водных растворов [при 20 °C]

Электрическое сопротивление R пропорционально длице l исследуемого образца и обратно пропорционально площади поперечного сечения s_1

$$R = \rho \frac{l}{S}$$
.

Коэффициент пропорциональности ρ называется удельным эдектрическим сопротивлением. Величина, обратная ему, называется удельной электрической проводимостью:

$$\varkappa = \frac{1}{\rho} = \frac{1}{R} \frac{l}{S}.$$

Так как, согласно закону Ома, I = V/R, где V — напряжение, I — сила тока, то $\varkappa = \frac{I/S}{V/I}$. Таким образом, удельная элект-

рическая проводимость определяется количеством электричества, протекающим в единицу времени через единицу площади поперечного сечения, деленным на разность потенциалов на единицу длины.

Электролит	<u> </u>		ж, См/м	, при ма	ассовой	доле, %		
	5	10	15	20	25	30	35	40
KCI	6,9	13,6	20.2	26,8				
NaCl	6,7	12,1	16,4	19,6	21,4		_	_
CaCl ₂	6,4	11,4	15.1	17,3	17,8	16,6	13,7	
NH₄Či	9,2	17,8	25,9	33,7	40,2			
MgČl <u>.</u> KOH	6,8	11,3	• • •	14,0	•	10,6		_
KOH	• • •	31,4	42,3	50,4	54.0	53,9		42,1
NaOH	19,7	31,2	34,6	32,7	27,2	20,2	15,1	11,6
I ₂ SO ₄	20,0	39,1	54,3	65,3	71,7	73,9	72,4	68,0

^{*} При 42 %.

9.20.9. Удельная электрическая проводимость водных растворов KCI

Растворы КСІ применяют в качестве стандартов для определения постоянной сосуда K при измерении удельной электрической проводимости растворов различных электролитов.

$$K = \varkappa W$$

где W — сопротивление стандартного раствора KCl в сосуде, для которого определяется K; \varkappa — удельная электрическая проводимость раствора KCl при той же тем пературе.

_	×, Ca	и/м, молярной кон	центрации КС1, мо	ль/л
, °C -	1	0,1	0,02	0,01
0	6,541	0,716	0,1522	0,0776
8 .	7,954	0,889	0,190	0,097
10	8,32	0,934	0,1966	0,1019
12	8,689	0,979	0,209	0,107
16	9,441	1,072	0,229	0,1173
18	9,83	1,120	0,2399	0,1224
20	10,207	1.167	0,250	0,1278
24	10,984	1,264	0,271	0,1386
25	11,18	1,289	0,2768	0,1412

ЛАБОРАТОРНАЯ ТЕХНИКА

10.1. ИСТИННАЯ МАССА ТЕЛА

Производить взвешивание в вакууме сложно и не всегда возможно, поэтому обычно производят взвешивание в воздухе. Масса тела в воздухе равна разности массы тела в пустоте (истинной массы) и массы вытесненного им воздуха. Если плотность тела не равна плотности разновесов, то они вытесняют разный объем воздуха и масса тела в воздухе не равна его массе в пустоте. Для того чтобы получить истинную массу тела по массе его в воздухе, пользуются формулой

$$\Gamma = \Gamma_{\rm p} + \Gamma_{\rm p} K$$

где Γ — масса тела в пустоте (истинная масса); $\Gamma_{\rm B}$ — масса тела в воздухе; K — поправочный коэффициент, который может быть вычислен из соотношения

$$K = d_{\rm B} \left(\frac{1}{d} - \frac{1}{d_{\rm D}} \right),$$

где $d_{\rm B}$ — средняя плотность воздуха, которая равна 0,0012 г/см³ при комнатной температуре и нормальном давлении (101325 Па; 760 мм рт. ст.); d — плотность взвешиваемого тела, г/см³; $d_{\rm p}$ — плотность разновесов (для алюминия и кварца — 2,65, для латуни — 8,4, для платины (90 % Pt и 10 % Ir) — 21,5 г/см³). В таблице приведены значения K.

10.1.1. Поправочный коэффициент K

	· · · · · · · · · · · · · · · · · · ·						
OCTE BAEMOFO F/CM ⁸	Поправ <i>К</i> · 10-	очный коэф -3 для разн	фициент овесов	CTB 3aemoro /cm³	Поправ <i>K</i> • 10-	очный коэф З для разн	фициент овесов
Плотность взвепиваемог тела, г/см³	из алюми- ния или кварца	из латуни	из платины (90 % Pt и 10 % Ir)	Плотност взвешивае тела, г/с	из алюми- ния или кварца	из латуни	из платины (90 % Рt и 10 % Ir)
0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90	+1,95 +1,73 +1,55 +1,39 +1,26 +1,15 +1,05 +0,96 +0,88	+2,26 +2,04 +1,86 +1,70 +1,57 +1,46 +1,36 +1,27 +1,19	+2,34 +2,12 +1,94 +1,78 +1,66 +1,55 +1,44 +1,36 +1,28	0,95 1,00 1,10 1,20 1,30 1,40 1,50 1,60 1,70	+0,81 +0,75 +0,64 +0,55 +0,47 +0,40 +0,35 +0,30 +0,25	+1,12 +1,06 +0,95 +0,86 +0,78 +0,71 +0,66 +0,61 +0,56	+1,21 +1,14 +1,04 +0,94 +0,87 +0,80 +0,75 +0,69 +0,64

Плотность взвешиваемого тела, г/см³	Поправ К-10-	очный коэф з для разн		OCTS BACMOFO F/CM ³	Поправ <i>К</i> · 10 -	очный коэф з для разн	фици ент •
Плотность взвешиваем тела, г/см	из алюми- ния или кварца	из латуни	из платины (90 % Pt и 10 % Ir)	лотн веши лв.	из алюми- ния или кварца	из латуни	из платинь (90 % Pt и 10 % Ir)
1,80 1,90 2,0 2,5 2,8 3,0 3,5 4,0 5,0 6,0	+0,21 +0,18 +0,15 +0,03 +0,02 +0,05 +0,10 +0,15 +0,20 +0,25	+0,52 +0,49 +0,46 +0,34 +0,29 +0,26 +0,16 +0,10 +0,06	+0,62 +0,58 +0,54 +0,43 +0,37 +0,34 +0,28 +0,24 +0,19 +0,14	7,0 8,0 9,0 10,0 12,0 14,0 16,0 18,0 20,0 22,0	-0,28 -0,30 -0,32 -0,33 -0,35 -0,36 -0,37 -0,38 -0,39 -0,40	+0,03 +0,01 -0,01 -0,02 -0,04 -0,06 -0,07 -0,08 -0,08 -0,09	+0,011 +0,09 +0,08 +0,06 +0,04 +0,03 +0,02 +0,01 +0,004 -0,001

10.2. ИСТИННАЯ ЕМКОСТЬ СТЕКЛЯННЫХ СОСУДОВ

Емкость стеклянного сосуда вычисляют, определяя массу содержащейся в нем жидкости, по формуле

$$V_t = \Gamma_t C_t$$

где V_t — объем сосуда при температуре t, °C; Γ_t — масса содержащейся в сосуде жидкости при той же температуре; C_t — множитель, значение которого находят по таблице A, если наполняющая жидкость — вода, и по таблице B, если наполняющая жилкость — ртуть.

вода, и по таблице B, если наполняющая жидкость — ртуть. Объем сосуда при температуре T, C, отличающейся от температуры t, C, при которой была взвешена жидкость, определяется по формуле

$$V_T = \Gamma_t (C_t + C_{T-t}),$$

где V_T — объем сосуда при температуре T, °C; Γ_t — масса содержащейся в сосуде жидкости при температуре t, °C; C_t и C_{T-t} — множители из таблицы на с. 738—739.

10.2.1. Поправочные множители $oldsymbol{C}_t$ и $oldsymbol{C}_{T-t}$ для вычисления истинной емкости стеклянных сосудов

Коэффициенты объемного расширения стекол следующие:

Пирекс 774					9,7	10-e
Известково натровое					25 •	10-a

ĮΠ	родолжение	таблицы

			C_{T-t} д	ля стекла
t, °C	C_t	<i>T</i> — <i>t</i> , °C	пирекс 774	известково- натровое
15	0,0737529	15	0,0000106	0,0000277
16	0,0737665	16	0,0000113	0,0000295
17	0,0737801	17	0,0000120	0,0000313
18	0,0737932	18	0,0000127	0,0000332
19	0,0738068	19	0,0000134	0,0000349
20	0,0738204	20	0,0000141	0,0000368
21	0,0738335	,21	0,0000148	0.0000386
22 23 24	0,0738471 0,0738602 0,0738738	22 23 24	0,0000148 0,0000155 0,0000162 0.0000169	0,0000380 0,0000404 0,0000428 0,0000441
25	0,0738869	25	0,0000176	0,0000459
26	0,0739006	26	0,0000184	0,0000478
27	0,0739137	27	0,0000191	0,0000497
28	0,0739274	28	0,0000198	0,0000515
29	0,0739405	29	0,0000205	0,0000533
30	0,0739541	30	0,0000212	0,0000552

10.3. ПОПРАВКИ ДЛЯ ПРИВЕДЕНИЯ ОБЪЕМА РАСТВОРА К ОБЪЕМУ ПРИ 20 °C

Поправки приведены для стеклянных сосудов из известково-натрового стекла, объемный коэффициент расширения которого принят равным $25 \cdot 10^{-6}$.

				Поправі	κa, %			
t, °C	Стеклян- ный сосуд	Вода и растворы с концент-	[оры с ко		ей эквива ль/л	лента в е ш	ества
	Стек,	рацией эквива- лента вещест- ва 0,1 моль/л	HC1	H ₂ C ₂ O ₄	H ₂ SO ₄	HNO ₃	Na ₂ CO ₃	NaOI
5 6 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 27 28 29 30	 	-0,103 -0,126 -0,151 -0,176 -0,199	+0,223 +0,215 +0,185 +0,173 +0,160 +0,145 +0,130 +0,114 +0,097 +0,061 +0,041 -0,062 -0,022 -0,044 -0,067 -0,117 -0,117 -0,1192 -0,255	+0,238 +0,23 0 +0,199 +0,186 +0,172 +0,157 +0,123 +0,103 +0,065 +0,044 +0,023 -0,075 -0,075 -0,0102 -0,0129 -0,129 -0,129 -0,129 -0,185 -0,214 -0,247	+0,324 +0,309 +0,258 +0,239 +0,119 +0,176 +0,153 +0,130 +0,106 +0,085 +0,028 -0,085 -0,085 -0,115 -0,146 -0,178 -0,178 -0,211 -0,245 -0,279 -0,313	+0,330 +0,314 +0,261 +0,241 +0,199 +0,176 +0,133 +0,130 +0,054 +0,054 +0,057 -0,087 -0,087 -0,117 -0,148 -0,180 -0,213 -0,213 -0,246 -0,280 -0,314	+0,105 +0,080 +0,086 +0,027 0,0 -0,028 -0,085 -0,115 -0,117 -0,209 -0,241 -0,275	+0,35 +0,33 +0,27 +0,25 +0,20 +0,18 +0,15 +0,13 +0,05 +0,05 -0,05 -0,05 -0,12 -0,15 -0,28 -0,28 -0,28 -0,28

			c_{T-t} дл	я стекла
t, °C	c_t	T—t, °C	пирекс 774	известково- натровое
А. Наполі	нж квшокн	дкость — в	ода	
0	1,001221	0		-
1	1,001161	1	0,000010	0,000025
2	1,001120	2	0,000019	0,000050
3	1,001096	3	0,000029	0,000075
4	1,001088	4	0,000038	0,000100
5	1,001096	5	0,000048	0,000125
6	1,001120	6	0,000058	0,000150
7	1,001159	7	0,000067	0,000175
8	1,001212	8	0,000077	0,000200
9	1,001280	9	0,000086	0,000225
10	0,001361	10	0,000096	0,000250
11 12	1,001456	11	0,000106	0,000275
13	1,001564 1.001685	12 13	0,000115	0,000300
14	1,001083	13	0,000125 0,000134	0,000325
15	1,001963	• 15	0,000134	0,000350 0,000375
16	1,002120	16	0,000144	0,000373
17	1,002289	17	0,000163	0,000425
18	1,002469	18	0,000173	0,000420
19	1,002661	i9	0.000182	0,000475
20	1,002863	20	0,000192	0,000500
21	1.003075	21	0,000202	0,000525
22	1,003299	22	0,000211	0,000550
23	1,003532	23	0,000221	0,000575
24	1,003776	24	0,000230	0,000600
25	1,004029	25	0,000240	0,000625
26	1,004292	26	0,000250	0,000650
27	1,004565	27	0,000259	0,000675
28	1,004847	28	0,000269	0,000700
29	1,005138	29	0,000278	0,000725
30	1,005438	30	0,000288	0,000750
6. Напол	няющая жи	дкость —	ртуть	
0	0,0735522	0		
l	0,0735657	1	0,0000007	0,0000019
2	0,0735792	2	0,0000014	0,0000037
3	0,0735792	3	0,0000021	0,0000055
4	0,0736058	4	0,0000028	0,0000074
5	0,0736193	5	0,0000035	0,0000092
6	0,0736329	<u>6</u>	0,0000042	0,0000110
7	0,0736513	7	0,0000049	0,0000128
8	0,0736649	8	0,0000056	0,0000147
9	0,0736784	9	0,0000064	0,0000166
10	0,0736915	10	0,0000071	0,0000185
11 12	0,0736996	11 12	0,0000078	0,0000204
13	$0,0737132 \\ 0,0737262$	13	0,0000085	0,0000222
14	0,0737398	14	0,0000092	0,0000240
	0,0101030	17	0,0000099	0,00 00258

10.4. ДОПУСТИМЫЕ ОТКЛОНЕНИЯ ОТ НОМИНАЛЬНОЙ ЕМКОСТИ РАЗЛИЧНЫХ СТЕКЛЯННЫХ ИЗМЕРИТЕЛЬНЫХ СОСУДОВ, см³ 740

	целения- подраз- – с дву- гками	2-го класса	-	-	± 0,20 + 0.16	+0.16	± 0,10	± 0,08	+1 +0 0,0 0,0	90,0	+0,04	+0,04	±0,04	± 0.02	± 0.02	\pm 0,02
этки	с подразделения ми и без подраз- делений — с дву- мя метками	1.го класса			+0,10	+ 10.08	± 0.05	±0,04	+ 0,0 4,0	+ H (S)	+0,02	$\pm 0,02$	\pm 0,02	±0,01	+0,01	±0,01
Пипетки	разделе. с одной кой	2-го класса			±0,16	+0,12	± 0,10	90°0∓	90°0 +	+ 0,04						
	без подразделе- яий — с одной меткой	1-го класса			+ 0,08	+ 0.05	±0,04	± 0.03	±0,03	+ H 0,02	+0,01	±0,01	±0,01	±0,00€	± 0.006	± 0,006
	Бюретки с боковым краном без крана	2-го класса			±0,24		$\pm 0,10$:	:	: :	:	:	:	:	:	:
	Бюретки с боковым краном и без крана	1-го класса			+ 0,12	2 :	± 0.05	:	:	: :	:	:	:	:	:	:
200	мым юм обю- ки	1-го 2-го класса в			± 0,20 + 0,10	} :	\pm 0,06	:	:	: :	:	:	:	$\pm 0,015$	± 0.015	:
Бюретки	с прямым краном и микробю ретки	1-го класса			$\pm 0.10 + 0.05$:	± 0.03	:	: :	:	:	:	:	0,00€	± 0.006	:
	Мен- зурки	отлив- ные	+ 10,0 + 6.0	\pm 3,0	++1,5	:	:	:	: :	:	:	;	:	:	:	:
	итель-	отлив- ные	+ 12,0 + + 8,0 + 4,0	$\pm 2,0$	±0,8 +0,6	:	± 0.4	:	: :	± 0.4	:	$\pm 0,4$:	:	:	:
	Измеритель- ные цилиндры	налив- ные	+ + 6,0 + 2,0 + 2,0	± 1,0	+ + 0,4 + 0,3		$\pm 2,0$:	: :	± 0.2	:	$\pm 0,2$:	:	:	:
	Колбы 2-го класса	отлив- ные	+ 2,00 + 1,20 + 0.60	$\pm 0.40 \\ \pm 0.40$	+ 0,40	:	\pm 0,12	:	: :	:	:	:	:	:	:	:
	Колбы 2- класса	, налив ные	± 1,00 ± 0,60 ± 0,30				± 0,06	:	: :	:	:	:	:	:	•	:
	Колбы 1-го класса	отлив- ные	+ + 0,00 + 0,60 + 0,30				± 0.06	:	: :	:	:	:	:	:	:	:
	Колбы 1- класса	налив- ные	± 0,50 ± 0,30 ± 0,15	+ 0,10 + 0,10	+ ± 0,10 + 0,05	:	± 0.03	:	: :	:	:	:	:	:	:	:
	Емкость		2000 1000 500	220 200 200	100 200 200	40	25	50	<u> </u>	0.	შ	ഹ '	4	8	, ,	c'o

10.5. ПОПРАВКИ К ПОКАЗАНИЯМ БАРОМЕТРА

10.5.1. Поправки для приведения барометрических отсчетов по ртутному барометру при различных температурах к 0°С

Для приведения отсчетов по ртутному барометру при различных температурах к значениям высоты ртутного столба при 0°С вводится поправка Δ из таблицы. Поправка при температуре выше 0 °C вычитается, при температуре ниже 0° С прибавляется.

Поправка может быть вычислена по формуле

$$p_0 = \frac{p(1+\alpha t)}{(1+\beta t)} = p - p \frac{\beta - \alpha}{1+\beta t} t = p - \Delta,$$

где p_0 — приведенное к 0 °C показание барометра, мм рт. ст.; p — показания барометра при температуре t, °C; t — температура, при которой определено р; а — коэффициент линейного расширения шкалы барометра (для латуни — 0,0000184, для стекла — 0,0000085); β коэффициент объемного расширения ртути (0,0001815).

Перевод в паскали производится умножением на 133,322

(1 мм рт. ст. = 133,322 Па).

ပ့်		Отсчет	ы высо	гы, мм	İ	ပွ		Отсчет	ы высо	ты, мм	[
**	700	720	740	760	78 0	<u>,,,</u>	700	720	740	760	7,8 0
Поп	авки	пл	g T	екпо	ı u.	Поп	р-авк	илл	rar mr	этуг	ப்பலம்
	шкал						лы, мі			u.,.	11101
. 2	0,24	0,25	0,26	0,26	0,27	1	0,23	0,24	0,24	0,25	0,25
4	0,48	0,49	0,51	0,58	0,54	4	0,46	0,47	0,48		0,51
6	0,73	0,75	0,77	0,79	0,81	6	0,69	0,71	0,72	0,74	0,76

2	0,24	0,25	0,26	0,26	0,27	1	0,23	0,24	0,24	0,25	0,25
4	0,48	0,49	0,51	0,58	0,54	4	0.46	0.47	0,48	0,50	0,51
6	0,73	0,75	0,77	0,79	0,81	6	0,69	0,71	0,72	0,74	0,76
8	0,97	0,99	1,02	1,05	1,08	. 8	0,91	0,94	0,97		1,02
10	1,21	1,25	1,28	1,31	1,35	10	1,14	1,17	1,21	1,24	1,27
12	1,45	1,49	1,53	1,58	1,62	12	1,37	1,41	1,45		1,53
14	1,69	1,74	1,79	1,84	1,89	14	1,60	1,64	1,69		1,78
16	1,94	1,99	2,05	2,10	2,16	16	1,82	1,88	1,93		2,03
18	2,18	2,24	2,30	2,36	2,43	18	2,05	2,11	2,17		2,29
20	2,42	2,49	2,56	2,62	2,69	20	2,28	2,34	2,41	2,47	2,54
22	2,66	2,73	2,81	2,89	2,96	22	2,51	2,58	2,65		2,79
24	2,90	2,98	3,06	3,15	3,23	24	2,73	2,81	2,89		3,05
26	3,14	3,23	3,32	3,41	3,50	26	2,96	3,04	3,13		3,30
28	3,38	3,47	3,57	3,67	3,77	28	3,19	3,28	3,37		3.55
30	3,62	3,72	3,83	3,93	4,03	30	3,41	3,51	3,61		3,80
32	3,86	3,97	4,08	4,19	4,30	32	3,64	3,74	3,85		4,05
34	4,10	4,21	4,33	4,45	4,57	34	3,87	3,98	4.09	4,20	4,31
	,	•	,	,	,		-,		,-	. •	•

10.5.2. Поправки для приведения барометрических показаний к показаниям барометра на высоте уровня моря

уров- моря,	Поправки * к показаниям барометра, мм рт. ст., при показаниях барометра при 0°С, мм рт. ст.										
Бысота над ур нем мо м	680	700	740	760	780						
100	• • •	0,02	0,02	0,02	0,02						
200	• • •	0,04	0,05	0,05	0,05						
300	0,06	0,07	0,07	0,07							
400	0,09	0,09	0,09	· · ·							
500	0,11	0,11	0,12								
600	0,13	0,13	0,14								
700	0,15	0,16	0,16								
800	0,17	0,18		• • •	• • •						
900	0,19	0,20	• • •								
1000	0,21	0,22									

^{*} Все поправки вычитаются.

10.5.3. Поправки для приведения барометрических показаний к показаниям барометра на географической широте 45°

Географи-	Поправк	и к показаі	ниям бароме (0° С), мм	тра при пон рт. ст.	казаниях ба	рометра
ческая широта, °	700	720	740	750	760	780
0	-1,88	1,93	1,99	2,02	2,04	2,07
10	1,99	1,82	1,87	1,90	1,92	1,95
20	-1,45	1,49	1,53	1,55	1,57	1,59
30	-0.96	0,99	1,01	1,03	1,04	1,06
40	-0.36	0,37	0,38	0,38	0,39	0,39
50	+0.29	0,29	0,30	0,31	0,31	0,31
55	+0,60	0,62	0,63	0,64	0,65	0,66
60	+0.89	0,92	0,94	0,96	0,97	0,98
65	+1,16	1,19	1,22	1,24	1,26	1,27
70	+1,39	1,42	1,46	1,48	1.50	1,52
75	+1.57	1,62	1,66	1,68	1.71	1,73
80	+1,71	1,76	1,81	1,83	1,85	1,88
85	+1,79	1,84	1,89	1,92	1,95	1,97
90	+1.82	1,87	1,92	1,95	1,98	2,00

10.5.4. Поправки на капиллярное понижение

Высота мениска и значение капиллярного понижения зависят от диаметра и чистоты стенок трубки, а также от чистоты ртути.

В таблице приведены поправки, которые должны быть прибавлены к отсчитанной высоте.

д.			Высота	мениска	, мм			
Диаметр трубки, мм	0,4	0,6	0,8	1,0	1,2	1,4	1,6	1,8
4	0,83	1,22	1,54	1,98	2,37		• • •	
4 5 6 7	0,47	0,65	0,86	1,19	1.45	1,80	• • •	• • •
6	0,27	0,41	0,56	0,78	0.98	1,21	1,43	
7	0,18	0,28	0,40	0,53	0,67	0,82	0,97	1,13
8 9	• • • •	0,20	0,29	0,38	0,46	0,56	0,65	0,77
9		• • •	0,21	0,28	0,33	0,40	0,46	0,52
10	• • •	• • •	0,15	0,20	0,25	0,29	0,33	0,37
11	• • •	• • •	0,10	0,14	0,18	0,21	0,24	0,27
12	• • •		0 07	0,10	0,13	0,15	0,18	0,19
13	• • •		0,04	0,07	0,10	0,12	0,13	0,14

10.6. ПОСТОЯННЫЕ ТЕРМОМЕТРИЧЕСКИЕ ТОЧКИ

Постоянные термометрические точки (°C) химически чистых веществ, которые могут быть применены для градуировки термометров и термопар:

10.7. ПОПРАВКИ К ПОКАЗАНИЯМ ЛАБОРАТОРНОГО ТЕРМОМЕТРА НА ВЫСТУПАЮЩИЙ СТОЛБИК РТУТИ

$$\Delta t = n (t - t_1) \alpha$$

где Δt — поправка к показаниям термометра, °C; n — число градусных делений в выступающей части столбика ртути; t — наблюдаемая температура, °C, t_1 — средняя температура выступающего столбика ртути, °C (определяется вспомогательным термометром, резервуар которого укреплен на середине высоты выступающего столбика); α — коэффициент, зависящий от сорта стекла и конструкции термометра.

Пля палочных термометров из боросиликатного стекла № 59 $\alpha = 0,000168$, для обычных термометров $\alpha = 0,00016$, для кварцевых $\alpha = 0,00018$.

10.8. АРЕОМЕТРИЧЕСКИЕ ШКАЛЫ

В литературных источниках приводятся способы измерения плотности в условных градусах (Боме, Флейшера, Твэделла).

Существуют различные виды ареометров Боме. Для некоторых из них в таблице приведены данные для перевода показаний ареометра в плотность при 15 °C.

У рационального ареометра Боме для жидкостей тяжелее воды деление 0° соответствует плотности воды при 15°С, а деление 66° отвечает плотности концентрированной серной кислоты (1,842). Зависимость между показателями ареометра (п) и относительной плотностью (d) выражается формулой

$$d_{15} = d_4^{15} = \frac{144,3}{144,3-n}.$$

У рационального ареометра Боме для жидкостей легче воды

$$d_{15}=d_4^{15}=\frac{144,3}{144,3+n}.$$

У американского ареометра Боме для жидкостей легче воды

$$d_{15} = d_4^{15} = \frac{140}{130 + n}$$
.

У ареометра Твэделла $d=1\cdot 1000+0,005n$, у ареометра Флейшера d=1,000+0,01n.

ن <u>.</u>		d_4^{15}		e,		d_4^{15}	
isi Bome,	Ареометр для жид- костез	Ареоме жидкостей	стр для легче воды	ы Боме,	Ареометр для жид- костей		ет р для легче воды
Градусы п _{тв}	тяжелее воды, рациональ. ный	рацио- нальный	американ- ский	жостей тяжелее воды, рациональ-	рашио- нальный	американ- ский	
1	1,007	0.9931		29	1,252	0,8327	0,8805
2 3	1,014	0,9864	· · ·	30	1,262	0.8279	0,8750
3	1,021	0,9797	• • •	31	1,274	0,8232	0,8695
4 5 6 7	1,029	0,9730		32	1,285	0,8185	0,8641
. 5	1,036	0,9665	• • •	33	1,297	0,8139	0,8588
6	1,043	0,9601	•••	34	1,308	0,8093	0,8536
7	1,051	0,9537	• • •	35	1,320	0,8048	0.8484
8 9	1,059	0,9475	•••	36	1,332	0,8003	0,8433
.9	1,067	0,9413	•••	37	1,345	0,7959	0.8383
10	1,074	0,9352	1,0000	38	1,357	0,7916	0,8333
11	1,083	0,9292	0,9929	39	1,370	0,7872	0,8284
12	1,091	0,9232	0,9859	40	1,383	0,7830	0,8235
13	1,099.	0,9 174	0,9780	41	1,397	0,7787	0,8187
14	1,107	0,9116	0,9722	42	1,411	0,7746	0,8139
15	1,116	0,9058	0,9655	43	1,424	0,7704	0,8092
16	1,125	0,9002	0,9589	44	1,439	0,7663	0,8045
17	1,134	0,8946	0,9523	45	1,453	0,7623	0,8000
18	1,143	0,8891	0,9459	46	1,468	0,7583	0,7954
19	1,152	0,8837	0,9395	47	1,483	0,7543	0,7909
20	1,161	0,8783	0,9333	48	1,498	0,7504	0,7865
21	1,170	0,8730	0,9271	49	1,514	0,7465	0,7821
22	1,180	0,8689	0,9210	50	1,530	0,7427	0,7777
23	1,190	0,8625	0,9150	51	1,547	0,7389	0,7734
24	1,200	0,8574	0,9090	52	1,563	0,7351	0,7692
25	1,210	0,8523	0,9032	53	1,581	0,7314	0,7650
26	1,220	0,8473	0,8974	54	1,598	0,7277	0,7608
27	1,230	0,8424	0,8917	55	1,616	0,7241	0,7567
28	1,241	0,8375	0,8860	56	1,634	0,7204	0,7526

é é		d ₄ ¹⁵	·	e,		d_4^{15}	
ы Боме,	Ареометр для жидко-		етр для легче воды	ы Боме,	Ареометр для жидко-		етр для йлегче воды
Градусы]	стей тяже- лее воды, рациональ- ный	рацио- нальный	американ- ский	Градусы п1:	стей тяже- лее воды, рациональ- ный	рацио- нальный	американ- ский
57	1,653	0,7169	0,7486	79		0.6462	0,6698
58	1,672	0,7133	0,7446	80		0.6433	0,6666
59	1,692	0,7098	0,7407	81		0.6405	0.6635
60	1,712	0,7063	0,7368	82		0 6377	0,6604
61	1,732	0,7029	0,7329	83		0,6348	0,6573
62	1,753	0,6995	0,7290	84		0.6321	0.6541
63	1,775	0,6961	0,7253	85	•••	0,6293	0,6511
64	1,797	0,6928	0,7216	86		0,6266	0,6482
65	1,820	0,6895	0,7179	- 87	• • •	0,6239	0,6452
66	1,843	0,6862	0,7142	88	• • •	0,6212	0,6422
67	• • •	0,6829	0,7106	89		0,6185	0,6393
68	• • •	0,6797	0,7070	90		0,6159	0,6363
69	• • •	0,6765	0,7035	91		0,6133	0,6335
70	• • • •	0,6734	0,7000	92		0,6107	0,6306
71		0,6703	0,6965	93	• • •	0,6081	0,6278
72	• • •	0,6671	0,6931	94	• • •	0,6056	0,6250
73		0,6641	0,6896	95		0,6030	0,6222
74	• • •	0,6610	0,6863	96	• • •	0,6005	0,6195
75	• • •	0,6580	0,6829	97	• • •	0,5980	0,6167
76	• • •	0,6550	0,6796	98	• • •	0,5957	0,6140
77	• • •	0,6521	0,6763	99	• • •	0,5931	0 ,6113
78	• • •	0,6491	0,6731	100	• • •	0,5907	0,6087

10.9. БУМАГА ХРОМАТОГРАФИЧЕСКАЯ

Бумага для хроматографического анализа выпускается двух видов марки «Б» — для быстрого впитывания и марки «М» — для медленного впитывания. Содержание солей железа и меди в бумаге не нормируется. Бумага может применяться как для одномерного, так и для двумерного анализа по нисходящему или по восходящему способу. Бумага не предназначена ни для капельного метода анализа, ни для фильтровальных работ: не подвергается ни специальной химической обработке, ни обеззоливанию.

В случае надобности можно снизить зольность бумаги и содержание в ней солей металлов соответствующей обработкой непосредственно перед применением.

Перед анализом аминокислот, аминов и белков бумагу следует подвергнуть следующей обработке: тщательная отмывка в растворе соляной кислоты с концентрацией HCl 0,3 моль/л, затем нейтрализация раствором гидроксида натрия с концентрацией NaOH 0,5 моль/л (или аммиаком), отмывка дистиллированной водой до отрицательной реакции на свободное основание, обработка фосфатным буфером с pH = 7,0 \div 7,5 и сушка. В таблице дана характеристика бумаги

	Показатель	по ТУ-757
Характеристика	Б	М
Масса листа площадью 1 м², г	85 ± 5	85 ± 5
Скорость впитывания воды: средняя по двум направлениям	70 ± 5	45 ± 5
за 10 мин, мм Зольность — массовая доля золы, % (не более)	0,1	0,1 100
Сорность — общее число соринок с размером 0,25—1,5 мм на площади листа 1 м² (не более)	100	
рН водной вытяжки Содержание веществ, экстрагируемых водона-	$6,5 \pm 0,5$ $1,0$	$6,5 \pm 0,5$
сыщенным фенолом, измеряемое шириной полосы позади фронта впитывания, см (не более)	Не допу	CKSETCS
Содержание аминокислот Содержание восстанавливающих веществ	»	»

10.10. ФИЛЬТРЫ

10.10.1. Средний диаметр пор фильтров

Тип фильтра	Средний диаметр пор, мкм
Стеклянный № 1	100—120
№ 2	4050
№ 3	20—25
№ 4	10
Фильтровальная бумага	
обыкновенная	3,5—10 1—2,5
уплотненная	12,5
Керамические фильтры	0,1—0,4
Мембранные фильтры	0,0050,5
Ультрафильтры	0,0010,1

10.10.2. Бумажные фильтры для лабораторных работ

Скорость фильтрации указана для фильтра диаметром 9 см для дистиллированной воды при температуре 17—20 °С и давлении 500 мм вод. ст.

Квалификация фильтров	Скорость фильтрации, см ³ /мин (не более)	Область применения
Обеззоленные медленнофильтрующие (синяя лента)	10	В весовом анализе для фильтрования тонкодисперсных осадков типа BaSO ₄

Квалификация фильтров	Скорость фильтрации, см ³ /мин (не более)	Область применения		
Обеззоленные среднефильтрующие (белая лента)	20	В весовом анализе для фильтрования осадков типа ZnCO ₃		
быстрофильтрующие (красная лента)	40	В весовом анализе для фильтрования осадков типа Fe (OH)3		
Обезжиренные (желтая лента)	20	При количественном анализе жиров и восков		

10.11. СИТОВЫЕ ШКАЛЫ

Номер сетки или сита соответствует номинальной длине (мм) стороны отверстия в свету.

Номер сетки или сита	Диаметр проволо- ки, мм	Номер сетки или сита	Диаметр проволо- ки, мм	Номер сетки или сита	Диаметр проволо- ки, мм
2,5	0,5	0.45	0,18	0,112	0.08
$\overline{2}$	0,5	0,355	0,15	0,112	0,08
1,6	0,45	0,315	0,14	0,09	0,07
1,25	0,4	0,28	0,14	0,08	0,055
1	0,35	0,25	0.13	0,071	0,055
0,9	0,35	0,224	0,13	0,063	0,045
8,0	0,3	0,2	0,13	0.05	0,035
0,7	0,3	0,18	0,13	0.045	0,035
0,63	0,25	0,16	0,12	0,04	0,03
0,56	0,23	0,14	0,09	, ,	- •
0,5	0,22	0,125	0.09		

10.12. ТЕРМОПАРЫ

10.12.1. Термопары из различных металлических проводников и химически чистой платины

Олин из спаев взят при 0 °С, другой — при 100 °С; знак «+» означает, что в спае, находящемся при 0 °С, ток идет от указанного в таблице металла или сплава к платине.

,		,	Предельная температура, °C	
Проводник	Состав	Термоэлек- тродвижу- щая сила, мВ	при дли- тельном приме- нении	при крат- ковремен- ном при- менении
Алюмель	95 % Ni+5 % (Al,	-1,02;	1000	1250
	Si, Mg)	- 1,38		
Алюминий	Al	+0,40	• • •	•••
Висмут	Bi	-5,84; -7,30	•••	-
Вольфрам	W	+0.79	2000	2800
Железо поделочное		+1,87	600	800
Железо х. ч.	Fe	+1,8	600	800
Золото	Au	+0,8	1000	1000
Золото, сплав	60 % Au +	-2,21	1200	1300
	+ 30 % Pd +			
Manana	+10 % Pt	+0,65	•••	• • • •
Иридий Қадмий	 Cd	+0,9	•••	• • •
Кобальт	Co	-1,68;	• • •	•••
		-1,76	000	000
 Константан 	60 % Cu+40 % Ni	-3,5	600	800 800
Копель	56 % Cu+44 % Ni	-4,0 +44,8	600	800
Кремний	Si Ma	+0,41	•••	•••
Магний Манганин	Mg 84 % Cu +	+0,8	•••	•••
Mantannn	+ 13 % Mn +			
	+2 % Ni+1 %Fe		250	500
Медь проводнико-	Cu	-+-0,75	350	300
Вая	Cu	+0,76	350	500
Медь х. ч. Молибден	Mo	+1,31	2000	2500
Никель	Ni	-1,5;	1000	1100
		-1,54	4000	1100
Нихром	. 80 % Ni+20 % Cr	+1,5; +2,5		1100
Олово	Sn	+0,43	• • •	• • •
Палладий	Pd Pt	0,57 0,00	1300	1600
Платина «Экстра»	90 % Pt+10 % Ir	+1,3	1000	1200
Платиноиридий Платинородий	90 % Pt+10 % Rh	0,64	1300	1600
тыштыпородын	87 % Pt+13 % Rh	- i-0,646	1300	1600
Родий	Rh	+0,64	• • •	• • •
Ртуть	Hg	+0,04	•••	• • •
Свинец	Pb	$^{+0,44}_{+0,72}$	600	700
Серебро	Ag Sb	+ 4,8 6	•••	•••
Сурьма Тантал	Ta	+0,51	•••	•••
Теллур	Te	-+50,0	• • •	
Хромель	90 % Ni+10 % Cr	+2,71;	1000	1250
	7	+3,13		
Цинк	Zn	-+0,7	•••	•••
				_

10.12.2. Область применения некоторых термопар

В атмосфере, содержащей угарный газ CO или водород H_2 (восстановительная) либо сернистый ангидрид SO_2 , термопару необходимо помещать в чехол.

		Температурная область, °С				
	Диаметр		1	до		
Термопара	термо электро- дов, мм	ОТ	при дли- тельном примене- нии	при крат- ковремен- ном при- менении		
Платина—платинородий (10 % Rh)	0,5	250	1300	1600		
Хромель — алюмель	3,2	-200	1000	1300		
Хромель — копель	1,5—3,2	-50	600	800		
Железо — копель		50	800	• • •		
Железо — константан	• • •	-200	750	1100		

10.13. ЭЛЕКТРОПРОВОДА

10.13.1. Свойства некоторых проводников

Материал	Удельное электрическое сопротивление (при 20°C), Ом мм²/м	Отношение электрического сопротивления вещества к сопротивлению меди	Температурный коэффициент электрического сопротивления
A e			
Алюминий	0,026	1,5	0,004
Бронза фосфористая	0,115	6,6	0,004
Вольфрам	0,055	3,1	0,005
Золото	0,024	3,3	0,0037
Копстантан	0,49	28	0,000004
Латунь	0,07	4	0.002
Манганин	0,42	24	0.000008
Никель	0,07	4	0,006
Медь электротехни-	0,0175	1	0.004
ческая	,		-,
Нихром	1,1	63	0.00015
Олово	0,11	6,3	0.0044
Платина	0,1	5,7	0,003
Ртуть	0,958	5,5	0,0009
Свинец	0,21	12	0,004
Серебро	0,016	0,92	0,0036
Сталь	0,1	5,7	0,006
Цинк	0,06	3,4	0,004

	Без из	ляции	С изоляцией эмалью			
Электриче- ское сопро- тивление 1 м при 20°C, Ом		Сечение, мм ²	Длина, мм, с сопротив- лением 1 Ом	Диаметр, мм	Масса 100 м, т	
9,29	0.05	0,002	0,108	0,06	1,8	
6.44	0,06	0,0028	0,156	0,07	2,6	
4,73	0,07	0,0039	0,212	0,08	3,5	
3,63	0,08	0,005	0,276	0,09	4,6	
2,86	0,09	0,0064	0,35	0,1	5,8	
2, 00 2, 23	0,10	0,0079	0,448	0,115	7,3	
1.85	0,11	0,0095	0,541	0,125	8,8	
1,55	0,12	0,0113	0,645	0,135	10,4	
1,32	0,13	0,0133	0,757	[*] 0,145	12,1	
1.14	0,14	0,0154	0,877	0,155	14,0	
0,15	0,15	0,0177	1,01	0,165	15,2	
0,873	0,16	0,0201	1,145	0,175	18,3	
0,773	0,17	0,0227	1,295	0,185	20,6	
0,688	0,18	0,0255	1,455	0,195	23,1	
0,618	0,19	0,0284	1,62	0,205	25,8	
0,558	0,20	0,0314	1,795	0,215	28,5	
0,507	0,21	0,0346	1,975	0,23	31,6	
0,423	0,23	0,0416	2,36	0,25	37,8	
0,357	0,25	0, 0491	2,8	0,27	44,5	
0.306	0,27	0.0573	3,27	0,295	52,1	
0,266	0.29	0,0661	3,76	0,315	60,1	
0,233	0,31	0,0755	4,3	0,34	68,8	
0,205	0.33	0,0855	4,88	0,36	77,8	
0 ,182	0,35	0,0962	5,5	0,38	87,4 103	
0,155	0,38	0,1134	6,45	0,41	120	
0,131	0,41	0,132	7,53	0,44	138	
0,115	0,44	0,1521	8,7	0,475	157	
0,101	0,47	0,1735	9,9	0,505	171	
0,0931	0,49	0,1885	10,75	0,525	185	
0,0895	0,51	0,2043	11,67	0,545 0,59	215	
0,0739	0,55	0,2376	13,55	0,53	247	
0 ,0643	0,59	0,2734	15,55	0,68	291	
0,0546	0,64	0,3217	18,32 21,99	0,73	342	
0,0469	0,69	0,3739	24,5	0,79	389	
0,0408	0,74	0,4301	28,7	0,85	445	
0 ,0349	0,8	0,5027 0.5809	33,15	0,91	524	
0,0302	0,86	0, 5809 0, 6793	38,77	0,98	612	
0,0258	0,93	0,7854	44,7	1.05	707	
0,0224	1 1,08	0,7654	52,2	1,14	826	
0,0192	1,08	1,0568	60,25	1,22	922	
0 ,0166	1,10	1,131	64,5	1,26	1022	
0,0155 0.0143	1,25	1,2272	70	1,31	1105	
0,0143 0,0122	1,25	1,4314	82	1,41	1288	
0 ,0122 0 ,0106	1,45	1,6513	94,5	1,51	1486	
0.0092	1,56	1,9113	108,8	1,62	1712	
0,0092	1,68	2,2167	126,6	1,74	1992	

Электриче-	Без из	оляции	С изоляцией эмалью			
ское сопро- тивление 1 м при 20 °C, Ом	Диаметр, мм	Сечение, мм3	Длина, мм, с сопротив- лением 1 Ом	Диаметр, мм	Масса 100 м, г	
0,0068 0,0059 0,0055 0,0051 0,0044 0,0038	1,81 1,95 2,02 2,1 2,26 2,44	2,573 2,9865 3,2047 3,4637 4,015 4,6759	147,7 169,5 182 186 227,5 263,2	1,87 2,01 2,08 2,16 2,32 2,5	2310 2680 2875 3110 3603 4210	

10.13.3. Сила тока плавления различных проводов

тока е- А			Ді	наметр, мм			
Сила то плавле- ния, А	Медь	Алюминий	Платина	Никелин	Железо	Олово	Свинец
1	0,053	0,066	0,084	0.084	0,118	0,183	0,210
2 3 5 7	0,086	0,104	0,135	0,135	0,189	0,285	0,325
3	0,112	0,137	0,178	0,177	0,245	0,380	0,425
5	0,157	0,193	0,25	0,25	0,345	0,53	0,60
	0,203	0,250	0,32	0.32	0,45	0,66	0,78
10	0,250	0,305	0,39	0,39	0,55	0,85	0,95
15	0,32	0,40	0,52	0,52	0,72	1,02	1,25
20	0,39	0,485	0,62	0,62	0,87	1,35	1,52
2 5	0,46	0,56	0,73	0,73	1,0	1,56	1,75
30 35	0,52 0,58	0,64	0,82	0,81	1,15	1,77	1,98
40	0,63	0,7	0,91	0,91	1,26	1,95	2,20
45	0,68	0,77 0,83	0,99	0,99	1,38	2,14	2,44
50	0,03	0,89	1,08	1,08	1,50	2,3	2,65
60	0,82	1,00	1,15 1,3	1,15 1,3	1,60	2,45	2,78
70	0,91	1,1	1,3 1,44	1,43	1,80	2,80	3,15
80	1,0	1,22	1,58	1,43	2,0 2,2	3,10	3,5
90	1,08	1,32	1,70	1,69	2,2	3,4 3,65	3,8
100	1,15	1,42	1,83	1,82	2,55	3,9	4,1 4,4
120	1,31	1,60	2,07	2,05	2,85	4,45	5,0
160	1,59	1,94	2,3	2,28	3,2	4,9	5,5
180	1,72	2,10	2,7	2,69	3,7	5 ,8	6, 5
200	1,84	2,25	2,9	2,89	4,05	6,2	7,0
225	1,99	2,45	3,16	3,15	4,4	6,75	7,6
250	2,14	2,60	3,37	3,35	4,7	7,25	8,1
275	2,2	2,8	3,60	3,55	5,0	7,7	8,7
300	2,4	2,95	3,8	3,78	5,3	8,2	
300	2,4	2,95	3,8				8,7 9,2

10.13.4. Химический состав сплавов для проводов

Никель и кобальт з Алюминий
:
:
÷
93,75—95,55 1,80—2,50
:
;
:
:
:
:
:
:
:
:
:

10.13.5. Характеристика проводов из сплавов высокого сопротивления

	-					,		,		
		N	ангании		. K e	онстант	ан		Нихром	
Диаметр, мм	Сечение, мм	Электриче- ское сопро- тивление 1 м, Ом	Масса 100 м, г	Длина с со- противлением 1 Ом, м	Электриче- ское сопро- тивление 1 м. Ом	Масса 100 м, г	Длина с со- противлением 1 Ом, м	Электриче- ское сопро- тивление 1 м, Ом	Масса 100 м, г	Длина с со- противлением 1 Ом. м
0,3 0,05	0,0007 0,002	606.6 220		0,0045	693 250	1,75	0,0014 0,004	1520 550	0,58 1,61 3,16	0,0006
0,07 0,08	0,00039 0,005	85,4	3,1 4,1	0,0089 0,0117	124 97,4	3,4 4,5	0,0088 0,0103	280 208	4,11	0,0036
0,10 0,15	0,0 079 0,0 177	54,8 24,3	6,4 14,4	0,0183 0,0412	62,4 27,7	7 15,7	0,016 0,0362	138 61,2	14,5	0,0072
0,2 0,25	0,0314 0,0491	13,7 8,76	25,6 40	0,073 0,114	15,6 9,98	28 43,7	0,0642 0,1002	34,4 22,1	25,9 40,3	0,0292
0,3 0,35	0,0707 0,0962	6,06 4 . 47	57 ,7 78,2	0,165 0,244	6,93 5, 09	62,9 85,6	0,1443 0,197	15,3 11,3	58 78,9	0,065 4 0,08 86
0,4 0,45	0,1257 0,159	3,42 2,71	102,3 129,5	0,292 0,369	3,89 3,08	111,8 141,5	0,257 0,325	8,64 6,78	103 130,4	0,116 0,148
0,5 0,6	0,1964 0,2827	2,2 1,52	159,8 230,1	0,455 0,358	2,5 1,73	174,8 251,6	0,4 0,58	5,51 3,82	161 231,8	0,183 0,262
0,7 0,8	0,3848 0,5026	1,12 0,854	313,3 409,2	0,895 1,171	1,24 0,974	342,5 447,4	0,807 1,03	2,81 2,16	315,6 412,2	0,356 0,464
0,9 1	0,6362 0,7854	0,674 0,548	517,8 639,3	1,483 1,825	0,77 0,624	566,2 699	1,3 1,6	1,7 1,38	521,7 644	0,58 9 0,72 5
1,1 1,2	0,9503 1,131	0,453 0,379	773,5 920,6	2,21 2,64	0,516 0,43 4	845,5 1006,6	1,94 2,33	1,14 0,955	779,2 927,4	
1,3 1,4	1,3273 1,5394	0,324 0,276	1080,4 1253	3,08 3,63	0,369 0,318	1181 1369,7	2,76 3,14	0,815 0,702	1088,4 1262,3	1,2 3 1,42
1,5 1,6	1,7671 2,0106	0,243 0,214	1438 1635	4,12 4,67	0,277 0,244	1572,6 1789,8	3,63 4,11	0,612 0,539	1449 1648,7	1,63 1,86
1,7 1,8	2,2698 2,5447	0,189 0,169	1848 2071	5,29 5,81	0, 216 0, 192		4,64 5,22	0,477 0,425		2,1 2,36
1,9 2,0	2,8353 3,1416	0,152 0,137	2308 2557	6,58 7,3	-	2523,2 2796,4	5,8 6,41	0,382 0,344	2324,9 2575,1	2,62 2,91
,										_

10.14. НАГРЕВАТЕЛИ

10.14.1. Карборундовые нагреватели

Карборундовые нагревательные элементы (называемые также селитовыми, или глобаровыми, стержнями) изготовляют из карбида кремния рекристаллизацией при температуре выше 2000 °С. Их применяют для печей с температурой нагрева до 1350—1400 °С. Сопротивление стержней растет вначале быстро: на 15—20 % за 60 ч, затем медленнее. На стержни не действуют пары кислот; их разрушают щелочи, силикаты и соединения бора.

Допускается следующая поверхностная нагрузка:

T	-		13		
Температура печи, Тепловая нагрузка	°С , Вт/см²	1150 22	1200 19	1300	1400

10.14.2. Угольные и графитовые нагреватели

Угольные и графитовые нагревательные элементы применяют в печах с температурой до 3000 °C. Изготовляют их в виде труб, стержней, пластин и тиглей; при температуре свыше 700 °C они легко окисляются, а потому требуют защитной атмосферы или вакуума.

10.15. ТЕМПЕРАТУРЫ И ЦВЕТА КАЛЕНИЯ

Температура поверхности Солнца 6000 °C.

Цвет каления	t, ∘C	Цвет каления	t, °C
Начало темно-красного	525	Темно-оранжевый	1100
Темно-красный	700	Светло-оранжевый	1200
Начало вишневого	800	Белый	1300
Вишневый	900	Ярко-белый	1400
Светло-вишневый	1000	Ослепительно белый	1500

10.16. БАНИ. ПРЕДЕЛЬНЫЕ ТЕМПЕРАТУРЫ НАГРЕВА

Вола		
Вода		98
Сопистин		220
Серная кислота		250
		250
		300
Парафин Воздух		300
CMech 60 % Maccopus rozos Li co		300
лолей К SO	массовых	
		325
THEOR CMECH 55 % MACCOPHY TOTON KNO. AFAIR		400
Смесь 55 % массовых долей KNO ₃ и 45 %	массовых	
		600
Сплавы металлов		600
		CRAF.

10.17. ВЫСУШИВАЮЩИЕ ВЕЩЕСТВА

10.17.1. Высушивающая способность различных веществ

Высушивающее вещество или метод	t, ∘C	Количество водяных паров в 1 дм ³ воздуха, мг
Охлаждение (вымораживание) P_2O_5 Мg(ClO ₄) ₂ (безводный)	-194 + 25 + 25	1,6 · 10 ⁻²⁰ 0,000025 0,0005

Высушивающее вещество или метод	t, ∘C	Количество водяныж паров в 1 дм ^з воздуха, мг
Силикагель	+25	0,001
KOH (плавленый) Mg(ClO ₄) ₂ · 3H ₂ O	+25	0,002
M_2SO_4 (безводный)	+25 +25	0,002 0,003
$CaSO_4 \cdot 0.5 H_2O$	$^{+25}_{+25}$	0,004
MgO *	+25	0,008
CaBr ₂	72	0,012
	-21	0,019
NaOH (пл авленый)	$^{+25}_{+25}$	0,14 0,16
CaO	$^{+25}_{+25}$	0,10
CaCl ₂ (гранулированный)	+25	0,25
CaCl ₂ (плавленый)	+ 25	0,33
ZnCl ₂	+25	0,8
ZnBr ₂	+25	1,1
CuSO ₄ (безводный)	+25	1,4

10.17.2. Вещества для обезвоживания жидких органических веществ

Органическое вещество	Высушивающее вещество		
. ,			
Альдегиды Амины Галогенопроизводные углеводородов Гидразины Кетоны Кислоты Нитриды Нитросоединения Основания Основания азотистые (легкоокисляющиеся)	CaCl ₂ NaOH, KOH, K ₂ CO ₃ CaCl ₂ K ₂ CO ₃ CaCl ₂ , K ₂ CO ₃ Na ₂ SO ₄ K ₂ CO ₃ CaCl ₂ , Na ₂ SO ₄ KOH, K ₂ CO ₃ , BaO CaCl ₂		
Сероуглерод Спирты Углеводороды Фенолы Эфиры простые Эфиры сложные	CaCl ₂ K ₂ CO ₃ , CuSO ₄ , CaO, Na ₂ SO ₄ CaCl ₂ , Na Na ₂ SO ₄ CaCl ₂ , Na Na ₂ SO ₄ , CaCl ₂		

10.17.3. Вещества для высушивания газов

Газ	Высушивающее вещество	Газ	Высушивающее вещество
CH ₄ C ₂ H ₄ CO CO ₂ Cl ₂ H ₂	${ m H_2SO_4}$ (конц.), ${ m CaCl_2}$, ${ m P_2O_5}$ ${ m H_2SO_4}$ (конц., охлажденная) ${ m H_2SO_4}$ (конц.), ${ m CaCl_2}$, ${ m P_2O_5}$ ${ m H_2SO_4}$ (конц.), ${ m CaCl_2}$, ${ m P_2O_5}$ ${ m CaCl_2}$ (сас ${ m CaCl_2}$), ${ m P_2O_5}$, для не очень точных работ — ${ m H_2SO_4}$ (конц.)	HCl HI H ₂ S N ₂ NH ₃ NO O ₂ O ₃ SO ₂	CaCl ₂ CaI ₃ CaCl ₂ CaCl ₂ H ₂ SO ₄ (конц.), CaCl ₂ , P ₂ O ₅ CaO или смесь КОН с CaO Ca(NO ₃) ₂ H ₂ SO ₄ (конц.), CaCl ₂ , P ₂ O ₅ CaCl ₂ H ₂ SO ₄ (конц.), CaCl ₂ , P ₂ O ₅

10.18. ОХЛАЖДАЮЩИЕ СМЕСИ

Для получения низких температур служат сжиженные газы, кипящие при атмосферном давлении или при более низких давлениях. Используется воздух (от -183 до -210 °C), водород (от -253 до -259 °C), гелий (от -269 до -273 °C).

Удобно добавлять по каплям или пропускать жидкий воздух через различные низкозамерзающие жидкости, например пентан. Удается поддерживать необходимую температуру с достаточной точностью.

Для охлаждения пользуются твердой углекислотой или смесями с твердой углекислотой.

Многие соли обладают свойством поглощать при растворении значительное количество тепла. Если пользоваться для растворения соли не водой, а снегом или льдом, то можно получить охлаждение за счет теплоты плавления льда. Для создания большой поверхности соприкосновения следует предварительно соль и лед хорошо измельчить.

10.18.1. Охлаждающие смеси из воды или снега с одной солью

Смесь A г соли со 100 г воды при 10—15 °С дает снижение температуры на Δt °C.

Смесь В г соли со 100 г льда или снега дает снижение температуры до криогидратной точки.

Соль	А, г	Охлаждение ∆t, °C	В, г	Криогидратная точка, °С
CaCl ₂	126,9	23,2	42,2	-55
KCl	30	12,6	30	-11,1
MgCl ₂			27,5	-33,6
NaCl	36	2,5	30,4	-21,2
NaNO ₃	75	18,5	59	-18,5
NH ₄ Cl	30	18,4	25	-15,8
NH ₄ NO ₃	60	27,2	45	-17,3

10.18.2. Охлаждающие смеси из двух солей с водой и снегом

При смешивании указанных количеств солей со 100 г воды или льда (снега) происходит охлаждение на Δt °C.

Смешать с водой при 15° C	Охлаж- дение ∆t, °C	Смешать со снером или льдом при 0° С	Охлаж дение Δt, °C
			01
9 r NH ₄ Cl и 18 г KNO ₃ 2 r NH ₄ Cl и 51 г NaNO ₃	10,6 9,8	38 r KNO ₃ n 13 r NH ₄ Cl 52 r NH ₄ NO ₃ n 55 r NaNO ₃	31 25,8
2 r NH ₄ Cl u ol i NaNO ₃ 2 r NH ₄ NO ₃ u 60 r NaNO ₃	17	20 r NH ₄ Cl и 40 r NaCl	30
1,2 г NH ₄ Cl и 31,2 г	27	13 r NH ₄ Cl n 37.5 r NaNO ₃	30 30, 7
KNO.		41,6 г NH ₄ NO ₃ и 41,6 г	40
00 г NH ₄ NO ₃ и 100 г Na ₂ CO ₃	35	NaCl	

10.18.3. Охлаждающие смеси солей € кислотами

Если добавить порошок соли к раствору кислоты, то температура понизится на Δt °С.

Кислота		Соль	Охлаж-		
Состав	Массовая доля	Состав	Массовая доля	дение ∆t, °C	
HCl (конц.) HCl (24,5 %) HCl (24,5 %) HCl (24,5 %) HCl (24,5 %)	5 61,9 49,6 36,1 24,6	Na ₂ SO ₄ · 10H ₂ O Na ₂ SO ₄ · 10H ₂ O Na ₂ SO ₄ · 10H ₂ O Na ₂ SO ₄ · 10H ₂ O Na ₂ SO ₄ · 10H ₂ O	8 38,1 50,4 63,9 75,4	32 28,1 29,8 32,5 32,8	
HCl (2:1)	4	Na ₂ SO ₄ ·10H ₂ O NH ₄ Cl KNO ₂	$\left. egin{array}{c} 6 \\ 4 \\ 2 \end{array} \right\}$	35	
HCl (2:1)	2	Na ₂ SO ₄ · 10H ₂ O	3	30	
HCl (2:1)	5	$\begin{cases} Na_2SO_4 \cdot 10 H_2O \\ NH_4NO_3 \end{cases}$	$\left\{ \begin{array}{c} 6 \\ 5 \end{array} \right\}$. 38	
H ₂ SO ₄ (1:1)	4	Na ₂ SO ₄ • 10H ₂ O	5,	28	

Кисл	Снег, массовая			
Состав	Массовая доля	доля	Охлажде- ние ∆ <i>t</i> , °C	
HCl (конц.) HCl (конц.) H ₂ SO ₄ (конц.) H ₂ SO ₄ (66 %) H ₂ SO ₄ (66 %) H ₂ SO ₄ (66 %) H ₂ SO ₄ (66 %)	50 100 25 47,8 42,0 31,0 22,1 12,6	100 100 100 52,2 58,0 69,0 77,9 87,4	18 37,5 20 37 35 31 27 21	

10.18.5. Охлаждающие смеси с твердой углекислотой

Избыточные количества твердого CO₂ в смеси со следующими веществами в жидком состоянии дают при обычном давлении указанную температуру, °С:

•															
SO ₂					•.										82
	H_3														-78
CH ₃ Ci .		٠													 77
CICI3.															—77
C ₂ H ₅ OC ₂	H,													•	-77
PCl ₃													•		—76
C ₂ H ₅ OH									i		ď.		Ť	·	-72
C_2H_5C1				Ĺ						•	•	•	•	٠	-60
2 0	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	00

ГЛАВА 11

ТЕХНИКА БЕЗОПАСНОСТИ

Химические вещества, применяющиеся в лабораторных и производственных условиях, можно разделить на три группы:

- 1) ядовитые;
- огнеопасные и взрывоопасные;
 вызывающие химические ожоги.

Отдельную группу образуют радиоактивные вещества.

11.1. ЯДОВИТЫЕ ВЕЩЕСТВА

11.1.1. Классификация сильнодействующих ядовитых веществ [СДЯВ]

Груп- па	Характеристика	Вещество
1	Сыпучие и твердые СДЯВ, нелетучие при температуре хранения до 40°C	
2	Сыпучие и твердые СДЯВ, летучие при температуре хранения до 40°C	
3	Жидкие летучие СДЯВ, хранящиеся под давлением (сжатые и сжиженные газы) подгруппа А подгруппа Б	Аммиак, оксид углерода (II) Оксид серы (IV), сероводо- род, хлор и фосген
4	Жидкие летучие СДЯВ, хранящиеся при нормальном давлении подгруппа А	Аммиачная вода (25%-ная), амино- и нитросоединения ароматического ряда, си- нильная (цианистоводород- ная) кислота
,	подгруппа Б	Дихлорэтан, дифосген, серо- углерод, тетраэтилсвинец, хлорпикрин

Груп- па	Xa	рактеристика	Вещество
5	Дымящие	вещества	Азотная, серная и солянан (хлороводородная) кислоты (концентрированные), хлорангидриды сернистой, серной и дисерной кислот, хлорсульфоновая и плавиковая (фтороводородная) кислоты

11.1.2. Сильнодействующие ядовитые вещества с особым порядком приобретения, сбыта, отпуска, кранения, учета и перевозки

Бруцин	Оксицианистая ртуть	Хлорид ртути (II)
Дальдрин	Сероуглерод	(сулема)
Меркаптофос Меркуран Никотин	Синильная (цианистоводородная) кислота	Хлорпикрин
николин	Соли синильной (циа-	Цианистые пре-
Нитрил акриловой *кис-	нистоводородной)	параты
лоты	кислоты	Цианохонин
Оксиды мышьяка (III) и (V)	Стрихнин	Этилмеркур- фосфат Этилмеркурхло- рид

11.1.3. Токсическое действие химических соединений

Вещество	Физиологическое действие
Кислоты	
Азотная	Пары раздражающе действуют на дыха- тельные пути и глаза. Представляет опасность для жизни (токсический отек легких, проявляющийся через 6—12 ч)
Карболовая Плавиковая (фтороводородная), кремнефтороводородная	См. Фенол Сильноядовиты, пары вызывают раздражение кожи, глаз и дыхательных путей, удушье
Серная	Пары вызывают раздражение слизистых оболочек
Синильная (цианистово- дородная)	Очень ядовита. Вдыхание небольших ко- личеств вызывает потерю сознания и смерть
Соляная	Пары раздражают дыхательные пути и глаза

Вещество	Физиологическое действие
Основания	
Калия гидроксид (едкое кали, гидроксид калия) Кальция оксид (негашеная известь, оксид кальция)	Резкое раздражающее и прижигающее действие Вдыхание пыли вызывает чихание, першение в горле, боли в груди, кашель
Натрия гидроксид (ед- кий натр, гидроксид натрия)	Резкое раздражающее и прижигающее действие
Соли	
Соли бария	Ядовиты при попадании в органы пищева- рения человека. Оказывают обжигаю- щее действие на слизистые оболочки
меди	Ядовиты при попадании в органы пищева- рения. При вдыхании пыли возможно заболевание, называемое меднопротрав- ной лихорадкой
вявашыя	Ядовиты при попадании в органы пищева- рения. Пыль при вдыхании раздражает слизистые оболочки
олова	.Ядовиты при попадании в органы пищева- рения
ртути	Растворимые соли весьма ядовиты при по- падании в органы пищеварения
свинца	Ядовиты
серебра	Оказывают прижигающее действие на кожу и слизистые оболочки
стронция	Ядовиты при попадании внутрь организма
сурьмы	Пары раздражающе действуют на органы дыхания. При попадании внутрь орга-
хрома	низма вызывают рвоту Растворимые соли ядовиты. Раздражающе действуют на кожу и слизистые оболочки. Возможно образование язв и прободение носовой перегородки
цинка	Растворимые соли ядовиты
Перманганаты (марган- цевокислые)	Опасно вдыхание пыли и попадание значительных количеств в органы пищеварения
Фториды (фтористые) Цианиды (цианистые)	Растворимые соли ядовиты Очень ядовиты, вызывают тяжелое отравление, иногда со смертельным исходом
Металлы	
Ртуть	Ядовита при вдыхании паров

	прообливние таблица
Вещество	Физнологическое действие
Неметаллы	
Бром, хлор	Пары раздражают дыхательные пути. При сильных отравлениях возможен отек
Фосфор	легких Ядовит
Газы	,
Аммиак .	Раздражает слизистые оболочки. При силь- ных отравлениях может наступить смерть от рефлекторной остановки дыха- ния
Мышьяковистый водород (арсеноводород)	признаки тяжелого отравления проявляются через 2—10 ч
Озон	Вызывает одышку, затруднение дыхания
Оксиды серы (IV) и (VI) (сернистый и серный ангидриды)	Ядовиты. Отравление наступает при кон- пентрации свыше 0,02 мг/дм ³
Сероводород	Ядовит. Отравление наступает при объемной доле 0,05—0,07 %
Фостен	Сильно отравляющее вещество
Фосфороводород (фос- фин)	Ядовит. Вызывает кашель, удушье, обморок
Хлор, хлорная вода Хлороводород	См. Бром См. Соляная кислота
Органические ве	ещества
Алкалонды 📝	Ядовиты
Алкалоиды группы мор- фина	»
Альдегиды	»
Анилин и анилиновые красители	Ядовитое действие проявляется при вды- хании паров и пыли
Бензол и его гомологи Бромистый метил	То же Вызывает тяжелое поражение нервной сис- темы
Д ихлорэтан	Поражает центральную нервную систему, печень, почки. Ядовит при попаданий в органы пищеварения
Метанол (метиловый спирт)	Ядовит при приеме внутрь
Наркотики (эфир, хло- роформ, спирты)	Оказывают наркотическое действие
Нитросоединения	Ядовиты. Интоксикация развивается в те- чение нескольких часов
Пиридин	Вызывает слезо- и слюнотечение, кашель, тошноту, рвоту, потерю сознания
Р енол	Ядовит

11.1.4. Предельно допустимые концентрации (ПДК) вредных веществ в производственных помещениях

Вещество	ПДК, мг/м³	_ Вещество	ПДК, мг/м ³
Газы		Диметилбензиламин	5
Аммиак	20	Диметилформамид	10
	0,3	Динитрофенол	0,05
Мышьяководород		1,4-Диоксан	10
Эксид хлора Эзон	0,1	1,2-Дихлорэтан	10
^	0,1	Диэтиламин	30
Эк сид с еры (IV)	10	Диэтиловый эфир	300
Дероводород Возволого по (фастии)	10	Диэтилхлортиофосфат	1,0
Фосфороводород (фосфин)	0,1	Изопрен	40
Фт оро водород	0,5	Иод	ĩ
Хлор	1,0	Камфора	ā
Циановодород	0,3	Капроновая кислота	Š
Лары		Капролактам (аэрозоль)	10
	_	Керосин (в пересчете на уг	
Акролеин	2	лерод)	- 000
Амилацетат	100	Ксилидин	3
Амиловый спирт	100	Лигроин (в пересчете на уг-	
Анилин	3		000
Ацетон	200	лерод) Масилий сигинани	1
Бензин-растворитель (в пере-	300	Масляный ангидрид	10
счете на углерод)		Масляная кислота	
бензин-топливо (в пересчете	100	Метакриловая кислота	10
на углерод)		Метилакрилат	20
Бензол	20	Метиламин	5
Бензотрихлорид	0,2	Метилацетат	100
<i>п</i> -Бензохинон	0,05	Метиловый спирт	50
Бромистый метил	í	Метилпропилкетон	200
Бромистый метилен	10	α-Метилстирол	5
Бромоформ	5	Метилэтилкетон	200
Бутадиен-1,3 (дивинил)	100	Нафталин	20
Бутилакрилат	10	α-Нафтохинон	0,1
Бутиламин	iŏ	<i>n</i> -Нитроанизол	3
Бутилацетат	200	Нитрометан	30
Зутилвиниловый эфир	20	Нитроэтан	30
Бутиловый спирт	200	Нитропроизводные бензола	3
Залериановая кислота	5	Нитроциклог ексан	1
Зинилацетат	10	Оксид этилена	1
Зинилацетил е н	20	Оксид фосфора (V)	1
?-Винилпиридин	0,5	Октиловый спирт	100
г-онимпиридии Западжова		Пиридин .	5
Зинилтолуолы Сексамети понтисмия	50	Пропаргиловый спирт	1
ексаметилендиамин	$\frac{1}{200}$	Пропилацетат	200
ексилметилкетон	_	Пропилнитрит (изо)	5
`ексиловый спирт	100	Пропиловый спирт	ĩ
ептиловый спирт	100	Пропилпропионат	7 0
идразингидрат, гидразин и	0,1	Пропилхлоркарбонат (изо)	0,1
его производные	100	Ртуть (межаллическая)	0,01
Цекалин	100	Серная кислота	1
Дециловый сп ирт	200	Сероуглерод	10
Циметиламин	i	осроз гисрод	10

	1	11	
Вещество	ПДК,	Вещество	ПДК, мг/м³
Сильван (2-метилфуран)	1	Циклопентадиен	
Скипидар	300	Четыреххлористый титан	5
Сольвент-нафта	100	(хлорид титана (IV); по	1
Спирты непредельные жир	. 2	содержанию НСІ в воз-	
ного ряда (аллиловый і	И	духе)	
др.)		U	90
Стирол	5	(тетрахлористый углерод	20
Тетрагидрофуран	100	Этилацетат	200
Тетралин	100	Этилендиамин	
Тетранитрометан	0,3	Этиловый спирт	1000
Тетраэтилсвинец	0,00	5	1000
Тетраэтоксисилан	20	Пыль, пары и	
Тиодан (инсектицид)	0,1	аэрозоли пестицидов	
Тиофен	20	дорозоин пестицидов	
Толуидоны	3	Альдрин	10,0
Толуол	50	Гексах лоран	0,1
2, 4, 6-Тринитротолуол	1	Гаммексан	0,05
Трихлорсилан	1	Дальдрин	0,01
Трихлорэтилен	10	ддт '	0,1
Триэтиламин	10	Карбофос	0,5
Триэтоксисилан	1	Меркаптофос	0,02
Уайт-спирит (в пересчете на	5	Меркуран	0.005
углерод)		Метафос	0,1
Уксусный альдегид	5	Метилмеркаптофос	0,02
Уксусная кислота	5	Метилэтилтиофос	0,03
Фенилметилдихлорсилан	1	Октаметил	0,02
Фенол	5	Тиофос	0,05
Формальдегид	5	Хлориндан	0,01
Фосфамид (инсектицид)	0,5		-,
Фосфор желтый	0,03	Пыль других	
Фталевый ангидрид	1	соединений	
Фториды (в пересчете на HF)	l	_	
Фурфурол	10	Бариты, апатиты, фосфори-	5
Хлорбензол	50	ты с массовой долей сво-	
Хлорированные дифенилы	1	бодного SiO ₃ до 10 %	
Хлорированные нафталины	0,5	Искусственные абразивы	5
Хлористый бензол	0,5	Кварц и другие силикаты	
Хлористый бензоил	0,5	с массовой долей свобод-	1
Хлористый винил	30	ного SiO ₂ более 70 %	_
Хлористый метилен	50	с массовой долей свобод-	2
Хлористый этил	50	ного SiO ₂ 10—70 %	_
Хлоропрен	2	Асбест	2
Хлорофос (антигельминтин)	0,5	Гранит	2
Хлорциклогенсан	50		2-4
Цианиды (в пересчете на НСN)	0,3	Стеклянные и минераль-	3
Циклогексан	00	ные волокна	
циклогексанон Циклогексанон	80	Тальк и другие силика-	4
HARMOLEKCARORONOMANA AURAIOI EUCGUOU	10	ты с массовой долей	
Циклогексаноноксим Циклогексиламин	10	свободного SiO ₂ менее	
-inwioi ereniawin	1	10 %	
· · · · · · · · · · · · · · · · · · ·			

Вещество	ПДК, мг/м ³	Вещество	ПДК, мг/м³
Цемент, глина, минера- лы, не содержащие сво- бодного SiO ₉	5	Вольфрам, карбид вольфрама Германий, оксид германия Кобальт, оксид кобальта	6 2 0,5
Оксиды железа с массовой долей свобод-	4	Марганец (в пересчете на MnO ₂)	0,3
ного SiO ₂ менее 10 % и оксидов марганца менее 6 %		Молибден и его соединения Никель, оксиды никеля Оксид железа (II)	2—6 0,5 4
с массовой долей свобод- ного SiO ₂ менее 10 % и оксидов марганца	6	Оксид кадмия Оксиды мышьяка (V) и (III) Оксид селена (IV)	0,1 0,3 0,1
1,5—3 % Нефтяной и пековый кокс Угольная пыль, в зависимо-	5 2—10	Оксиды тантала Оксиды титана Оксид хрома (VI), хроматы,	10 10
сти от массовой доли сво- бодного SiO ₂		дихроматы (в пересчете, на ${\rm CrO_3}$)	0,1
Хлопчатобумажная, мучная, зерновая, древесная, шерстяная пыль, пыль от пуха и пр.	2-4	Оксиды цинка и циркония Свинец и его неорганические соединения	5 0,01
Пресс-порошки	4-8	Селен аморфный	2
Аэрозоли металлов, неметаллов и их соединений		Таллия иодид и бромид Теллур Торий	0,01 0,01 0,05
Алюминий, оксид алюминия, сплавы алюминия	2	Уран и его соединения Фториды	0,015- 0,07 5
Бериллий и его соединения	0,001	Щелочи (в пересчете на NaOH)	0,5

11.1.5. Предельно допустимые концентрации (ПДК) вредных веществ в воздухе населенных мест

Предельно допустимую сумму концентраций в воздухе аэрозоля серной кислоты и оксида серы (IV) X (мг/м³) рассчитывают по формуле X = A/m + B/n, где A и m — соответственно содержание оксида серы (IV) и его ПДК, мг/м³; B и n — соответственно содержание серной кислоты и ее ПДК, мг/м³.

Предельно допустимые концентрации ${\sf CO_2}$ в воздухе помещений, ${\sf r}/{\sf m}^3$:

жилых	1,86
для кратковременного пребывания	3,72
для периодического пребывания (учреждения)	2,32
для детей и больных	1,30

Состав выдыхаемого человеком воздуха, объемные доли: 79,7 % N_2 ; 16,5 % O_2 ; 4,0 % CQ_2 .

	пдк,	Mr/m³		пдк	, MI/M3
Вещество	мальная разовая средне-		Вещество	макси- мальная разовая	средне. суточная
Оксид серы (IV) Оксид углерода (II)	2,40 0,1 0,2 0,3 3.0	0,10 0,1 0,35 1,5 0,80 0,1 0,2 0,3 1,0 0,01 0,07 0,5 0,003	Пыль нетоксичная Ртуть металлическая Сажа (копоть) Свинец и его соединения (кроме тетра- этилсвинца) Серная кислота Сероводород Сероуглерод Стирол Фенол Формальдегид Фториды Фурфурол Хлор Хлороводород Хлороводород Хлоропрен (2-хлорбутадиен-1,3) Хром (Сг (VI) в пересчете на Сг ₂ О ₃) Этилацетат	0,5 0,15 0,008 0,003 0,003 0,003 0,03 0,03 0,05 0,1 0,05 0,25	0,15 0,0003 0,05 0,0067

11.1.6. Предельно допустимые концентрации (ПДК) вредных веществ в водоемах санитарно-бытового назначения

При загрязнении водоемов, служащих для бытового пользования, комплексом веществ с одинаковыми лимитирующими показателями вредности — органолептическим (по запаху, привкусу, окраске), влиянию на общий санитарный режим водоема (на процессы самоочищения от органического загрязнения), санитарно-токсикологическому — приведенные ПДК отдельных веществ должны применяться с таким учетом:

1) при осуществлении предупредительного санитарного надзора значение ПДК каждого вещества, входящего в комплекс, должно быть уменьшено во столько раз, сколько вредных веществ с одинаковыми лимитирующими показателями предполагается к спуску со сточными водами или содержится в водоеме;

2) при осуществлении текущего санитарного надзора сумма концентраций всех веществ, выраженная в процентах соответствующих ПКД для каждого вещества в отдельности, не должна превышать 100 %:

3) значение ПДК каждого вещества, входящего в комплекс с одинаковыми лимитирующими показателями вредности, должно быть уменьшено во столько раз, сколько вредных веществ предполагается к, спуску в рыбохозяйственный водоем.

Вещество	ПДК, мг/л	Вещество	ПДК мг/л
Авадекс	0,03	Дибутилфталат	2,0
Адипат натрия	1	Дивиниладипат	0,2
Акрилонитрил	2,0	ДДТ в соляровом масле	
Алкилсульфат первичный	0,2	ДДТ технический	0
Алкилсульфонат	0,5	Диизобутиламин	0,2
Альдрин	0,002	Диизопропиламин	0,07
Амины алифатические (С ₇ —С ₉)	0,07	Диизопропилдитиофосфат калия	0,5 0 ,02
Аммиак (в пересчете на азот)	2,0	Диметиламин	0.1
Анизол	0,05	Диметилдиоксан	0,005
Анилин	0,1	Диметилдитиокарбонат -	
Ацетонитрил	2,0	аммония	0,5
Ацетонциангидрин	0,001	Диметилдитиофосфорная	Λ1
Ацетофос	0,03	кислота	0,1
Барий	4,0	Диметилдихлорвинилфосфат	1,0
Бензин	0,1	(ДДВФ)	1,0
Бензол	0,5	Диметилсульфид (ДМС)	0.00
Бериллий	0,0002	Диметилтерефталат	0,08
1,4-Бутандиол	5,0	Диметилфенилкарбинол	1,5
Бутанол (изо)	1,0	Диметилфенола (ДМФ)	0,05
Бутилакрила т	0.015	изомеры:	
Бутилацетат	0,3	2,5 и 2,6	0.10
Бутилбензол	0,1	3,4 и 3,5	0,12
Бутилен (<i>изо</i>)	0,5	о-Диметил-3-этилмеркапто-	0,25
Бутилен	0,2	дитиофосфат (М-81)	0,001
Бутиловый спирт	1,0	Динитрил адипиновой	Λ1
Ванадий .	1,0	кислоты	0,1
Ветлугское масло	0.02	Динитробензол	0.5
Винилацетат	0,2	Динитронафталин	0,5
Винилметиладипат	0.05	α-2,4-Динирофенол (ДНФ)	1,0
Висмут Ві (V)	0,1	Динитрохлорбензол	0,03
Bi (IIÍ)	0,5	Диоксифталат	0,5
Вольфрам 🔪 🦢	0,1	Дипропиламин	2,5
Гексаметилендиамин	0,01	Диурон	0,5
Гексаметилендиаминадипат	1,0	Дифенилопропан (ДФП)	1,0
(АГ-соль)	-,0	Дихлоранилина изомеры	0,01
Гексанад (гербицид)	5,0	3,4 и 2,5	0,05
Гексахлоран	0,02	Дихлорбензола изомеры	0.000
Гексахлорбензол	0,05	орто- и пара-	0,002
Гексахлорбутадиен	0,01	Дихлорбутен .	0.05
Гексахлорбутан	0,01	1,2-Дихлоргексафторцикло-	0,05
Сексахлорциклопентадиен	0,001	пентен-1	0,4
Гексах лорэтан	0.01	Дихлоргидрин	1.0
ексиловый спирт	0,03	Дихлорметан	1,0
екс аген	0,1	2,3-Дихлор-1,4-нафтахинон	7,5
ептахлор	0,5	Дихлорфенол	0,25
ептиловый спирт	0,005	Дихлорциклогексан	0,002
идразина моногидрат	0,000	Дихлордиклогексан Дихлорэтан	0,02
`идрохинон	0,01		2,0
Дилапен — — — — — — — — — — — — — — — — — — —	2,0	Диэтиламин Пиэтилитиофосформая	2,0
ЦБ-препарат (полиглико-		Диэтилдитиофосфорная кислота	0,2
левые эфиры)	-,-		

Вещество	ПДК мг/л	Вещество	ПДК МГ/л
Диэтилдитиофосфат калия	0,5	Моноэтилдихлортиофосфат	0.00
Диэтиленгликоль	1.0	(моноэфинофосфат	0,02
Диэтиловый эфир малеиново	й 1,0	Монурон	5.0
КИСЛОТЫ	•	Мукохлорная кислота	1,0
Диэтилртуть	0,0001	Мышьяк (III), кроме орга-	0,05
о,о-Диэтилхлортиофосфат	0,02	нических соединений	0,00
(диэфир)		Мышьяк в сочетании со	0,025
Железо (IÍ)	0,5	СВИНЦОМ	0,020
Изомеры диметилфенола	0,12-	Натриевая соль дихлорфе-	1,0
(ДМФ)	0,25	нилуксусной кислоты	-,•
Изомеры дихлоранилина	0,05	(Na-2,4Д)	
Изомеры нитрохлорбензола (НХБ)	0,02	Нафтеновые кислоты	0,3
Кадмий	0.01	α-Нафтол	0,1
Капролактам	0,01	`β-Нафтол	0,4
Карбатион	1,0	α-Нафтохинон (α-НХ)	0,1
Карбофос	0,02	Нефть многосернистая	0,1
Керосин	0,05	Нефть и нефтепродукты	0,3
Кобальт	0,1	в растворенном (эмульги-	
Корал	1,0 1.0	рованном) состоянии	
Крезилдитиофосфат	. , .	Никель	0,1
Ксантогенат бутиловый	0,001 0,001	Нитрат алюминия	0,1
Ксилит	1,0	Нитраты по азоту	10,0
Ксилол	0,05	Нитрил акриловой кислоты	
2,5-Лутидин	0,05	Нитрилпропилксилоксан	5,0
Малеиновый ангидрид	1,0	(НПС-50) Нитромотом (ИМ)	0.00
медь "	0 1	Нитрометан (НМ)	0,005
Мезидон (2, 4, 6-триметил-	0.01	1-Нитропропан (1-НП) Нитроформ	1,0
анилин)	0,01	Нитрохлорбензол	0,01
-Меркаптодиэтиламин	0.1	Нитроциклогексан	0,05
Иеркапто фос	0,01	Нитроэтан	0,1
Иетафос	0,02	Нониловый спирт	1,0
метахлоранилин (MXA)	0,2	Норсульфазол	0,01 0,1
метилацетофос	0,03	Октиловый спирт	0,03
-Метилбутадиен-1,3	0,005	ОП-7	0,4
(изопрен)		ОП-10	1,5
етилдитиокарбамат натрия	0,02	Пентанат (гербицид)	2,5
(кароатион)	•	Пентахлорбутан	0,02
І етилизобутилксилоксан	2,0	Пентахлорфенол	0,3
(МИС)		Пентахлорфенолят натрия	5,8
етилсиликонат натрия	1,5	Пентаэритрит	0,1
І етилсикстокс	0,01	Перхлорат аммония	5,0
- Метилсти рол	0,1	α-Пиколин	0.05
етилэтилкетон Готиблог	1,0	Пикриновая кислота	0,5
І олибден	0,5	Пиридин	0,2
онометиламин	1,0	Полиакриламид	2,0
онохлоргидрин	0,7	Полиорганосиликонаты 2	-10
оноэтаноламин	0,5	I Іолихлорпинен	0,2
оноэтиламин	0,5	Прометрин	1,0

Вещество	ПДК, мг/л	Вещество	ПДК мг/л
Пропиламин (изо)	2,0	Торий естественный	0,032
Пропилен	0.5	Трибутилфосфат	0,01
Пропилоктадециламин (изо)	0.1	Тринитротолуол	0,5
_ (амин-C ₁₈)	• • •	Трифторпропилсилан	1.5
Пропионат натрия	1,0	Трифторхлорпропан	0.1
Пропионитрил	0,0006	2, 3, 6-Трихлорбензойная	1,0
Пропионовая кислота	1.0	кислота (2, 3, 6-ТХБК)	-,-
Ртуть в составе неорганиче-	0,005	Трихлорбензол	0,03
ских соединений	•	Трихлорметафос-3	0,04
Сапонин	0,2	Трихлорфенол	0,000
Свинец	0,1	Триэтиламин	2,0
Свинец в сочетании с мы-	0,25	Уран	0,6
шьяком		Уротропин	0,5
Севин	0,1	Урсол	0,1
Селен (в пересчете на SeO_3)	0,001	Феназол	2,0
Серебро	0,05	п-Фенилендиамин (урсол)	0,1
Сероуглерод	1,0	Фенол	0,001
Симазин	0	Фенолгидразин	0.01
Скипидар	0,2	Ферроцианиды	1,25
Стирол —	0,1	Флокулянты:	
Стрептоцид	0,5	BA-2, BA-2T	0,5
Стронций	2,5	ВА-102, БА-212	2,0
Сульгин	0,01	Флотореагент ИМ-68	0,03
Сульфадимизин	0,01	Формальдегид	0,5
Сульфиды	0	Фосбутил	0,03
Сульфонаты (натриевые соли		Фосфамид	0,03
алкилсульфокислот)	1,0	Фосфор	0,5
Сульфонолы (натриевые соли	0,2-	Фталевая кислота (фталевый	0,05
алкилсульфокислот с ал-	0,5	ангидрид)	
с кильными остатками)	0.05	Фталофос	0,20
Сурьма	0,05	Фуран	0,2
Геллур	0,01	Фурфурол-	1,0
Гетрагидрофуран	0,5	п-Хинодиоксим	0,1
Гетрагидрофуриловый спирт	1,0	Хлораль	0,2
(ΤΓΦ)	0.55	п-Хлоранилин (ПХА)	0,2
Гетранитрометан	0,55	Хлорбензол	0,1
Гетрахлорбензол (4ХБ)	0,2	п-Хлорбензолсульфокислота	2,0
Гетрахлоргептан	0,0025	(ПХБСК)	0.05
Гетрахлорнонан	0,003	Хлорид четвертичного ам-	0,05
Гетрахлорпентан	0,005	мониевого основания (пре-	
Гетрах лорпропан	0,01	парат 34)	۸.
Гетрах лорундекан	0,007	Хлоропрен Уколофор	0,1
Гетрахлорэтан	0,2	Хлорофос Удороживания	0,05
Гетраэтилолово	0,0002	Хлорпелларгоновая кислота	
Гетраэтилсвинец Гиофон	0	Хлорундекановая кислота	0,1
Гиофен	2,0	Хлорциклогексан	0,05
Гиофос	0,003	Хлорэнантовая кислота	0,05
Гиоцианаты (роданиды)	0,1	Хром	٥.
Гитан	0,1	Cr (III)	0,5
Голуол	2,0	Cr (VI)	0,1

			 Onugu
Вещество	ПДК, мг/л	Вещество	ПДК, мг/л
Четыреххлористый углерод Цианиды Циануровая кислота Циклогексан Циклогексен Циклогексанол Циклогексанон	5,0 0,1 6,0 0,1 0,02 0,5 0,2	Циклогексанононксим Цинк Эпихлоргидрин (ЭХГ) Этилбензол Этилен Этилмеркурхлорид Эфирсульфонат	1,0 1,0 0,01 0,01 0,5 0,0001 0,2

11.2. ОГНЕ- И ВЗРЫВООПАСНЫЕ ВЕЩЕСТВА

11.2.1. Общие сведения

Горючесть некоторых веществ может быть определена по уравнению K=4C+H+4S-20-2Cl-5B, где K- критерий горючести, в правой части — число атомов в молекуле вещества. При K>0 вещество горючее.

Горючие газы, пары легковоспламеняющихся жидкостей и горючая пыль при определенных условиях образуют взрывоопасные смеси с воздухом. Разграничивают нижний и верхний концентрационные пределы взрываемости, вне которых смеси не являются взрывоопасными. Эти пределы изменяются в зависимости от мощности и характеристики источника воспламенения, температуры и давления смеси, скорости распространения пламени, содержания инертных веществ.

Горючие газы взрывоопасны при любых температурах окружающей среды. Смеси паров легковоспламеняющихся жидкостей с воздухом относят к взрывоопасным, если температура вспышки в них ниже или равна 45 °C.

Классификация огнеопасных жидкостей по температуре вспышки: I класс составляют вещества, температура вспышки которых ниже 28 °C; II — вещества с температурой вспышки 28—45 °C; III и IV соответственно 45—120 °C и выше 120 °C.

Классификация по взрыво- и огнеопасности смеси горючих пылей с воздухом: к I классу (наиболее взрывоопасные) принадлежат вещества с нижним пределом взрываемости до 15 г/м³; ко II (взрывоопасные) — вещества с нижним пределом взрываемости 15—65 г/м³; III класс (наиболее огнеопасные) составляют вещества с температурой самовоспламенения до 250 °C; IV (огнеопасные) — вещества с температурой самовоспламенения выше 250 °C.

Нижний и верхний концентрационные пределы (НП, ВП, объемная доля, % и Н'П', В'П', г/дм³) взрываемости для газов определяются из зависимостей

$$H\Pi = \frac{100}{4,76(N-1)+1}, \quad B\Pi = \frac{4 \cdot 100}{4,76N+4},$$

$$H'\Pi' = \frac{M}{4,76(N-1)V_t}, \quad B'\Pi' = \frac{4M}{(4,76N+4)V_t},$$

где N — число атомов кислорода, расходуемого при полном сгорании молекулы газа; M — масса молекулы газа, г; $V_{\rm t}$ — объем одного моля газа (дм³) при данной температуре (°C) и давлении 101,325 кПа (760 мм рт. ст.).

Пределы взрываемости П (верхний или нижний, объемная доля, % или мг/д \hat{M}^{B}) многокомпонентных горючих газов или паров в смеси с воздухом рассчитываются по формуле

$$\Pi = \frac{100}{\frac{C_1}{P_1} + \frac{C_2}{P_2} + \dots + \frac{C_i}{P_i}},$$

где $C_1, C_2, ..., C_i$ — объемная или массовая доля горючих компонентов в смеси, % ($C_1+C_2+...+C_i=100$); $P_1, P_2, ..., P_i$ — верхний и нижний пределы взрываемости компонентов в смеси, объемная доля, % или мг/дм³.

При наличии в смеси инертных газов нижний или верхний предел взрываемости $\Pi_{\bf 5}$, по объему, определяется из зависимости

$$\Pi_{6} = \frac{\Pi \left(1 - \frac{\Pi}{1 - \Pi} \right) 100}{100 + \Pi \frac{\Pi}{1 - \Pi}},$$

где Д — объемная доля инертного газа, %.

Верхний (ВП) и нижний (НП) концентрационные пределы взрываемости паров жидкости в воздухе, объемная доля в процентах, определяются зависимостями

$$HP = \frac{P_1 \cdot 100}{P}, B\Pi = \frac{P_2 \cdot 100}{P},$$

где P_1 и P_2 — давление насыщенных паров жидкости в воздухе при нижнем и верхнем температурном пределе взрываемости, к Π a; P — атмосферное давление, к Π a.

Температура вспышки смесей минеральных масел $t_{\rm c.m}$, °C, может быть вычислена по формуле

$$t_{\text{c. M}} = \frac{at_a + bt_b - f(t_a - t_b)}{100},$$

где a и b — массовая доля в смеси индивидуальных масел, %; t_a и t_b — температуры вспышки этих масел, °C; f — коэффициент, определяемый по следующим данным:

11.2.2. Огнеопасные вещества, их хранение и способы тушения пожара

Вещества	Огнеопасность.	Хранение	Способы тушения
Кислоты			
Азотная	пламенение горючих веществ. Взрывается в присутствии восстановителей (скипидар, спирт и др.), выделяя боль-	и восстановителями;	пожара применять противогаз для защиты от
Серная	рючими материалами может вызвать их воспламенение.	карбидов, солей азот-	золой; воду н
Основания	я		
ция (негаше-	При контакте с во- дой разогревается и может воспламе- нить горючие мате- риалы	Хранить в сухом месте	Тушить песком, золой
Соли			
Нитраты (азотнокис- лые)	легкоокисляющи- мися (горючими)	Хранить в сухом месте изолированно от органических и горючих материалов	количествах
Пермангана- ты (марган- цевокислые)	контакте с концентрированной серной	Хранить изолированно от концентрированной серной кислоты, спир- та, эфира и горючих веществ	
стокислые	При контакте с горючими веществами взрываются	Хранить изолированно от горючих веществ	Тушить водой

Вещества	Огнеопасность	Хранение	Способы тушения
Пероксид	ы		
дорода	рючими веществами	Хранить в стеклянных, алюминиевых сосудах с отверстием для выхода газа, изолированно от горючих материалов и металлов, разлагающих пероксид (железо, медь, хром)	Тушить водой
Пероксиды бария, калия, натрия	веществами взрыв-	Хранить в сухом месте изолированно от органических соединений	Тушить песком, кальцинированной содой, золой
Металлы			
Калий, натрий		Хранить в герметических стальных ящиках или баллонах в керосине. Изолировать от воды	Тушить песком
Магний		Хранить в сухих герметических сосудах или в ящиках изолированно от окислителей, кислот и щелочей	том, песком. Не применять воду, пену, че-
Неметалл	ы	,	
Бром	ганическими веществами может вы-	Хранить в стеклянных бутылях или глиняных сосудах изолированно от горючих веществ	Тушить водой
Сера	Пары образуют взрывчатые смеси с воздухом. Может взрываться при	Хранить изолированно от хлорноватистокис- лых солей (гипохлори- тов), азотнокислых со- лей (нитратов) и дру- гих окислителей	ленной водой,
	Самопроизвольно воспламеняется на воздухе. Взрывает-	ТИХ ОКИСИНЕСТВИИ ОТ ВОДОЙ В ГЕРМЕТИЧЕСКИХ СОСУДАХ. БОЛЬЦИИЕ КОЛИЧЕСТВА ХРАНИТЬ ПОД ВОДОЙ В ПОДЗЕМНЫХ СТАЛЬНЫХ ИЛИ БЕТОННЫХ РЕЗЕРВУАРАХ	до перехода фосфора в твердое состояние, затем засыпать влаж-

11.2.3. Огне- и взрывоопасные свойства газов в смеси с воздухом

Газ	Концентрационные пределя вары- делы вары- ваемости, % объемной доли		Температура самовоспламене- ния, °С	Газ	Концентра- ционные пре- делы взры- ваемости, % объемной доли		Температура самовоспламене- ния, °С
	ннж- пий	верх- ний	Темпе самово ния, °		ниж - ний	верх- ний	Температура самовосплам «Самовосплам
Аммиак	15	28	650	Природный газ	5,0	16,0	537
Ацетилен	2, 0 5	81	335	Пропан	2,1	- 9,5	466
Бутан	5	8,5	406	Пропилен	2,2	10,3	410
Бутан (изо)	1,8	8,4	462	Сероводород	4,3	46,0	246
Бутилен	1,6		384	Триметиламин	2,0	11,6	190
Бутилен (изо)	1,8	8,9	465	Формальдегид	7,0	73,0	430
Бромистый ме- тил (метил-	13,5	14,5	537	Хлористый ме- тилхлорид	7,6	19,0	632
бромид) Водород	4,0	75	510	Хлористый этил (этилхлорид)	3,8	15,4	494
Метан	4,9	16	537	Циклопропан	2,4	10,5	498
Метиламин	4,9	20,7	430	Этан	2,9	15,0	472
Оксид углеро- да (II)	12,5	16,0	610	Этилен	2,7	34	540

11.2.4. Огне- и взрывоопасные органические жидкости

Принятые обозначения: П. х.— пена химическая; п. х.с.— пена химическая специальная; п. в.-м.— пена воздушно-механическая; в. р.— вода распыленная; разб.— разбавление водой; пер.— перемешивание с помощью воздуха или других газов (в скобках указан температурный предел применимости); пар — пар водяной; газ — CO₂.

Жидкость	Температура вспышки, °C	Температура во- спламенения па- ров в воздухе, °C	паров духе,	емости в воз-	Средства и сп. собы тушения
	Темпе	Темпе сплам ров в	ниж- ний	верх- ний	
Амилацетат (изо)	36	430	0,20	4,35	П. х., пер. (—2°С),
Анилин ′	79	562	1,30	4,2	
Ацетон	18	465	2,2	13,0	пер. (65 °C), пар, газ П. х. с., разб., пар,
Ацетоуксусный эфир	55	340	0,37	1,22	в. р., пер. (35°C),
Бензин	от —27 до —44	255 474	0,76— —1,48	5,03- 8,12	пар, газ П. х., п. вм., пар, газ

_					poortino marchina
Жидкость	Температура вспышки, °С	Температура воспламенения паров в воздуже, оС	Пре взрыва паров духе, о ной	делы в воз- объем- доли верх- ний	Средства и способы тушения
_	F 2	E 8 50	ний	nnn	
Бензойный альдегид	64	205			В. р., пер. (60°C),
Вензол Бромистый этил	-11 -25	540 455	1,4 7,5	7,1 11,4	пар, газ П. х., пар, газ Состав 3,5
(этилбромид) Бутилацетат	29	450	2,27	14,70	П. х., пер. (—10°С),
Бутиловый спирт (бу-	34	410	1,52	7,9	пар, газ П. х. с., в. р., пер.
танол) Гексиловый спирт	62	310	0,84	5,40	(26°C), пар, газ П. х., пер. (50°С),
(гек санол) Дибутилфталат	148	390	0,10	1,62	пар, газ, в. р. П. х п. вм., в. р.,
1,4-Диоксан	11	340	1,87	23,41	пер. (50 °C), пар, газ П. х. с., разб., пер.
Диэтиламин	— 26	490	2,2	14,9	(0°С), пар, газ П. х. с., разб., пар,
Диэтиловый эфир Изоамиловый спирт (3-метил-1-бутанол)	-41 50	164 350	1,70 1,07	49,0 5,0	газ Газ, п. х. П. х., п. вм., пер. (32°С), пар, газ,
Изобутиловый спирт	28	390	5,89	7,3	В. р. П. х. с., пер. (21 °C),
(2-метил-1-пропанол) Изопропиловый спирт	14	400	2,0	12,0	пар, газ, в. р. П. х. с., разб., пер.
(2-пропанол) Капроновая кислота	102	340	1,33	9,33	,,
Керосины	2758	235— 265	1,4	7,5	пар, газ, в. р. П. х., п. вм., пер.
Ксилол (смесь изоме-	29	590	0,93	4,5	(22—40°С), пар, газ П. х., пер. (19°С),
ров) Кумол	34	500	0,68	4,2	пар, газ, в. р. П. х., пер. (22°C),
Лигроин	10	380	1,4	6,0	пар, газ, в. р. П. х., п. вм., пар,
Линалоол	82	290	0,13	3,0	газ, в. р. П. х., пер. (37°С),
Метилацетат Метиловый спирт (метанол)	—15 8	10 464	3,60 6,0	12,80 37,70	пар, газ Пар, газ, в. р. П. х. с., разб., пер. (2°C), пар, газ
Пропиловый спирт (пропанол)	23	370	2,02	13,55	П. х. с., разб., пер. (15°С), пар, газ
(пропанол) Сероуглерод Скипидар	43 34	90 300	1,0 0,8	50,0	Газ, в. р. П. х., п. вм., пер. (27°С), пар, газ, в. р.

Жидкость	ратура ки, °С	Температура вос- пламенения паров в воздухе, °С	взрыв паров духе,	еделы аемости в в воз- % объ- й доли	Средства и способы` тушения
	Температура вспышки, °С	Темпер пламен в возд	ниж- йин	верх- ний	
Сольвент-нафта	34	520	1,3	1,8	П. х., п. вм., пер.
Толуол	6	536	1,3	6,7	(22°C), пар, газ, в. р. П. х., пер. (—5°C),
Триэтиламин	- 12	510	1,5	6,1	пар, газ, в. р. П. х. с., разб., пер. (—17°С), пар, газ
Уайт-спирит	35	270	1,4	6,0	П. х., п. вм., пар,
Уксусная кислота (ледяная)	38	454	3,30	22,0	П. х. с., разб., пер. (27°С), пар, газ
Уксусный ангидрид	40	360	1,21	9,9	П. х. с., п. вм., пер. (29°С), пар, газ, в. р.
Фурфурол	61	260	1,84	3,4	П. х., п. вм., пер. (55 °C), пар, газ, в. р.
Хлорбензол	29	593	1,3	7,10	П. х., п. вм., пер. (20°С), пар, газ, в. р.
Хлористый аллил	29	420	3,0	14,8	Пар, газ, в. р.
Хлористый метилен (дихлорметан)	 14	580		•••	П. х., п. вм., в. р.
Хлористый этилен (1,2-дихлорэтан)	9	413	6,2	16,0	П. х., п. вм., пер. (3°С), пар, газ, в. р.
Циклогексанол (анол)	61	440	1,52	11,1	Пер. (53 °C), пар, газ, в. р.
Циклогексанон (анон)	40	495	0,92	3,46	Пер. (26 °C), пар, газ, в. р.
Цитраль	103	250	1,04	1,26	Пер. (93°С), пар, газ, в. р.
Цитронеллаль	80	230	0,93	2,14	Пер. (72 °C), пар, газ, в. р.
Этиламин	 39	555	5,5	17,0	П. х., п. вм., пар, газ, в. р.
Этилацетат	2	400	3,55	16,80	Пер. (-4°С), пар, газ
Этилбензоат	79	560	0,66	4,9	Пер. (66 °С), пар, газ, в. р.
Этилбензол	20	420	0,9	3,9	П. х., п. вм., пер. (13°С), пар, газ, в. р.
Этиловый спирт (этанол)	13	404	3,6	19,0	П. х. с., разб., пер. (6°С), пар, газ, в. р.
Этилформиат	—22	370	2,70	16,40	П. вм., пар, газ, в. р.

11.2.5. Огне- и взрывоопасные свойства нылевоздушных смесей некоторых веществ

попи воздушных	CMCCCH	HEROIT	obox semecis		
Ве цество	Температура само- воспламенения о ла- ка пыли, °С	Нижний предел вэрываемости, г/м³	Вещество	Температура само- воспламенения обла- ка пыли, °С	Нижний предел вэрываемости, г/м³
Ацетат целлюлозы	410	35	Мука		10
Декстрин	510	٠	Пресс-порошки на		
Древесная мука	430	40	основе		
Превесные опилки	635		ацетата целлюлозы	320	25
Древесный уголь	760		метилметакрилата	440	20
Казеин	520	45	мочевины	450	75
Каменный уголь	830	17-24	полистирола	560	15
Крахмал	640	7—10	фенола	490	30
Металлы			Пробковая пыль	620	• • •
Алюминий	550	35	Caxap	540	10-34
Ванадий	500	200	Cepa	• • • •	7-13
Кремний	775	100	Смолы на основе		1
Магний	520	10	винила	5 50	40
Марганец	450	125	кумарона и индена	520	15
Олово	630	190	лигнина	450	40
Титан	330	45	мочевины	470	_ 70
Торий	270	75	полистирола	490	20
Цинк	600	480	фенола	500	25
Цирконий	253	40	Фталевый ангидрид	650	.16
	_		Шеллак	390	15

11.2.6. Скорость выгорания некоторых горючих жидкостей со свободной поверхности

	Скорость	Тепловое		
Жидкость	мм/мин	кг/(м²·ч)	напряжение зеркала испа- рения при диффузии пламени, кДж/(м²-ч)	
Автол	0,611	33,69	47,9	
Амиловый спирт	1,297	63,034	52,7	
Ацетон	1,40	66,36	41,4	
Бензин				
авиационный	2,10	91,98	51,8	
автомобильный	1,75	80,85	51,5	
Бензол	3,15	165,37	83,8	
Бутиловый спирт (бутанол)	1,069	52,08	46,5	
Диметиланилин	1,523	86,31	61,6	
Изоамиловый спирт (3-метил- 1-бутанол)	1,39	66,8	57,0	

	Скорость	Тепловое на-	
Жидкость	мм/мин	КГ/(M ² ·Ч)	пряжение зеркала испа- рения при диффузии пла- мени, кДж/(м²-ч)
Изобутиловый спирт (2-метил- 1-пропанол)	1,122	53,856	46,2
Керосин	0.973 - 1.10	49,33-55,11	43,7—44,8
Ксилол	2,04	104,55	64,4
Машинное масло	0,74	39,96	51,1
Метиловый спирт (метанол)	1,20	57,60	71,4
Метилпропилкетон	1,38	69,138	40,7
Серный (диэтиловый) эфир	2,93	125,84	50,8
Сероуглерод	1,745	132,97	51,8
Скипидар	2,41	123,84	47,6
Соляровое масло	0,84	44,10	44,7
Толуол	2,68	138,29	73,8
Этилацетат	1,32	70,31	35,9

11.2.7. Максимальное давление при взрыве пыли, паров и газов некоторых веществ в смеси с воздухом

В процентах выражена объемная доля вещества в смеси.

Вещество	Содержание вещества в смеси	Максимальное (избыточное) давление взрыва 10 МПа		
Аммиак	22,5 %	4,85		
Ацетат целлюлозы	35 г/м ³	4,8		
Ацетилен	14,5 %	10,3		
Ацетон	6,3 %	8,93		
Бензол	3,9 %	9,0		
Бутан	3,6 %	8,58		
Бутиловый спирт	4,2 %	6,7		
Водород	32,3 %	7,39		
Гексаметилентетрамин	- 15 г/м ³	4,5		
Гексан •	3,0 %	8,65		
1,4-Диоксан	5,0 %	7,9		
Дихлорэтан	10,0 %	6,3		
Диэтиловый эфир	4,1 %	9,21		
Казеин	40 г/м ³	4,4		
Кси лол	110 r/m³	1,8		
Метан	9,8 %	7,17		
Метиловый спирт	181 г/м ³	7,39		
Муравьиная кислота	19,3 %	4,5		
Оксид этилена	11,0 %	9,9		
Пен тан	3,0 %	8,65		
Пропан	4,6 %	8,58		

Вещество	Содержанне вещества в смеси	Максимальное (избыточное) давление взрыва 10 МПа
Пресс-порошки на основе		
ацетата целлюлозы	25 г/м ^з	4,3
метилметакрилата	20 г/м ³	4,0
мочевины	75 г/м ³	4,4
полистирола	15 г/м ³	3,5
фенола	30 г/м3	4,4
Сероуглерод	7,0 %	7,8
Смолы на основе	1,1 70	7,0
винила	40 г/м ³	3,4
кумарона и индена	15 г/м³	4,4
лигнина	40 г/м ^з	4,85
мочевины	70 г/м³	4,6
полистирол а	20 г/м ³	3,1
фенола	25 г/м ^з	4,3
Уксусный ангидрид	7,4 %	6,6
Фталевый ангидрид	15 [°] г/м ³	3,4
Циклогексан	100 г/мз	8,58
Шеллак	15 г/м ³	4,0
Этиловый спирт	140 r/m ³	7,45
Этилен	8,0 %	8,86

11.3. ВЕЩЕСТВА, ПРИЧИНЯЮЩИЕ ХИМИЧЕСКИЕ ОЖОГИ

Вещество	Результаты действия на организм
Неорганические вещества	· · · · · · · · · · · · · · · · · · ·
Кислоты	
Азотная, серная, фосфорная	Сильные ожоги кожи. Особенно сильное действие оказывают
Плавиковая (фтороводородная)	фосфорная и серная кислоты Сильные ожоги кожи
Металлы	
Калий, натрий	При контакте с влажной кожей воспламенение и ожоги
Неметаллы	
Бром жидкий, хлор жидкий Оксиды серы (VI) и (IV)	Ожоги кожи Покраснение кожи и образова-
Оксид хрома (VI) Фосфор желтый	ние пузырей Поражение кожи Тяжелые ожоги кожи
	•

Вещество	Результаты действия на организм
Основания	
Гидроксид калия (едкое кали), гидроксид натрия (едкий натр), концентрированный раствор аммиака, оксид кальция (негашеная известь)	Ожоги, изъязвления
Пероксиды	
Пероксид водорода (30 %-ный ра- створ), калия, натрия	Ожоги
Органические вещества	
Гексахлоран ДДТ	Поражение кожи » »
Диметилсульфат	Омертвение кожи и образование пузырей, изъязвление
Кислоты	
Муравьиная, уксусная (ледяная), кар- боловая (фенол)	Ожоги кожи
Формалин	· » »
Фосфорорганические инсектициды (кар- бофос, меркаптофос, метилмеркап- тофос, тиофос, фосфамид, хлорофос)	» »

11.4. ПРЕДЕЛЬНО ДОПУСТИМЫЕ ДОЗЫ ОБЛУЧЕНИЯ

11.4.1. Коэффициенты уменьшения дозы

Предельно допустимая мощность дозы, или интенсивность излучения, для потоков ядер или ионов элементов равна или меньше, чем для нейтронов такой же энергии. Коэффициенты уменьшения дозы вависят от энергии частиц и их природы. Значения их приведены в таблице.

	Энергия	частиц		Энергия частиц		
Частица	жДл 0 8 > (BeM 0001)	жДл 001 < (ВеМ 0001)	Частица	<60 пДж (1000 МэВ)	>160 пДж (1000 МэВ)	
Протон Дейтрон Тритон α-Частица	1/10 1/10 1/10 1/20	1 1 1 1/2	Ион лития Ион бериллия Ион азота Ион кислорода	1/30 1/40 1/80 1/80	1/3 1/4 1/8 1/8	

11.4.2. Пробег альфа- и бета-частиц в воздухе и алюминии в зависимости от их энергии

Энергия ч	астиц	Пробег	частиц	Энергия	частиц	Пробег	частиц
10-13 Дж	МэВ	в возду- хе, см	в алюми- нии, мм	10 ^{−18} Дж	МэВ	в возду- хе, см	в алюми- нии, мм
х-части	цы			β-части	цы		
6,4 8,0 9,6 11,2 12,8 14,4 16,0	4 5 6 7 8 9	2,5 3,5 4,6 5,9 7,4 8,9 10,6	16 23 30 38 48 58 69	0,02 0,08 0,16 0,8 1,6 4,8 8,0 9,6 11,2 12,8 14,4	0,01 0,05 0,10 0,5 1,0 3,0 5,0 6,0 7,0 8,0 9,0	0,13 2,19 10,1 119 306 1100 1900 2300 2700 3100 3500	0,0006 0,0144 0,0500 0,593 1,52 5,50 9,42 11,4 13,3 15,3 17,3

11.4.3. Допустимые дозы облучения

Вид излуче-	Энергия ионизирую-	Экспозицион- ная доза фо- тонного излу-	изпучения, или плотность энергии			
ния	щего излуче- ния	чения или количество излучения за одну неделю	единица измерения	при рабо- те 36 ча- сов в не- делю	при рабо- те t ча- сов в неделю	
Гамма-лучи	до 5·10 ⁻¹³ Дж (3 МэВ)	100 мР	мР/ч	2,8	100/t	
Рентгенов- ские лучи	5·10 ⁻¹³ — 1,6·10 ⁻⁹ Дж	4 10 ⁻¹⁶ Дж/см ²	Дж/(см ² · с)	3,2 · 10~3	0,112/t	
Бета-лучи	до 16·10 ⁻¹³ Дж (10 МэВ)		β-част./(см² с)	20	700/t	
Тепловые	0,04·10 ⁻¹⁹ Дж (0,025 эВ)	100 - 106	нейтр./(см²·с)	750	27000/t	
нейтроны Медленные нейтроны	(0,025 эВ) 0,16·10 ⁻¹⁹ Дж (0,1 эВ)	нейтр./см ² 72 · 10 ⁶ нейтр./см ²	нейтр./(см²·с)	550	20000/t	
Промежуточ ные нейтро	- 8 · 10 ⁻¹⁶ Дж		нейтр./(см²⋅с)	640	23000/t	
ны неитро	32 10 ⁻¹⁶ Дж (20 кэВ)	40 · 106	нейтр./(см²·с)	310	11000/t	
	0,16 10 ⁻¹³ Дж	нейтр./см ² 11 · 10 ⁶	нейтр./(см²·с)	90	3200/t	
	(ReM 1,0) жД ^{.г.–} 10 · 8,0 (ReM 3,0)	нейтр./см ² : 4,3 · 10 ⁶ нейтр./см ²	нейтр./(см²⋅с)	33	1200/t	

Вид излуче-	Энергия ионизиру-	Экспозиционная доза фотонного излучения или количество излучения за одну неделю	Предельно допустимая мощность экспозиционной дозы фотонного излучения, или плотность энергии излучения		
ния.	ющего излу- чения		единица измерения	при рабо- те 36 ча- сов в неделю	при рабо- те t часов в неделю
Быстрые нейтроны	16 · 10 ⁻¹³ Дж (10 МэВ)	2,6 · 10 ⁶ нейтр./см ²	нейтр./(см²⋅с)	20	720/t
Очень быст- рые нейтроны	32 · 10 ⁻¹² Дж	1,3 · 106 нейтр./см ²	нейтр./(см²⋅с)	10	360/t
Сверхбыст- рые нейтроны	8 • 10-11 Дж	0,8 · 106 нейтр./см ²	нейтр./(см²·с)	6	220/t
	32 · 10 ⁻¹¹ Дж (2000 МэВ)	0,4 · 106 нейтр./см ²	нейтр./(см²⋅с)	3	110/t
	8·10 ⁻¹⁰ Дж (5000 МэВ)	0,13 · 106 нейтр./см ²	нейтр./(см²∙с)	. 1	36/ <i>t</i>
	1,6 · 10 ⁻⁹ Дж (10 ⁴ МэВ)	0,013 · 10 ⁶ нейтр./см ²	нейтр./(ст²∙с)	0,3	11/t

11.4.4. Линейные коэффициенты ослабления (µ) узкого пучка гамма-лучей

Энергия ионизирующего излучения		μ, cm ⁻¹ , B					
10-18 Дж	МэВ	свинце	медн	железе	алю- минии	бетоне	воде
0,16 0,32 0,48 0,64 0,80 1,6 2,4	0,1 0,2 0,3 0,4 0,5 1,0 1,5	60 11,8 4,76 2,51 1,72 0,79	3,94 1,40 0,950 0,824 0,732 0,522	2,82 1,13 0,85 9,73 0,66 0,47	0,444 0 323 0,278 0,251 0,228 0,166	0,378 0,275 0,236 0,214 0,194 0,141	0,171 0,137 0,119 0,106 0,0967 0,0706
3,2 8,0	2,0 5,0	0,58 0,51 0,49	0,426 0,371 0,282	0,38 0,33 0,25	0,137 0,117 0,075	0,116 0,100 0,064	0,0576 0,0493 0,0302

11.5. СРЕДСТВА ОБЩЕЙ И ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ ОБСЛУЖИВАЮЩЕГО ПЕРСОНАЛА

11.5.1. Вентиляция

Обеспечение нормальных условий работы с ядовитыми, огне- и взрывоопасными веществами в лабораторных и производственных помещениях достигается с помощью соответствующего обмена воздуха. Воздухообмен в помещениях также обеспечивает поддержание определенной температуры и влажности воздуха.

В случае удаления токсичных газов объем свежего воздуха, попадающего в помещение, зависит от количества выделяющихся в единицу времени ядовитых газов и их ПДК (см. п. 11.1.4). При поддержании определенной температуры и влажности в помещении воздухообмен зависит от количества выделяющихся в единицу времени тепла и влаги. При наличии в помещениях постоянного персонала температура должна быть не ниже 18 °C; относительная влажность воздуха поддерживается в пределах 50-75 %.

Необходимый воздухообмен в помещениях, где состав и состояние воздуха должны удовлетворять заданным условиям определяется по

— для поддержания ПДК токсичного газа $V=a/c,\ V=kV',\ k=$

— для поддержания нормальной температуры $V = \frac{Q}{c_{\mathbf{p}} \left(t_{\mathbf{2}} - t_{\mathbf{1}}\right)}$; — для поддержания определенной влажности $V=b/(q_2-q_1)$, где V — объем свежего воздуха, вводимого в помещение в течение 1 ч, $\mathbf{m^3}$; a — масса выделяющегося в течение 1 ч токсичного газа, г; c — ПДК токсичного газа, г/м³ (см. п. 11.1.4); V' — объем помещения, $\mathbf{M^3}$; c_1 — концентрация токсичного газа в помещении, г/ $\mathbf{M^3}$; Q — количество выделяющегося в течение 1 ч тепла, кДж; $c_{\mathbf{p}}$ — удельная теплоемкость воздуха, Дж/(г · К) (см. п. 6.6.2); t_1 и t_2 — температуры воздуха, поступающего в помещение и уходящего из него, °C; b - количество выделяющейся в течение 1 ч влаги, г; q_1 и q_2 — количество влаги, содержащейся в воздухе, поступающем в помещение и уходя-

щем из него соответственно, r/m^3 . В случае выделения газов с плотностью большей, чем у воздуха, приточно-вытяжная вентиляция с техническим побуждением должна предусмотреть удаление воздуха в объеме 80 % из нижней и 20 % из верхней зон и выброс его через трубу, верхний край которой на 2 м выше конька крыши самого высокого здания, находящегося в радиусе 15 м; приточный воздух необходимо подавать в верхнюю зону. Приточно-вытяжная вентиляция в случае газов легче воздуха делается с отсосом из верхней зоны помещения, приточный воздух подается в рабочую зону.

В помещениях с пылеобразованием токсичных веществ предусматриваются общеобменная вентиляция с 3-6-кратным воздухообменом в час и местный отсос из бокса, где производятся работы (скорость воздуха в сечении рабочего проема — не менее 0,5 м/с).

11.5.2. Спецодежда

При работе с агрессивными средами производственный обслуживающий персонал обеспечивается спецодеждой — костюмами, рукавицами, сапогами. Лиц, работающих на установках, в которых используют кислоты и кислые реагенты, должны снабжать костюмами (куртками, брюками), рукавицами из грубошерстного сукна и резиновой обувью. Эксплуатационный персонал, занятый на установках, где применяют щелочные реагенты, обеспечивается хлопчатобумажными костюмами (комбинезонами, халатами) и рукавицами, а также резиновой обувью.

Следует учитывать, что кожаная обувь совершенно не применима для работы с едкими щелочами, а шерстяные ткани способны сорбиро-

вать газы, например хлор.

Лабораторный персонал, кроме халатов и полотенец, при работе с токсичными и агрессивными веществами, обеспечивают резиновыми перчатками и передниками.

11.5.3. Средства индивидуальной защиты

Противогазы. Для защиты обслуживающего персонала от вредных газов, паров и пыли применяют противогазы таких марок;

_	Formbordom rakny Wal
Газы, пары, пыль	Марка противогаза
Аммиак	
Газы и пары	КВ и КД
Мышьяководород (арсин)	_ M
Пары кислот	ЕиБКФ
Пары органический так	В
Пары органических веществ Пары ртути	Α
При померен и	Γ
При пожарах и дыме	ПиБКФ
Оксид серы (IV) (сернистый газ	C
Сероводород	ΚД
Смесь оксидов углерода и хлор	a ĈÔX
Оксид углерода (11)	CO
Фосфороводород (фосфин)	Ē
Пыль	Респираторы Ф-46 и Ф
	harohor Asset N A

Противогазы существуют двух типов: БК (большая коробка) и МК (малая коробка). Первые применяют при высоких концентрациях вредных веществ и тяжелой работе. Противогазы различных марок отличаются по цвету коробки: А — коричневый, В — желтый, Г — желтый и черный, Е — черный, БКФ — защитный с белой полосой, КВ — желтый и серый, КД — серый, С — голубой, СО — белый, с белой полосой. При объемной полосой, М — красный, П — красный с белой полосой. При объемной доле кислорода меньше 16 % или вредных газов и паров более 2 % применяют кислородные приборы КИП-1-3, КИП-5, РКР-2; при чистке колодцев, цистерн, больших резервуаров— шланговые приборы.

Средства защиты глаз. Для защиты глаз от вредного действия жидкостей и паров применяют очки защитные ПО-1 с резиновой полумаской и очки защитные 81396 с бесцветными стеклами и полумаской.

Лицо от ожогов, брызг предохраняют щитком наголовным ШН-7 с прозрачным экраном из органического стекла.

11.6. ОКАЗАНИЕ ПЕРВОЙ ПОМОЩИ

В лабораторных и производственных помещениях должна быть специальная аптечка с лекарствами и медицинскими средствами для оказания первой помощи.

11.6.1. Меры первой помощи при отравлениях

		XKNDstands a handstands
	Вещества	Меры первой помощи
	Неорганичес	ские вещества
,	Кислоты Азотная	Свежий воздух, покой, тепло. Вдыхание кисло-
		рода. Сульфалимезин или пругой сульфанилогия

Свежий воздух, покой, тепло. Вдыхание кислорода. Сульфадимезин или другой сульфаниламидный препарат (2 г), аскорбиновая кислота (0,5 г), кодеин (0,015 г) или дионин (0,01 г). Искусственное дыхание без сжатия грудной клетки. Внутримышечно лобелин (1,0 см³ 1 %-ного раствора), метазон (0,3—0,5 см³ 1 %-ного раствора). Консультация врача

Вещества Меры первой помощи Карболовая См. ниже Фенол Плавиковая (фто-Свежий воздух, покой, тепло. Крепкий чай или роводородная), кофе. Ингаляция 2 %-ным раствором соды или кремнефтористово-10 %-ным раствором ментола. Кислород. Кодень (0,015 г), дионин (0,01 г), эуфиллин (0,05 г). дородная кислоты В нос 2-3 капли 2 %-ного раствора эфедрина или 0,05 % ного раствора нафтизина. 1 таблетка аэрона. Консультация врача Серная Свежий воздух. Промыть верхние дыхательные пути 2 % ным раствором соды. В нос 2-3 капли 2°% ного раствора эфедрина. Теплое молоко с содой, коденн (0,015 г) или дионин (0,01 г). При попадании в органы пищеварения смазать слизистую оболочку рта и глотки 2 %-ным раствором дикаина. Обильное промывание желудка водой. Внутрь столовая ложка оксида магния на стакан воды каждые 5 мин, яичный белок, молоко, крахмальный клейстер, кусочки сливочного несоленого масла, кусочки льда. Нельзя вызывать рвоту и применять карбонаты. Консультация врача Синильная Свежий воздух, смена загрязненной одежды. Дыхание кислородом. Вдыхание 5-10 капель амилнитрита в течение 15-30 с, повторять через 2-3 мин. Искусственное дыхание, сердечные средства - кордиамин, кофеин. Консультация врача Соляная (хлорово-Свежий воздух, покой, тепло. Ингаляция 2 дородная) 3 %-ным раствором соды или 10 %-ным раствором ментола в течение 8-10 мин. Полоскание рта и промывание носа 2 %-ным раствором соды. Внутрь кодеин (0,015 г), дионин (0,01 г), норсульфазол (1,0 г), теплое молоко с содой. При попадании в органы пищеварения промывание желудка. Внутрь 10-15 капель нашатырного спирта с водой, яичный белок, молоко. Консультация Основания

Вдыхание теплого водяного пара (в воду доба-

вить немного лимонной кислоты). Внутрь теплое

молоко с медом, кодеин (0,015 г) или дионин

(0,01 г). Горчичники. При попадании в органы

пищеварения смазывание слизистых оболочек

рта и горла 1' %-ным раствором новоканна.

Калия гидроксид

(едкое кали)

Вещества	Меры первой помощи
	Внутрь по столовой ложке 1 %-ного раствора лимонной или виннокаменной кислоты каждые 3—5 мин, крахмальный клейстер с добавлением тех же кислот или уксусной кислоты, 2—3 столовых ложки растительного масла. Внутрь кусочки льда. Консультация врача
Кальция оксид (негашеная из- весть)	То же
Натрия гидроксид (едкий натр)	•
Соли	
Соли бария	Промывание желудка 1 %-ным раствором сульфата натрия или магния, клизмы 10 %-ным раствором тех ж солей. Каждые 5 мин внутрь по столовой ложке 10 %-ного раствора сульфата натрия или магния и молоко или белковую воду (2—3 яичных белка на 0,5 л воды). Консультация врача
Соли меди	Промывание желудка водой (6—8 стаканов) или 0,1 %-ным раствором гексоцианоферриата калия (желтой кровяной соли) или перманганата калия (розовый раствор). Внутрь солевое слабительное, суспензия оксида магния или активированного угля (столовая ложка на стакан воды), таблетка аэрона. Избегать жиров и кислого. При лихорадке покой, тепло; аспирин (0,5 г), белладонна (0,015 г), поливитамины. Консультация врача
Соли мышьяка	Промывание желудка 8—10 стаканами воды со взвесью оксида магния (2 столовые ложки на 2 л). Внутрь каждые 10 мин по столовой ложке свежеприготовленного противоядия (смесь 100 г сульфата железа (II) в 300 см³ воды) или 100 см³ свежеприготовленного антидота (противоядия) Стржижевского (1,25 г гидрокарбоната натрия, 0,1 г гидроксида натрия, 0,38 г сульфата магния, 0,5—0,7 г сероводорода в 100 см³ водного раствора) после стакана подкисленной воды (20 капель разбавленной соляной (хлороводородной) кислоты или столовая ложка уксуса либо 3—4 г лимонной кислоты). Внутрь столовая ложка английской или глауберовой соли, унитиол (0,5 г), 1 таблетка аэрона. Камфора, кофеин, кордиамин при ослаблении сердечной деятельности. При судорогах — растирание конечностей, грелки. Консультация врача

Вещества	Меры первой помощи
Соли олова	Промывание желудка. Внутрь суспензия оксида магния в воде, растительное масло
Соли ртути	Через 10 мин после стакана подкисленной воды (20 капель разбавленной соляной (хлороводородной) кислоты или разбавленного столового уксуса, или 3—4 г лимонной кислоты) промывание желудка. Внутрь 0,5 г унитиола, молоко, взбитый с водой яичный белок (см. Соли бария). Консультация врача
Соли свинца	Большое количество концентрированного раствора сульфата магния внутрь
Соли серебра	Большое количество концентрированного раствора хлорида натрия или 100 мл антидота (противоядия) Стржижевского внутрь (см. Соли мышьяка)
Соли стронция	См. Соли бария
Соли сурьмы	Промывание верхних дыхательных путей 2%-ным раствором соды. В нос 3%-ный раствор эфедрина с 0,1%-ным раствором адреналина. Внутрь кодеин (0,015 г), дионин (0,01 г), при лихорадке—аспирин (0,5 г), амидопирин (0,25 г). При попадании сурьмы в органы пищеварения меры первой помощи те же, что и при отравлении солями ртути
Соли хрома	При попадании пыли в носоглотку промывание 2 %-ным раствором соды, смазывание слизистых оболочек смесью ланолина и вазелина или рыбым жиром. Внутрь кодеин (0,015 г), эуфиллин (0,015 г). При попадании в органы пищеварения промывание желудка после принятия 25 мл 1 %-ного раствора сульфата меди или 50 мл сульфата цинка. Внутрь молоко с двумя яичными желтками, солевое слабительное. Консультация врача
Соли цинка Перманганаты ме- ди (марганцево- кислые соли)	Промывание желудка. Внутрь яйцо с молоком или противоядие Стржижевского (см. Соли мышьяка) Промывание желудка; внутрь касторовое маслослизистые отвары, танин, уголь, камфору. Полоскание рта хлоратом калия.
Фториды	Внутрь известковую воду или 12 %-ный раствор хлорида кальция

Вещества	Меры первой помощи
Цианиды	При отравлении через дыхательные пути меры первой помощи те же, что и при отравлении синильной кислотой. При отравлении через органы пищеварения, кроме вдыхания амилнитрита, каждые 15 мин по столовой ложке раствора сульфата железа (II) и оксида магния (жженой магнезии), приготовленного из расчета — 1 чайная ложка на стакан воды, внутрь. В промежутках промывание желудка 1,5—2 л розового раствора перманганата калия или 1—3 %-ного раствора пероксила водорода, или 5 %-ного раствора тиосульфата натрия
Металлы	
Ртуть	Полный покой, тепло. Полоскание рта слабым раствором бертолетовой соли, 5 %-ным раствором хлорида цинка или 2 %-ным раствором танина. Внутрь цистанин (0,3 г), раннее введение унитиола (внутрь 0,5 г, внутримышечно 5 см ³ %-ного раствора). Срочная госпитализация
Неметаллы	
Бром, хлор	Полный покой, тепло. Ингаляция 2 % ным раствором соды или тиосульфата натрия. Теплое молоко с боржоми или содой. Внутрь кодеин или дионин (0,01 г), димедрол (0,01 г), глюконат кальция (0,5 г). Промывание глаз водой, закапывание 1 %-ным раствором новокаина или 0,5 %-ным раствором дионина с адреналином (1:1000). В тяжелых условиях вдыхание кислорода. Срочная госпитализация
Фосфор	1 стакан 0,2 %-ного раствора сульфата меди. Противопоказаны жиры
Газы	
Аммиак	Свежий воздух, покой; вдыхание пара, содержащего лимонную кислоту. Внутрь теплое молоко с боржоми или содой, растительное масло или яичный белок. Масляные ингаляции (10 %-ный раствор ментола в хлороформе). Внутрь кодеин (0,015 г) или дионин (0,01 г). В нос 3 %-ный раствор нафтизина. При спазме голосовой щели подкожно атропин (1,0 см³ 0,1 %-ного раствора), эуфиллин (0,2 г); горчичники на шею, горячие ножные ванны. В случае нарушения дыхания немедленная госпитализация

Вещества	Меры первой помощи
Мышьяковистый водород (арсин)	Абсолютный покой, вдыхание кислорода. Внутрь аскорбиновая кислота (0,5 г) и витамин B_2 (0,01 г), цистамин (0,3 г), никотинамид (0,03 г). Срочная госпитализация
Озон	Свежий воздух, покой, тепло, ингаляция 2 %-ным раствором соды. Внутрь кодеин (0,015 г) или дионин (0,01 г)
Оксиды серы (IV) и (VI) (сернистый и серный ангид- риды)	Свежий воздух. Промывание глаз и носа, ингаляция 2 %-ным раствором соды. Теплое молоко с содой, боржоми или медом. Внутрь кодейн (0,015 г) или дионин (0,01 г). В нос 2—3 %-ный раствор эфедрина. Полный покой, наблюдение врача
Сероводород	Свежий воздух, покой, тепло. Вдыхание кислорода в сочетании с искусственным дыханием. Вдыхание амилнитрита в течение 15—30 с (повторять через 2—3 мин). Промывание глаз 2 %-ным раствором соды. Госпиталивация
Фосген	Покой, вдыхание кислорода. Консультация врача
Фосфористый во- дород (фосфин)	Свежий воздух, покой, тепло Вдыхание кислорода. Внутрь кодеин (0,015 г) или дионин (0,01 г), эуфиллин (0,05 г), 1 таблетка аэрона. Ингаляция 2 %-ным раствором соды или 10 %-ным раствором ментола. В нос 3 %-ный раствор эфедрина или 0,05 %-ный раствор нафтизина. Консультация врача, при сильном отравлении госпитализация
Хлор (хлорная вода)	См. Неметаллы, Бром
Хлороводород	См. Соляная кислота
Органические	е вещества
Алкалоиды	Внутрь одна или две столовые ложки очищенного древесного угля в виде суспензии с водой; вызвать рвоту. Наблюдение врача
Алкалоиды груп- пы морфина	Внутрь 0,1 г коразола или 0,5 г камфоры, или 30 капель кордиамина. Крепкий чай или кофе. Искусственное дыхание и вдыхание кислорода. Консультация врача
Альдегиды	Стакан 0,2 %-ного раствора аммиака, затем мо- локо

Вещества	Меры первой помощи
Анилин и анили- новые красители	При попадании в органы пищеварения вызвать рвоту, дать солевое слабительное. Вдыхание кислорода, искусственное дыхание. При попадании в дыхательные пути — свежий воздух, смена одежды. Покой. Попеременное (через 10—15 мин) вдыхание кислорода и карбогена (смесь кислорода с 5—7 % CO ₂). Внутрь аскорбиновая кислота (0,5 г), цистамин (0,03 г) и глютаминовая кислота (1,0 г). Сердечные и успоканвающие средства (камфора, кордиамин, настойка валерианы). Противопоказаны молоко, спирт и растительное масло. Госпитализация
Бензол и его гомо- логи	То же
Бромистый метил (метилбромид)	Свежий воздух, смена одежды. Покой. Попеременное вдыхание кислорода и карбогена (см. Анилин и анилиновые красители). Внутрь глютаминовая кислота (1,0 г), витамины B_1 и B_6 (по 0,01 г). Госпитализация
Дихлорэтан	При отравлении парами — свежий воздух, покой; вдыхание кислорода, крепкий сладкий чай, димедрол $(0,03\ r)$, глюконат кальция $(0,05\ r)$, витамины B_1 , B_2 , B_6 (по 0,01 г), C (0,5 г). При попадании в органы пищеварения — немедленное промывание желудка $8-10$ стаканами воды или слабым раствором перманганата калия. Солевое слабительное, глюкоза $(20-40\ cm^3\ 40\ \%$ -ного раствора), витамины B_1 и B_6 (по 0,01 г), аминазин $(0,025\ r)$. Госпитализация
Метанол (метило- вый спирт)	Промывание желудка водой (несколько раз). Высокое положение головы, лед на голову. Вдыхание карбогена (см. Анилин и анилиновые красители). Искусственное дыхание. Вдыхание нашатырного спирта. Срочная госпитализация
Наркотики (эфир, хлороформ, спир- ты)	Внутрь 0,03 г фенамина или 0,1 г коразола, или 30 капель кордиамина, или 0,5 г камфоры. Искусственное дыхание и вдыхание кислорода
Нитросоединения	Свежий воздух, смена одежды. Покой. Попеременное вдыхание кислорода и карбогена (см. Анилин и анилиновые красители). Внутрь аскорбиновая кислота (0,5 г), цистамин (0,3 г), глютаминовая кислота (0,5 г). При попадании в органы пищеварения — промывание желудка и солевое слабительное. Противопоказаны спирт, жиры, растительные масла. Госпитализация

	Продолжение таблицы
Вещества	Меры первой помощи
Пиридин	Свежий воздух, полоскание рта и носа 2 %-ным раствором соды. Большое количество крепкого чая или кофе. В тяжелых случаях вдыхание кислорода, сердечные средства. Госпитализация
Фенол	Сменя одежды, покой, тепло, вдыхание кислорода. Промывание желудка большим количеством воды. Внутрь по 1 столовой ложке каждые 5 мин суспензию оксида магния (75 г) в воде (0,5 л.) или активированного угля (20: 200), затем 2—3 столовые ложки растительного масла, яичный белок или стакан молока, кусочки льда. Пузырь со льдом на область живота. Срочная госпитализация
11.6.2. Меры по	ервой по мощи при химических ожогах
Вещества	Меры первой помощи
Неорганиче Кислоты	ские вещества

Кислоты

Азотная, серная, соляная, фосфорОбильное промывание водой, повязки, смоченные 2—3 %-ным раствором соды, риванола (1:1000) или фурацилина (1:5000). При ожогах II—III степени - повязки со стрептоцидовой или синтомициновой эмульсией. Консультация врача

Плавиковая (фтористоводородная)

Обильное промывание пораженного участка водой (4-6 ч) до покраснения. Повязка со свежеприготовленной пастой оксида магния в глицерине

Металлы

Калий, натрий

Обильное промывание водой. При ожогах II-III степени меры первой помощи те же, что и при ожогах кислотами

Неметаллы

Бром жидкий, хлор жидкий

Промывание пораженного места спиртом и смазывание 1—2 %-ным спиртовым раствором гиацинвиолета или метиленового синего

Оксиды серы · (IV) и (VI) (сернистый и серный ангидрид)

См. Кислоты

Вещества	М∉ры первой помощи
Фосфор желтый	Обильное промывание водой; при ожогах II—III степени меры первой помощи те же, что и при ожогах кислотами
Оксид хрома (VI) (хромовый ангид- рид)	Немедленное обильное промывание водой (15 мин), повязка со стрептоцидовой или синтомициновой эмульсией
Основания	
Калия гидроксид (едкое кали), натрия гидроксид (едкий натр), концентрированный раствор аммиака	Обильное промывание водой (10 мин), примочки из 5 %-ного раствора уксусной, виннокаменной, соляной (хлороводородной) или лимонной кислоты
Кальция оксид (не- гашеная известь)	Смывание растительными маслами или вазелином
Пероксиды	• • • •
Пероксиды водорода (30 %-ный раствор), калия,	Обильное промывание водой
натрия	
Органические	вещества
Гексахлоран, ДДТ	Обмывание теплой водой с мылом, повязка с 2 %-ным раствором гидрокарбоната натрия или смачивание слабым раствором перманганата (марганцевокислого) калия
Диметилсульфат	Обильное промывание водой, смазывание 1,2 %- ным спиртовым раствором гиацинвиолета или метиленового синего. При сильном ожоге смазыва- ние спиртом и повязка с синтомициновой эмуль- сией
Кислоты	
Муравьиная, уксусная (ледя- ная) кислоты	Меры первой помощи такие же, как при ожогах неорганическими (серной, азотной) кислотами
Карболовая ки- слота (фенол)	Обильное промывание 40 %-ным раствором этанола (этилового спирта), повязка со стрептоцидовой или синтомициновой эмульсией. Наблюдение врача.
Формалин	Немедленное промывание 5 %-ным раствором на- шатырного спирта (аммиака) или водой

Вещества	Меры первой помощи				
Фосфорорганиче- ские инсектициды (карбофос, меркап- тофос, тиофос, фосфамид, хлоро- фос)	Снятие яда ватой или марлей (не втирая), смывание водой, обработка кожи 5—10 %-ным раствором нашатырного спирта (аммиака).				

Примечание. При химическом ожоге глаз промыть глаза струе воды в течение 10—30 мин, затем, при ожоге кислотой, 2—3 % ным раствором гидрокарбоната натрия, при ожоге щелочью — 2 %-ным раствором борной кислоты, при ожоге аммиаком — 0,5—1 %-ным раствором сульфата алюминия; закапать 1 % ным раствором новокамна или 0,5 %-ным раствором дикаина с адреналином (1:1000); ввести стерильное вазелиновое или оливковое масло; надеть очки «консервы». Срэчно обратиться к окулисту.

11.6.3. Оказание первой помощи при термических ожогах

Степень ожога	Меры первой помощи				
Первая (краснота)	Наложить вату, смоченную этиловым спиртом. Повторять смачивание. При больших поверхностях ожога обязательно вызвать врача				
Вторая (пузыри)	Наложить вату, смоченную этиловым спиртом или 3—5 %-ным раствором перманганата калия, или 5 %-ным раствором танина				
Третья (разруше- ние тканей)	Покрыть рану стерильной повязкой и вызвать врача				

11.6.4. Оказание первой помощи при ранениях

	-
Ранення	Меры первой помощи
Небольшие порезы	Очистить раны механически, применяя стерильную марлю. Смазать поверхность раны 3—5 %ной иодной настойкой. Промыть водой с мылом, присыпать белым стрептоцидом или порошком другого сульфаниламидного препарата, покрыть стерильной марлей или бинтом. Обратиться к врачу
Большие порезы с сильным кровоте-чением	Наложить жгут выше раны, покрыть рану стерильной марлей. Вызвать врача г

ЕДИНИЦЫ ИЗМЕРЕНИЯ

12.1. МЕТРИЧЕСКИЕ СИСТЕМЫ МЕР И МЕЖДУНАРОДНАЯ СИСТЕМА ЕДИНИЦ

12.1.1. Метрические системы единиц

В метрических системах мер исходными единицами измерения являются метр — единица длины и килограмм — единица массы. Международные прототипы их хранятся в Международном бюро мер и весов в Севре (Франция).

До 1963 г. в СССР были распространены четыре системы единиц

измерения:

СГС, в которой основными единицами являются единица длины — сантиметр (см), единица массы — грамм (г) и единица времени секунда (с):

МКС, имеющая в качестве основных единиц — единицу длины — метр (м), единицу массы — килограмм (кг) и единицу времени — се-

кунду (с);

МТС, в которой основными единицами служат единица длины — метр (м); единица массы — тонна (т) и единица времени — секунда (с). МКГСС — имеет основными единицами единицу длины — метр (м); единицу силы — килограмм (кг) и единицу времени — секунду (с).

С 1 января 1963 г. в СССР введена Международная система единиц (ГОСТ 9867—61) для предпочтительного применения ее во всех областях науки, техники и народного хозяйства, а также при преподавании. Сокращенное обозначение этой системы — СИ, что означает «система интернациональная». С 1 января 1980 г. в публикациях всех видов необходимо применять только единицы СИ.

12.1.2. Международная система единиц СИ

В настоящее время постановлением Государственного комитета СССР по стандартам утвержден ГОСТ 8.417—81 (СТ СЭВ 1052—78) «Единицы физических величин», введение которого обеспечивает использование в нашей стране единой, правильно организованной и взаимосвязанной совокупности единиц, приведенной в соответствие с международными рекомендациями, что создает реальные возможности для перехода от предпочтительного использования единиц СИ к их обязательному применению. Международная система единиц СИ состоит из семи основных единиц (метр — для длины, килограмм — для массы, секунда — для времени, кельвин — для термодинамической температуры, ампер — для силы электрического тока, кандела — для силы света и моль — для количества вещества), двух дополнительных единиц (радиан — для плоского угла, стерадиан — для телесного угла) и 85 важнейших производных единиц. Производные единицы, не включенные в стандарт, могут быть установлены по правилам образования когерентных производных единиц.

В новом стандарте предусмотрено применение для сокращенных русских буквенных обозначений того же шрифта, которым набран ос-

новной текст. Обозначения единиц, названных по фамилиям ученых, пишутся с прописных букв, остальных — со строчных (малых). Для ряда единиц произведены значительные изменения по сравнению с обозначениями их в действовавших ранее стандартах, основные из них следующие:

единица силы света — кандела (кд);

единица времени — секунда (с);

единица телесного угла — стерадиан (ср);

единица давления — паскаль (Па);

были в пределах 0,1,..., 1000.

единица электрической проводимости — сименс (См);

единица количества электричества — кулон (Кл);

единица термодинамической температуры — кельвин (К) и др. Новым стандартом предусматривается использование десятичных кратных и дольных единиц. По сравнению є действовавшим ГОСТ 7663—55 добавлены две десятичные приставки «экса» и «пета», а также «фемто» и «атто». В примечании отмечается, что приставки «гекто», «дека», «деци» и «санти» допускается применять в наименованиях кратных и дольных единиц, уже получивших широкое распространение, например гектар, декаметр, дециметр, сантиметр. Рекомендуется приставки применять так, чтобы числовые значения величины

Наряду с единицами СИ новым стандартом разрешается применение некоторых широко распространенных единиц, замена которых в ближайшее время нецелесообразна (тонна, минута, час, сутки и др.). В специальных разделах физики и в астрономии допускается использование единиц системы СГС, имеющих собственные наименования, и некоторых других важнейших единиц. Временно допускается приме-

нять единицы, получившие распространение в практике.

12.1.3. Образование кратных и дольных единиц

ГОСТ 8.417—81 допускает применение кратных и дольных единиц измерения, образуемых путем умножения и деления основных и производных единиц на 10 в соответствующей степени. Наименования приставок приведены в таблице.

	Наименование	Обозначе	ние приставки
Кратность и дольность	приставки	русское	международно
1000000000000000000000000000000000000	экса	Э	Е
$10000000000000000 = 10^{15}$	пета	П	P
$10000000000000 = 10^{12}$	тера	T	T
$1000000000 = 10^9$	гига	Γ	G
$1000000 = 10^6$	мега	M	M
$1000 = 10^3$	кило	K	ķ
$100 = 10^2$	гекто	Γ	h
$10 = 10^1$	дека	да	da
$0.1 = 10^{-1}$	деци	. д	d
$0.01 = 10^{-2}$	санти	c	С
$0,001 = 10^{-3}$	милли	, M	m
$0,000001 = 10^{-6}$	микро	MK	μ
$0.000000001 = 10^{-9}$	нано	H	n
$0,000000000001 = 10^{-12}$	пико	π	р
$0,000000000000001 = 10^{-15}$	фемто	ф	f
$0,000000000000000001 = 10^{-18}$	атто	ā	a

12.2. ЕДИНИЦЫ ИЗМЕРЕНИЯ СИ

12.2.1. Основные, дополнительные и производные единицы СИ

		Сокращенные обозначения единицы	начения единицы	
Величина	Единица измерения	русское	международное	Размерность
Основные единицы				
Длина Масса Время	метр килограмм секунда	K C C	m kg	1 _M T.
Сила электрическото тока Гермодинамическая температура Сила света Количество вещества	ампер Кельвин Кандела Моль	А Кд моль	cd mol	~ O ~ Z
Дополнительные единицы	•			-
	радиан стерадиан	рад cp	rad . sr	11
Важнейшие производные Механические единицы	, единицы			
Площадь	квадратный метр	M ₂	E I	L3
Объем, вместимость Частота	куоическии метр гери	M ² Γμ (c ⁻¹)	Hz	T^{-1}
Скорость линейная	метр в секунду	M/C	s/ш	LT^{-1}
Скорость угловая Скорость массовая	радиан в секунду килограмм на квадратный	$pa\mu/c$ $KF/(M^2 \cdot c)$	rad/s kg/(m²·s)	T^{-1} $ML^{-2}T^{-1}$
	метр в секунду	6-7	. 87/	Ê
Ускорение линейное Ускорение угловое	метр на секунду в квадрате радиан на секунду в квад-	M/c^2 pag/ c^2	m/s^2 rad/ s^2	T^{-2}
•	pare			

Плотность (объемная масса)	килограмм на кубический	KI/M ³	kg/m³	W_{ε} – T
Удельный объем	метр кубический метр на кило-	M³/KΓ	m³/kg	$T \circ M^{-1}$
Объемный расход Массовый расход Сила (в частности, сила тяжести,	грамм кубический метр в секунду килограмм в секунду ньютон	M^3/C $K\Gamma/C$ K K K K	$\frac{m^3/s}{kg/s}$	$L^{3}T^{-1}$ MT^{-1} LMT^{-2}
вес) Удельный вес Момент инерции (динамический) Работа; энергия Мощность	ньютон на кубический метр килограмм-метр в квадрате джоуль ватт	H/M ³ Kr· M ² Дж (H· M) Br (Дж· c ⁻¹)	N/m³ кg·m² У	$ \begin{array}{c} L^2MT^{-2}\\ L^2M\\ L^2MT^{-2}\\ L^2MT^{-3} \end{array} $
Давление (механическое напряжение, модуль упругости) Повату подтавление	паскаль икотон на мето	Па (H·м-²) Н/м	Pa N/m	$L^{-1}MT^{-2}$ MT^{-2}
Импульс силы Момент силы	ньютон-секунда ньютон-метр	H.X.	s E	$L^{M}T^{-1}$
Импульс момента силы Количество движения	унда В С	$H \cdot M \cdot C$ $K\Gamma \cdot M/C$	N·m·s kg·m/s	$LM^{z}T^{-1}$ LMT^{-1} $L^{z}MT^{-1}$
момент количества движения Динамическая вязкость Кинематическая вязкость	килограмм-метр в квадрате в секунду паскаль-секунда квадратный метр в секунду	л м /с Па с (Н с с м ⁻²) м ² /с	Pa · s m²/s	$L^{-1}MT^{-1}$ $L^{2}T^{-1}$

Тепловые единицы

джоуль
мичество теплоты, термодинами- джоуль ческий потенциал (внутренняя внергия, энтальпия, свободная внергия, свободная энтальпия); теплота фазового превращения, теплота химической реакции
теплоты, те потенциал (энтальния, свободная з фазового пр
Количество теплоты, ческий потенциал энергия, энтальпи энергия, свободна теплота фазового теплота химической

7	9	8

8			11 ро Сокращенные обозначения единицы	и рооо.	и россижение таблицы	
	Величина	Единица измерения	русское	международное	Размерность	
	количество теплоты ая теплота химической ре- удельная теплота фазового (ения), удельная внутрен- ргия, удельная энтальпия.	джоуль на килограмм	Дж/кг	J/kg	L2T-2	
	тенциал Теплоемкость системы Удельная теплоемкость	джоуль на кельвин джоуль на килограмм-	Дж/К Дж/(кг·К)	$^{ m J/K}_{ m J/(kg\cdot K)}$	$L^2MT^{-2}\theta^{-1}$ $L^2T^{-2}\theta^{-1}$	
	теплоемкость	кельвин Джоуль на кубический метр- кельвин	$ \prod x/(x^3 \cdot K) $	$J/(m^3 \cdot K)$	$L^{-1}MT^{-2}\theta^{-1}$	
	теплоемкость	джоуль на моль-кельвин	Дж/(моль · К)	J/(mol·K)	$L^2MT^{-2}\theta^{-1}N^{-1}$	
	а, печи,	джоуль на кельвин джоуль на килограмм-кельвин ватт	ДЖ/К ДЖ/(кг·К) Вт (Дж·с ⁻¹) Вт (Дж·с ⁻¹)	J/K J/(kg·K) W	$L^{2}MT^{-2}\theta^{-1}$ $L^{2}T^{-2}\theta^{-1}$ $L^{2}MT^{-3}$ $L^{2}MT^{-3}$	
	енного аппарата) гная плотность теплового плотность теплового из-	ватт на квадратный метр	$B_{\rm T/M}^2$	W/m²	MT^{-3}	
	го по- объе-	ватт на кубический метр	Вт/м3	W/m³	L-1MT-3	
	температурный коэффициент	кельвин на метр кельвин в минус первой сте- пени	K/m K-1	K/m K-1	$\eta_{-1}\theta$	
		1				
	Коэффициент теплообмена (тепло- отдачи), коэффициент теплопере-	ватт на квадратный метр- кельвин	$B_T/(M^2 \cdot K)$	$W/(m^2 \cdot K)$	$MT^{-3}\theta^{-1}$	
	дачи Теплопроводность Коэффициент лученспускания	ватт на метр-кельвин ватт на квадратный метр- кельвин в четвертой сте-	$B\tau/(M\cdot K)$ $B\tau (M^2\cdot K^4)$	$W/(m \cdot K)$ $J/(m^2 \cdot K^4)$	LMT-80-1 MT-30-4	
	Температуропроводность Коэффициент линейного (объемно- го) расширения Коэффициент	пени Квадратный Кельвин в Мі пени	M ² /c K ⁻¹	m^2/s K^{-1}	L^2T^{-1} θ^{-1} L^2T^{-1}	
	лоэффициент диффузии Газовая постоянная (универсальная)	-	Дж/(моль · К)	J/ (mol·K)	$L^{2}MT^{-2}\theta^{-1}N^{-1}$	
	Overmpuvechue u machumhole eouhuya	nder		,		
	Работа и энергия Мощность Подная мощность	ДЖОУЛЬ BATT	$egin{array}{l} \mathbb{Z} \mathbb{R} & (\mathbb{H} \cdot \mathbb{M}) \\ \mathbb{B} r & (\mathbb{Z} \mathbb{R} \cdot \mathbb{C}^{-1}) \\ \mathbb{R} \cdot \mathbb{A} \end{array}$	J W V	L^2MT^{-2} L^2MT^{-3}	
	Реактивная мощность Количества (элек-	вольт-ампер вольт-ампер реактивный - кулон	вар (В · А) Кл (А · с)	var C	L^2MT^{-3}	
	грический заряд) Плотность электрического тока (поверхностияя)	з ампер на квадратный метр	A/M^2	A/m^2	$L^{-2}I$	
	Поток электрического смещения (поток электрической индукции)		Кл (A · c)	O 1	TI	
	a	- кулон на квадратный метр	Κη/м ² Κπ/м	C/m²	$L^{-2}TI$ $I=1TI$	
	илотноств ряда тиза плотиост	SMENIPAGE KYMON NA MEIP		C/III	T-2T1	
79		о кулон на кубический метр	Kл/м ³	C/m³	T-371	
,						1

			roond ::	menue muonudos
Ç		Сокращенные обозначения единицы	чения единицы	
Беличина	Единица измерения	русское	международное	Размерность
Электрическое напряжение, раз- ность электрических потенциалов,	Вольт	B (Br · A-1)	Λ	L 2MT-3I-1
электродыяжущая сила Напряженность электрического поля	вольт на метр	В/м	V/m	LMT-31-1
Электрическое сопротивление Удельное электрическое сопротив- ление	ом ом-метр	$O_{M}(B \cdot A^{-1})$ $O_{M} \cdot M$	S C C	$L^2MT^{-3}I^{-3}$ $L^2T^{-3}I^{-2}$
Электрическая проводимость Удельная электрическая проводи-	сименс сименс на метр	$C_M(A \cdot B^{-1})$ C_M/M	S/m	$L^{-2}M^{-1}T^{3/2}$ $L^{-3}M^{-1}T^{3/2}$
мость Электрическая емкость	фарада	Ф (Кл. В-1)	, tr	$I - 2M - 1T^{4/2}$
Поляризованность Электрический момент диполя Диэлектрическая восприимчивость (проницаемость, электрическая	· · · · · -	K_{JJ}/M^2 $K_{JJ} \sim M$ Φ/M	C/m² C·m F/m	$L^{-2}TI$ LTI $L^{-3}M^{-1}T^{4/2}$
ая) поток ость, вз аи мная индук-	вебер генри	Вб (Кл · Ом ⁻¹) Гн (Вт · А ⁻¹)	Wb H	$L^2MT^{-2}I^{-1}$ $L^2MT^{-2}I^{-3}$
лагиств Магнитный момент электрического тока: магнитный момент пиполе	ампер-квадратный метр	A . M ²	A • m ²	I_87
магнитная сила, р	джоуль на ампер ампер (ампер-виток)	Дж/А А	J/A A	$L^2MT^2I^{-1}$
магнитных потенциялов Магнитная индукция	тесла	(AB) Тл (Дж · A ⁻¹ · м ⁻²)	(At) Ti	$MT^{-2}I^{-1}$
		A Commence of the Commence of		
Напряженность магнитного поля	ампер на метр (ампер-виток	A/M (AB/M)	A/m (At/m)	<i>I</i> 7
Магнитное сопротивление	на метр) ампер на вебер (ампер-виток на вебер)	A/B6 (AB/B6)	A/Wb (At/Wb)	$L^2MT^{-2}I^{-3}$
Магнитная проводимость Намагниченность (интенсивность	ak ak	B6/A A/M	Wb/A A/m	$M^{-1}I$
намагничивания) Абсолютная магнитная проницае- мость, магнитная постоянная	генри на метр	Гн/м	H/m	$LMT^{-2}I^{-2}$
Акустические единицы			ſ	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Звуковое давление Объемная скорость Акустическое сопротивление	паскаль кубический метр в секунду паскаль-секунда на кубиче-	Па (Н · м ⁻²) ^{м3} /с / Па · с/м³	Ра m³/s Ра · s/m³	$L^{-1}MI^{-2}$ $L^{3}T^{-1}$ $L^{-4}MT^{-1}$
 Механическое сопротивление Интенсивность звука Плотность звуковой энергии 	скии метр ньютон-секунда на метр ватт на квадратный метр джоуль на кубический метр	$H \cdot c/M$ $B\tau/M^2$ $J/W/M^3$	N·s/m W/m² J/m³	MT^{-1} MT^{-3} $L^{-1}MT^{-3}$
Световые и энергетические единицы	146		•	h
Световой поток Световая энергия Светимость Освечивание	люмен люмен-секунда люмен на квадратный метр кандела-секунда	лм (кд · ср) лм · с лм/м² кд · с	Im .s .lm .wlm/m² .cd .s	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -
Яркость	кандела на квадратный метр (нит)	$K_{\rm II}/M^2$ (HT) $(k \cdot K_{\rm II}/(k \cdot M^2),$ $\Gamma_{\rm IR} = k - \text{произволь}$	cd/m² (nt)	1
	:	ный предельно малый числовой множитель)	-	1 2 1
Освещенность Световая экспозиция (количество освещения)	люкс (количество люкс-секунда	лк лк • с	lx lx · s	$\Gamma^{-2}\mathcal{I}J$
		.!		

26 ₀₋₄₀₃

		Размерность	L2MT-2	L^2MT^{-3}	MT-3	MT-3	MT^{-2}	L 2MT-3	MT^{-3}
	Сокрашенные обозначения единицы	международное	ſ	W	W/m^2	W/m^2	J/m²	W/sr	$W/(sr \cdot m^2)$
	Сокрашенные обо	русское	Дж (Н·м)	Вт (Дж · с-1)	BT/M^2	$B\tau/m^2$	$\int \int dx/M^2$	Вт/ср	$B_T/(cp \cdot m^2)$
,		Единица измерения	джоуль	Batt	ватт на квядратный метр	ватт на квадратный метр	джоуль на квадратный метр	ватт на стерадиан	(лучи- ватт на стерадиан-квадрат- ный метр
		Величина	Энергия излучения	Поток излучения (лучистый поток) ватт	Энергетическая освещенность (об. ватт на квядратный метр лученность)	Энергетическая светимость (излуча- ватт на квадратный метр тельность)	Энергетическая экспозиция (лучи- джоуль на квадратный метр стая экспозиция, энергетическое количество освещения)	Энергетическая сила света (сила ватт на стерадиан излучения)	Энергетическая яркость (лучи стость)

Единицы ионизирующих излучений

•	Энергия ионизирующего излучения джоуль	жоуль	Дж (Н · м)	5	LaMT-2
26*	Поток энергии понизирующего из- вагт лучения	arr	Вт (Дж · с-1)	M	L2MT-8
	Доза излучения (поглощенная доза грей ионизирующего излучения)	rpeñ	Γр (Дж·кг-1)	Gy	$L^{2}T^{-2}$
	Керма (показатель поглощенной д	поглощенной джоуль на килограмм	Дж/кг	J/kg	$L^{2}T^{-2}$
	Эквивалентная доза излучения	зиверт	Зв (Дж · кг⁻¹)	Sv	$L^{2}T^{-2}$
	Мошность дозы излучения (мош- и ность поглощенной дозы излучения)	(мош-ватт на килограмм (грей в излу- секунду)	Вт/кг	W/kg	$L^{2}T^{-3}$
	Экспозиционная доза фотонного и	фотонного кулон на килограмм	Кл/кг	C/kg	$M^{-1}TI$
-	Мощность экспозиционной дозы а фотонного излучения	дозы ампер на килограмм	А/кг	A/kg	$M^{-1}I$
	Интенсивность излучения	ватт на квадратный метр	$\rm Br/m^2$	W/m^2	MT^{-3}
	Активность нуклида в радиоактив- (ном источнике (активность изо- топа)	беккерель	Бк	Bk	<i>T</i> -1
	Поток понизирующих частиц	секунда в минус первой сте- пени	c-1	1/s	T^{-1}
8	Плотность потока ионизирующих секунда в минус первой стечастии или фотонов рой степени в минус второй степени	секунда в минус первой сте- пени на метр в минус вто- рой степени	C ⁻¹ · M ⁻²	S-1 · m-2	$L^{-2}T^{-1}$

	•	Сокращенные обозначения единицы	начения единицы	
Величина	Единица измерения	русское	международное	Размерность
	Единицы физико-химических величин	зских величин		4
Молярная масса	килограмм на моль	кг/моль	kg/mol	MN-1
Молярный объем	кубический метр на моль	$M^3/MOJE$	m³/mol	L3N-1
Тепловой эффект химической реакции (образования, растворения, горения, фазовых превращений и др.)	джоуль	Д*	ت ور ور	L ² MT- ²
Молярная внутренняя энергия, эн- тальпия, химический потенциал, энергия активации	джоуль на моль	Дж/моль	J/mol	L ² MT- ²¹ N-1
Молярная теплоемкость, энтропия	джоуль на моль-кельвин	Дж/(моль·К)	J/(mol·K)	$\Gamma_9MI^{-3}\theta^{-1}N^{-1}$
Концентрация молекул	метр в минус третьей степени	M-3	8- W	\$-1
Массовая концентрация	килограмм на кубический	KF/M ³	kg/m³	WL-3
Молярная концентрация	метр моль на кубический метр	MOJIB/M ³	mol/m³	L-3N
Моляльность, удельная адсорбция	моль на килограмм	MOJB/KF	mol/kg	M-1N
Молярная концентрация эквивалента	концентрация эквива моль на кубический метр	моль/м³	mol/m³	N ₈ -7

Летучесть (фугитивность); осмоти- ческое давление	паскаль	Па	Pa	L-1MT-2
Коэффициент диффузии	квадратный метр в секунду	M ² /c	m²/s	L ² T-1
Скорость химической реакции	моль на кубический метр-	MOJE/ $(M^3 \cdot C)$	mol/(m³·s)	L-3 T-1N
Активность катализатора	секунда моль на килограмм-секунда	моль/(кг·с)	mol/(kg·s)	$M^{-1}T^{-1}N$
Удельная активность катализатора	моль на квадратный метр-	MOJB/ $(M^2 \cdot C)$	$mol/(m^2 \cdot s)$	$\Gamma^{-2}\Gamma^{-1}N$
Адсорбционный потенциал	секунда джоуль на моль	Дж/моль	J/mol	L 2MT-2N-1
Степень дисперсности	метр в минус первой сте-	M ⁻¹	m_1	<u>.</u> 1
Удельная площаль поверхности	пени квадратный метр на кило-	M ² /KF	m^2/kg	L ² W-1
Поверхностная плотность	грамм моль на квадратный метр	NOJB/M ²	mol/m²	$\Gamma^{-2}N$
Электрический дипольный момент	кулон-метр	Кл.м	C. II	LTI
Поляризуемость	кулон-квадратный метр на	Kл·м²/В	$C \cdot m^2/V$	M-1T412
Молекулярная рефракция	ратный метр на	(Кл.м²):(В.моль) (С.m²)/(V·mol)	$(C \cdot m^2)/(V \cdot mol)$	M-1T4[2N-1
Ионная сила раствора	вольт-моль моль на килограмм	MOJB/KF	mol/kg	W-1N
Проводимость электролита	сименс на метр	CM/M	S/m)	$L^{-3}M^{-1}L^{3}I^{2}$
Эквивалентная электрическая проводимость	сименс-квадратный метр на моль	$(C_{M} \cdot M^2)/\dot{M}$ Onder	(S·m²)/mol	L-3TI2N-1
Электродный потенциал	вольт	В	>	L2MT-3I-1
Подвижность ионов	квадратный метр на вольт- секунда	M²/(B·c)	m²/(V·s)	M-1T²I

12.3. ВНЕСИСТЕМНЫЕ ЕДИНИЦЫ ИЗМЕРЕНИЯ

12.3.1. Единицы, допускаемые к применению наравне с единицами СИ

		Обоз	начение	
Величина	Бдиница измерения	русское	междуна- родное	Соотношение с еди ницами СИ или определение
Macca	тонна			
	атомная едини-	т а.е.м.	t, u	$10^3 \text{ Kr} = 1 \text{ Mr}$ $1,66057 \cdot 10^{-27} \text{ Kr}$
Время *	часы массы минута час	мин	min	(приблизительно) 60 с
	сутки	. ч сут	h d	3600 c 86400 c
Плоский угол	градус	0	0	<u>л</u> 180 рад
	минута	•••		$\frac{\pi}{1800}$ рад
	секунда	••• "	•••"	л 648000 рад
	град **	град	··· g(gon)	(π/200 рад)
Длина	астрономиче- ская единица	a. e.	u. a.	1,45598 · 10 ¹¹ м (приблизительно
· .	световой год	св. год	ly	9,4605 · 10 ¹⁵ м (приблизительно
	парсек	пк	pc	3,0857 · 1016 м (приблизительно
Тлощадь	гектар	га	ha	104 м ²
Объем, вмести- мость ***	литр	л	1	10 ⁻³ _M ³
Оптическая сила	диоптрия	дптр	_	1 M ⁻¹
ем пература	градус Цельсия	° C.	°C	1 K
Энергия	электрон-вольт	эВ	eV	1,60219 · 10 ⁻¹⁹ Дж
Іолная мощ- ность	вольт-ампер	$\mathbf{B} \cdot \mathbf{A}$	V · A	(приблизительно 1 В · А (приблизи тельно)
Реактивная мощность (вар	вар	var	1 В · А (приблизи тельно)

12.3.2. Единицы, временно допускаемые к применению

		Обозн	ачение	
Величина	Единица измерения	русское	междуна- родное	Соотношение с еди- ницами СИ или определение
—————————————————————————————————————	морская	миля	n. mile	1852 м (точно)
навигации) Масса (для драго- ценных камней	миля карат	кар	ct	2 · 10-4 кг (точно)
и жемчуга) Линейная плотность (в текстильной промышленности)	текс	текс	tex	10-6 кг/м(точно)
Скорость (в мор- ской навигации)	узел	уз	kn	0,514 (4) м/с
Частота вращения	оборот в се -	об/с	'	l c ⁻¹
	оборот в ми-	об/мин	· _	$1/60c^{-1} = 0.016(6)c^{-1}$
Давление Натуральный лога- рифм безразмер- ного отношения физической вели- чины к одноимен- ной физической велйчине, прини- маемой за исход- ную	бар непер	бар Нп	bar Np	10 ⁵ Па 1 Нп = 0,8686 Б = = 8,686 дБ

12.4. СООТНОШЕНИЕ МЕТРИЧЕСКИХ И НЕКОТОРЫХ ВНЕСИСТЕМНЫХ ЕДИНИЦ С ЕДИНИЦАМИ СИ

Величина	Метрические и внесистемные единицы (обозиачения)	Соотношение с единицей СИ
Механичесь	кие	
Длина	1 километр (км) 1 дециметр (дм) 1 сантиметр (см) 1 миллиметр (мм) 1 микрометр (мкм) = 1 микрон (мк) 1 нанометр (нм) 1 ангстрем (A°) = 0,1 нм 1 пикометр (пм) 1 X-единица = 0,1 пм 1 астрономическая единица длины (а. е. д.) 1 световой год 1 парсек 1 сирнометр	$\begin{array}{c} 1000 \text{ M} \\ 0,1 \text{ M} \\ 0,01 \text{ M} \\ 0,001 \text{ M} \\ 10^{-6} \text{ M} \\ 10^{-9} \text{ M} \\ 10^{-10} \text{ M} \\ 10^{-13} \text{ M} \\ 1,495 \cdot 10^{11} \text{ M} \\ 9,4605 \cdot 10^{16} \text{ M} \\ 3,084 \cdot 10^{16} \text{ M} \\ 1,49504 \cdot 10^{17} \text{ M} \end{array}$

[•] Допускается применять также неделя, месяц, год, век, тысячелетие

и т. п.
 ** Допускается применять по-русски наименование «гон».
 *** Не рекомендуется применять при точных измерениях.

Примечание. Единицы времени, плоского угла, астрономическую единицу, световой год, диоптрию и атомную единицу массы не допускается применять с приставками.

	единицы (обозначения)	ницей СИ
Площадь	1 квадратный километр (км²)	10 ⁶ м ²
	1 гектар (га)	104 м ²
	1 ap (a)	. 100 м ²
	1 квадратный дециметр (дм ²)	0,01 m ²
	1 квадратный сантиметр (см²)	10^{-4} M^2
	1 квадратный миллиметр (мм²)	10 ⁻⁶ м ²
	1 барн (б)	10 ²⁸ M ²
Объем (вмести-	1 килолитр (кл)	1,000028 м8
мость, ем-	I гектолитр (гл)	1,000028 · 10 ⁻¹ _M 8
кость)	1 декалитр (дкл)	1,000028 · 10 ⁻² м ³
	1 литр $(n) = 1,000028$ дм ³	1,000028 · 10 ⁻³ M ³
	1 миллилитр (мл)	1,000028 · 10 ⁻⁶ _M 8
	1 кубический дециметр (дм³)	10 ⁻³ M ³
	1 кубический сантиметр (см ³) 1 кубический миллиметр (мм ³)	10 ⁻⁶ M ³
Macca		10 ⁻⁹ M ³
nacca	TOHHA (T)	. 1000 Kr
	1 центнер (ц) 1 декаграмм (даг)	100 Kr
	1 грамм (г)	0,01 kr
*	1 дециграмм (дг)	0,001 kr 10 ⁻⁴ kr
	1 сантиграмм (сг)	10 - кг 10-5 кг
	1 миллиграм (мг)	10-6 кг
	1 микрограмм (мкг), гамма	10-9 кг
• * *	1 карат = 200 мг	2 · 10 ⁻⁴ Kr
	1 техническая единица массы	9,80665 кг
	(кГ · c²/м), инерта	0,00000 K
Время	1 сутки (сут) = 24 часа	86400 c
	1 час (ч) = 60 минутам	36000 c
	1 минута (мин)	60 c
	1 миллисекунда (мс)	10 ⁻³ c
	1 микросекунда (мкс)	10 ^{−6} c
•	1 год (1900 г.)	31556925,9747 c
Ілоский угол	1 градус (°) = 60′ = 3600″	π 174522\
	1 градус () = 00-12 0000	$\frac{\pi}{180}$ рад = 1,74533×
		$ imes$ 10^{-2} рад
	1 минута (') = $\frac{1^{\circ}}{60}$ = 60"	π
	$(') = \frac{1}{60} = 60$	$\frac{\pi}{108} \cdot 10^{-2}$ рад =
		$= 2,90888 \times 10^{-4}$ pag
•	1 1/ 1/	× 10 ⁻⁴ рад
	1 секунда (") = $\frac{1}{3600} = \frac{1'}{60}$	π . 10-3 par ==
	3600 60	$\frac{\pi}{648} \cdot 10^{-3}$ рад =
•		$= 4.84814 \times$
		— 4,01014 ∧ × 10 ⁻⁶ рад
()	.a.	
	1 градус, или гон (^g)	$\frac{\pi}{2} \cdot 10^{-2}$ рад =
		2
		= 1,5708·10 ⁻² рад

Величина	Метрические и внесистемные единицы (обозначения)	Соотношение с единицей СИ
Плоский угол	1 метрическая минута (^c)	$\frac{\pi}{2} \cdot 10^{-4}$ рад =
		= 1,5708·10-4 рад
	1 метрическая секунда (сс)	$\frac{\pi}{2} \cdot 10^{-6}$ рад =
	•	= 1,5708·10 ⁻⁶ рад
Прямой угол	Прямой угол	$\frac{\pi}{2}$ рад = 1,5708 рад
	угол 60°	$\frac{\pi}{3}$ рад = 1,0472 рад
	1 оборот (об), окружность	2π рад = $=6,283185$ рад
	1 румб (st) = 10°11'	0,177633 рад
Телесный угол	1 квадратный градус (□°)	$\left(\frac{\pi}{180}\right) = 3,0462 \text{ cp}$
	1 полный телесный угол	$4\pi = 12,56637$ cp
Частота	1 период в секунду 1 колебание в секунду	1 Гц
	1 килогерц (кГц)	103 Гц
	1 мегагерц (МГц)	106 Гц
Скорость ли-	1 километр в секунду (км/с) 1 километр в минуту (км/мин)	1000 м/с 16,67 м/с
нейная	1 километр в час (км/ч)	0,2778 м/с
	1 метр в минуту (м/мин)	0,0167 м/с 277,8 · 10 ⁻⁶ м/с
_	1 метр в час (м/ч)	277,8 · 10 ⁻⁸ m/c
: 1	1 сантиметр в секунду (см/с)	0,01 m/c 0,5144 m/c
	1 узел	2π рад/с
Скорость угло-	Оборот в секунду (об/с) Оборот в минуту (об/мин)	π/30 рад/с
вая	градус в секунду (°/с)	π/180 рад/с
Скорость массо-	1 килограмм на квадратный метр в час $(\kappa \Gamma/(M^2 \cdot \Psi))$	$277.8 \cdot 10^{-6} \text{ kg/(m}^2 \cdot \text{c)}$
24.1	1 грамм на квадратный сантиметр в секунду (г/(см² · c))	10 кг/(м ² · c)
Ускорение ли- нейное	1 сантиметр на секунду в квадра- те, гал (см/с²)	0,01 m/c ²
Объемный рас- ход	1 кубический дециметр в секунду $(дм^3/c \approx \pi/c)$	0,001 m ³ /c
ход	1 литр в минуту (л/мин)	$16,67 \cdot 10^{-6} \text{ m}^3/\text{c}$
	1 литр в час (л/ч)	$277.8 \cdot 10^{-9} \text{ m}^3/\text{c}$
	1 кубический метр в час (м ⁸ /ч)	$277.8 \cdot 10^{-6} \text{ m}^3/\text{c}$
•	1 кубический сантиметр в секунду	10 ⁻⁶ м ³ /с
Maggarită nac	(CM ³ /C)	277,8 · 10 ⁻⁶ kr/c
Массовый рас-	1 килограмм в час (кг/ч) 1 килограмм в минуту (кг/мин)	16,67 · 10 ⁻³ кг/с
ход	1 тонна в час (т/ч)	277,8 · 10 ⁻³ кг/с
	1 грамм в секунду (г/с)	0,001 kr/c

Величина	Метрические и внесистемные единицы (обозначения)	Соотношение с единицей СИ
Сила, вес	1 тонна-сила (т · c) (1 т · 9,80665 м/с²)	9806,65 H
	1 килограмм-сила (кгс, кГ) (1 кг · 9,80665 м/с²)	9,80665 H
	1 грамм-сила (гс) (1 \dot{r} -9,80665 м/с ²) 1 стен (сн) (1 \dot{r} · м/с ²)	1000 H
Импульс силы	1 дина (дин) (1 г · см/с²) 1 килограмм-сила-секунда (кГ · с, кгс · с)	10 ⁻⁵ H 9,80665 H · c
Момент силы	1 дина-секунда (дин · c) 1 килограмм-сила-метр	10 ⁻⁵ Н·с 9,80665 Н·м
Количество дви-	(кГ·м, кгс·м) 1 дина-сантиметр (дина·см) 1 килограмм-сила на метр в секунду.	10 ⁻⁷ Н⋅м 9,80665 кг⋅м/с
жения	$(к\Gamma \cdot m/c, krc \cdot m/c)$ 1 грамм-сантиметр в секунду $(r \cdot cm/c) = 1$ дин · c	10-5 кг⋅м/с
Момент инерции	1 килограмм-сила-метр-секунда в квадрате (кГ·м·с²)	9,80665 кг⋅м²
	1 грамм-сантиметр в квадрате (г · см²)	10 ⁻⁷ Kr⋅cm ²
Плотность	1 тонна на кубический метр (т/м³) 1 килограмм на кубический дециметр (кг/дм³) = = 1,000028 кг/л	1000 кг/м ³
	1 грамм на кубический сантиметр (Γ/cm^3) 1 килограмм на литр $(\kappa\Gamma/\pi) = 1$ г/мл 1 килограмм-сила-секунда в квадрате на мегр в четвертой степени $(\kappa\Gamma \cdot c^2/\text{m}^4)$	999,972 кг/м ³ 9,80665 кг/м ³
Удельный объем	1 кубический метр на тонну (м³/т) 1 кубический дециметр на килограмм (дм³/кг) 1 кубический сантиметр на грамм (см³/г)	10 ⁻³ м ³ /кг
Динамическая вязкость	1 литр на килограмм (л/кг) 1 миллилитр на грамм (мл/г) 1 пуаз (П) = 1 дин · c/см² 1 сантипуаз (сП)	1,000028·10 ⁻³ м ³ /к 0,1 Па · с 10 ⁻³ Па·с=1 мПа·
	1 миллипуаз (мП) 1 килограмм-сила-секунда на квад- ратный метр (кГ с/м²)	10 ⁻⁴ Па с 9,80665 Па с
	1 ньютон-час на квадратный метр $(H \cdot \text{ч/м}^2)$	
Кинематическая вязкость	1 рейнольдс (Re), обратный пуаз— единица измерения текучести 1 стокс (Ст) = 1 см²/с 1 сантистокс (сСт = 1 мм²/с)	$10 \Pi a^{-1}c^{-1} =$ = $10 \text{ M} \cdot \text{c/k}\Gamma$ $10^{-4} \text{ M}^2/\text{c}$ $10^{-6} \text{ M}^2/\text{c}$

Величина	Метрические и внесистемные единицы (обозначения)	Соотношение с единицей СИ
Кинематическая	1 квадратный метр в час (м²/ч)	277,8 м²/с
вязкость	1.60= #	10⁵ Па
Давление	l Cap *	100 Па
	1 миллибар (мбар)	0,1 Па
	1 дина на квадратный сантиметр $(дин/cm^2) = 1$ бария = 1 микробар $(мкбар)$	0,1 110
	1 килограмм-сила на квадратный метр (к Γ/M^2 , или кгс/ M^2)	9,80665 Па
	1 килограмм-сила на квадратный	98066,5 ∏a ≈
	сантиметр (к Γ /см ² , или кгс/см ²)= = 1 атмосфера техническая (ат)	≈ 0,098 M∏a
. •	1 атмосфера физическая (атм) =	101325 ∏a ≈
	= 760 мм рт. ст.= 1013,25 мбар	≈ 0,101 M∏a
	1 килограмм-сила на квадратный	$9,80665 \cdot 10^6 \Pi_a =$
	миллиметр ($\kappa\Gamma/\text{мм}^2$, или κ гс/ мм^2)	$= 9,80665 \text{ M}\Pi a$
	1 пьеза (пз) = 1 стен/м ²	103 Па
	1 миллипьеза (мпз)	1 Па
•	1 миллиметр водного столба (мм вод. ст.)	9,80665 ∏a
	1 миллиметр ртутного столба (мм	133,322 Па
	рт. ст.) = 1,333 мбар = 1 торр	10-7 II
Работа и энер-	l spr	10 ⁻⁷ Дж 9,80665 Дж
гия, в том	1 килограмм-сила-метр (кГ · м, или	э,00000 дж
числе теплота	KIC · M)	2,648 ⋅ 106 Дж
и электро-	1 лошадиная сила-час (л. с. ч) 1 литр-атмосфера (л · атм)	101,328 Дж
энергия	1 стен-метр (сн м)	1000 Дж
	1 ватт-час (Вт - ч)	3600 Дж
	1 киловатт-час (кВт ч)	3,6 ⋅ 106 Дж
	1 калория (кал)	4,1868 Дж
	1 килокалория (ккал)	4186,8 Дж
	1 мегакалория (Мкал) = 1 термия	4 1000 108 TF
	1 гигокалория (Гкал)	4,1868 · 10 ⁹ Дж
	l кал (термохимическая)	4,1840 Дж
	l кал ₁₅ (пятнадцатиградусная)	4,1855 Дж
	1 кал ₂₀ (двадцатиградусная)	4,182 Дж
	1 кал _{средн} (от 0—100°C)	4,1868 Дж
1 2 2	1 кал _{межд} (международная)	4,18605 Дж
	1 кал Национального бюро стан- дартов США	4,18409 Дж
	1 фригория (отрицательная кило- калория)	
	1 электрон-вольт (эВ)	$1,60207 \cdot 10^{-19}$ Дж =
	. onen pon bonbi (55)	= 0,16 аДж
	1 килоэлектрон-вольт (кэВ)	1,60207 · 10 ⁻¹⁶ Дж =
		= 0.16 фДж

^{*} В системе СГС 1 бар соответствует давлению 1 дин/см².

Величина	Метрические и внесистемные единицы (обозначения)	Соотношение с единицей СИ
Работа и энер- гия	I мегаэлектрон-вольт (МэВ)	1,60207 · 10 ⁻¹³ Дж = = 0,16 пДж
	1 вольт-фарадей (при электролизе)	96520 Дж
Мощность,	1 эрг в секунду (эрг/с)	10 ⁻⁷ B _T
	1 килограмм-сила-метр в секунду	9,80665 B _T
тепловая	(кГ·м/с, или кгс·м/с) 1 лошадиная сила (л. с.)	735,499 B _T
и электриче- ская	1 калория в секунду (кал/с)	4,1868 BT
Chan	1 килоккалория в час (ккал/ч)	1,163 B _T
	1 тераватт (ТВт)	1,100 Вт 10 ¹² Вт
	1 гигаватт (ГВт)	109 BT
	1 мегаватт (МВт)	106 BT
4	1 киловатт (кВт)	1000 Вт
	1 гектоватт (гВт)	100 Вт
	1 милливатт (мВт)	10 ⁻³ Bτ
	1 микроватт (мкВт)	10-6 Br
Тепловые		•
Температура	1°С (Цельсия),	1 K; $T = t + 273$,
- ·/···	1 °R (Реомюра),	4/5 K; T = 5/4 R
	1°F (Фаренгейта)	+273,15 9/5 K; $T = 5/9$ F
-	· · · · · · · · · · · · · · · · · · ·	+255,37
	1 °Ra (Ренкина),	T = 5/9 Ra
Теплота удель-	1 килокалория на килограмм)	
ная	(ккал/кг)	4,1868 кДж/кг
	1 калория на грамм (кал/г) Ј	
	1 эрг на грамм (эрг/г)	10-4 Дж/кг
Ге плоемкость	1 килокалория на килограмм-	
удельная	градус (ккал/(кг · градус))	4186,8 Дж/(кг·К) =
	1 калория на грамм-градус	= 4,1868 кДж/(кг.1
10 miles	(кал/(г·град))	10-4 77 (/) 175
.	1 эрг на грамм-градус (эрг/(г град))	10-4 Дж/(кг К)
Геплоемкость	1 килокалория на кубический метр-	4186,8 Дж/(м ³ · I
объемная	градус (ккал/(м³ · град))	4 1969 V
	1 калория на кубический санти-	4,1868 × ×10 ⁶ Дж/(м³⋅1
Surnonua vaeat-	метр-градус (кал/(см ³ град)) І килокалория на килограмм-градус	Х10° ДЖ/(м²•1
Энтропия удель- ная	(ккал/(кг °С))	AISE & Hayllen . Ki
пал	1 калория на грамм-градус	41°6,8 Дж/(кг · K) = = 4,1868 кДж/(кт
	(кал/(г · °С))	
	1 килокалория на моль-градус	4,1868 Дж/(моль В
	(кал/(моль °C))	-,
Поверхностная	1 килокалория на квадратный метр-	1,1630 Br/m ²
плотность теп-	час (ккал/(м² · ч))	
лового потока	1 калория на квадратный сантиметр-	4,1868 · 104 Br/m
(удельный теп-	секунда (кал/(см ² · c))	· · · · · · · · · · · · · · · · · · ·
ловой поток)		
Коэффициент ´	1 килокалория в час на квадратный	$1,1630 \text{ Bt/(M}^2 \cdot \text{K)}$
теплопередачи	метр-градус (ккал/(м²·ч·град))	

Величина	Метрические и внесистемные единицы (обозначения)	Соотношение с единицей СИ
Коэффициент	1 калория в секунду на кубический	41868 Вт/(м² · K)
теплопередачи	сантиметр-градус (кал/(см²с-град)) 1 эрг в секунду на квадратный сантиметр-градус	10 ⁻³ Вт/(м ² · K)
• •	(эрг/(см² · с · град)) 1 ватт на квадратный сантиметр-	104 Br/(m ² · K)
	градус (Вт/(см² · град)) 1 киловатт на квадратный метр- градус (кВт/(м² · град))	10 ³ Bτ/(м ² · K)
Теплопровод-	1 килокалория в час на метр-градус (ккал/(м · ч · град))	1,163 Вт/(м К)
HOCT B	1 калория в секунду на санти- метр-градус (кал/(см · с · град))	418,68 B _T /(M·K)
	1 ватт на сантиметр-градус (Вт/(см · град))	100 Вт (м - К)
	1 киловатт на метр- градус (кВт/(м·град)	1000 Вт/(м · К)
Электричесь	кие и магнитные	
Сила тока	1 миллиампер (мА)	10-3 A
	1 микроампер (мкА)	10 ⁻⁶ A 10 A
	1 единица СГСМ	3,33 · 10 ⁻¹⁰ A
V a musaama	1 единица СГС и СГСЭ 1 ампер-час (А ч)	3600 Кл
Количество	1 единица СГСМ	10 Кл
электричества	1 единица СГС и СГСЭ	3,33 · 10-10 Кл
	1 фарадей (при электролизе)	96520 Кл
Разность потен-	1 киловольт (кВ)	1000 B
циалов	I милливольт (мВ)	0,001 B
	1 микровольт (мкВ)	10⁻6 B
	1 единица СГСМ	10 ⁻⁸ B
	1 единица СГС и СГСЭ	300 B
Напряженность	1 вольт на сантиметр (В/см)	100 В/м
электрическо-	1 единица СГСМ	10 ⁻⁶ B/M
го поля	1 единица СГС и СГСЭ	3 ⋅ 10 ⁴ B/M
Электрическое	1 мегоом (МОм)	10 ⁶ Ом 10 ³ Ом
сопротивление	1 килоом (кОм)	10° Ом 10 ⁻⁹ Ом
	1 единица СГСМ	9 · 10 ¹¹ Ом
2	1 единица СГС и СГСЭ 1 микрофарада (мкФ)	10 ⁻⁶ Ф
Электрическая емкость	1 пикофарада (пф)	10 ⁻¹² Ф
CMROCIB	I единица СГСМ	109 Φ
	1 единица СГС и СГСЭ	$1,11 \cdot 10^{-12} \Phi$
Электрическая проводимость	1 MO = Om ⁻¹	1 Cm
проводимость Магнитный	1 вольт-секунда (В · с)	1 B6
ПОТОК	1 вольт-час (В ч)	3600 B6
avion	1 киловольт-час (кВ · ч)	3,6 · 10 ⁶ B6
	1 единица СГСЭ	300 B6

Величина	Метрические и внесистемные единицы (обозначения)	Соотношение с единицей СИ
Магнитный поток	і максвелл (Мкс), единица СГС и СГСМ	10 ⁻⁸ B6
магнитная ин- дукция	1 вебер на квадратный метр (Вб/м²) 1 гаусс (Гс), единица СГС и СГСМ 1 килогаусс (кГс) 1 единица СГСЭ	1 Tπ 10 ⁻⁴ Tπ 0,1 Tπ 3 · 10 ⁶ Tπ
Индуктивность	1 единица СГСЭ 1 единица СГС и СГСМ	10 ⁻⁹ Гн 9 · 10 ¹¹ Гн
Напряженность магнитного поля	1 единица СГСЭ 1 эрстед (Э), единица СГС и СГСМ	$2,65 \cdot 10^{-9} \text{ A/M}$
Абсолютная магнитная проницаемость	I магн	1 Гн/м
Акустически	a e	
Звуковое давле-	l дина на квадратный сантиметр (дин/см²)	10-1 Па
Объемная ско-	1 кубический сантиметр в секунду (см³/с)	$10^{-6} \text{ m}^3/\text{c}$
Акустическое сопротивление	1 дина-секунда на сантиметр в пятой степени (дин · с/см ⁵) = 1 акустическому ому (акОм)	10 ⁵ Па·с/м ³
Механическое сопротивление	1 дина-секунда на сантиметр (дин · с/см) = 1 механическому ому (мехОм)	10 ⁻³ H ⋅ c/M
Плотность зву-ковой энергии	1 эрг на кубический -сантиметр (эрг/см ³)	0,1 Дж/м³
Мощность зву-	1 эрг в секунду (эрг/с)	10-7 Вт
Интенсивность звука	1 эрг в секунду на квадратный сантиметр (эрг/с · см²)	10 ⁻³ Вт/м ²
Частотный интервал	1 центр = 1/1200 октавы	1 октава = $\log_2 (f_2/f_1)$ при $f_2/f_1 = 2$; $f_1, f_2 = 2$ частоты
Уровень звуко- вого давления	1 непер (Нп)=8,686 децибел (дБ)	f_1 , f_2 — частоты 1 бел (Б) = = $\lg (P_2/P_1)$ при P_2 = $10 P_1$;
		P_1 , P_2 — одномоментные энергетические величины (мощность, энергия и т. п.)
Световые		
Светимость	1 радлюкс (радлк) 1 радфот	1,005 лм/м ² 10050 лм/м ²

Величина	Величина Метрические и внесистемные единицы (обозначения)			
Яркость Освещенность	1 стильб (сб) 1 апостильб (асб) = 1/л нит 1 ламберт (Лб) = 10 ⁴ апостильб 1 килолюкс (клк) 1 фот 1 миллифот (мфот)	10 ⁴ кд/м ² (нит) 0,3196 кд/м ² 0,3196 10 ³ кд/м ² 1000 лк 10050 лк 10,05 лк		
Количество света в фотохимии	1 радфот 1 эйнштейн	10,03 лк 10050 лк 6,025 · 10 ²³ квантог монохроматиче- ского света		
Рентгеновск	сого гамма-излучения и ра	диоактивности		
Экспозиционная доза фотон- ного излуче-	1 рентген (Р)	2,57976 · 10-4 Кл/к		
	1 рентген в секунду (Р/с)	2,57976 \times $\times 10^{-4} \text{ K}_{\text{J}}/(\text{Kr} \cdot \text{c}) =$ $= 2,57976 \times$ $\times 10^{-4} \text{ A/Kr}$		
Поглощенная доза ионизирующего из-	1 рад	10 ⁻² Γp		
лучения Активность ну- клида в ра- диоактивном источнике (активность изотопа)	1 кюри (Ки) 1 милликюри (мКи) 1 микрокюри (мкКи) 1 резерфорд	$3.7 \cdot 10^{10}$ pacn./c $3.7 \cdot 10^{7}$ pacn./c $3.7 \cdot 10^{4}$ pacn./c $2.7207 \cdot 10^{-5}$ Ku = $= 10^{6}$ c ⁻¹ pacn./c		

12.5. НАЦИОНАЛЬНЫЕ СИСТЕМЫ МЕР

12.5.1. Русская система мер

Единица	Соотношение с другими русскими единицами	Перевод в метрические меры		
— Меры длинь				
1 верста	500 саженей	1,0665 km = 1066,5 m		
1 сажень	3 аршина — 7 футов	2,134 м		
1 аршин	16 вершков	0.711 M = 71.120 cm		
1 вершок	· <u>-</u> -	4,445 cm = 44,45 mm		
1 фут	12 дюймов	0.305 M = 30.48 CM		
1 дюйм	10 линий	2.540 cm = 25.4 mm		

Единица	Соотношение с другими русскими единицами	Перевод в метрические меры
1 линия	10 точек	2,54 мм
точка	<u></u>	0,254 мм
 сотка (сотая часть сажени) 	• • • • • • • • • • • • • • • • • • •	2,104 см
Меры поверхн	ости	
A CONTRACTOR OF THE PROPERTY O		1 1209
I квадратная са- жень	250 000 квадратных саженей 9 квадратных аршин = 49 кв. футов	4,552 m ³
десятина	2 400 квадратных саженей (40 × 60, или 30 × 80)	1,093 га = 10930 м²
квадратный ар- шин	256 квадратных вершков	0,506 м²
квадратный вер- шок	_	19,758 см²
квадратный фут	144 квадратных дюйма	9,290 дм²
квадратный дюйм		6,451 cm ²
квадратная линия	_	6,451 mm ³
Иеры объема		
кубическая са- жень	27 кубических аршинов = = 343 кубических футов	9,713 m ⁸
кубический аршин кубический вер-	4096 кубических вершков	0,360 м ³ 87,824 см ³
шок кубический фут	1730 кубинеских поймов	99 3173
кубический дюйм	1730 кубических дюймов 1000 кубических линий	28,317 дм ³ 16,387 см ³
кубическая линия		16,387 mm ³
 ,		10,001 mm
Леры емкости	(для жидкостей)	•
бочка	40 ведер	$4,920 \text{ гл} = 0,492 \text{ м}^3$
ведро	10 штофов = 20 бутылок = = 16 бутылок (винных)	1,230 дкл = $12,3$ дм ³
штоф	10 чарок	1,230 дм ³
чарка		0,123 дм ³
бутылка	<u> </u>	0,615 дм ³
бутылка винная		0,769 дм ³
Леры массы (в	e c a)	
пуд	40 фунтов	0.016 T = 0.164 H =
фунт	32 лота	= 16,380 Kr 0.410 kg $= 400.512 \text{ L}$
лот	3 золотника	0,410 Kr = 409,512 r = 12,797 r
золотник	96 доли	4,266 r
доля	1/96 золотника	44,435 mr

Единица	Соотношение с другими русскими единицами	Перевод в метрические меры
Меры емкости	(для сыпучих тел)	
1 четверть	8 четвериков	2,099 гл = $0,21$ м ³
1 четверик	8 гарицев	2,624 дкл = $26,24$ дм
1 гарнец	1,06 четверти = 1/4 ведра	3,280 дм ³

12.5.2. Английская система мер

Единица	Обозначение	Соотношение с другими английскими единицами	Перевод в метрические меры
Меры длины			
1 английская миля	statute mile (st	at. 1760 ярдов	1,609 km = = 1609,344 m
1 ярд 1 фут 1 дюйм*	yard (yd) foot (ft) inch (in)	3 фута 12 дюймов —	0,9144 M 0,3048 M 2,540 CM =
1 фарлонг 1 чейн 1 род 1 английская	furlong (fur) chain (ch) rod nautical mile	10 чейн 4 рода	= 0,0254 M 201,168 M 20,1168 M 5,0292 M
морская миля 1 кабельтов	(n. mile)	6080 футов —	1,852 км = = 1852 м 185,2 м
Меры поверхн	ости		•
1 квадратная английская миля 1 акр	square mile (sq. mi) acre (ac)	640 акров 4 руд = = 4840 квад-	$2,590 \text{ Km}^2$ $0,405 \text{ ra} = -4046.86 \text{ m}^2$
l руд 1 квадратный ярд	rood square yard (sq	ратных ярдов 1210 кв. ярдам	
I квадратный фут	yd; yd²) square foot (sq ft; ft²)	. 144 квадратных дюйма *	9,2903 дм²
1 квадратный дюйм *	square inch (sq in; in²)	* *	6,4516 см ²
Меры объема		•	·
1 регистровая тонна	register ton	100 кубических фута	2,83 м ³
1 кубический ярд	cubic yard (cu. y		0,764 м ³

		,				
Единица	Обозначени е	Соотно шение с другими английскими единицами	Перевод в метрические меры			
1 кубический фут	cubic foot (cu ft;	1728 кубических дюймов *	28,3168 дм ³			
1 кубический дюйм *	cubic inch (cu in; in ³)	——————————————————————————————————————	16,3871 дм ³			
Меры емкости	(для жидкост	е й)				
і квартер і галлон	quarter imperial gallon (gal)	64 галлона 4 кварты *	290,95 дм ³ 4,546 дм ³			
l кварта l пинта	quart (qt) pint (pt)	2 пинты —	1,137 дм ³ 0,568 дм ³			
Меры емкости	(для сыпучих	тел)				
1 квартер 1 бушель	quarter bushel (bu)	8 бушелей 8 галлонов	290,95 дм ³ 36,369 дм ³			
Меры веса (ма	ссы)					
1 английская тонна	ton, long ton	20 центнеров	1,016 т = = 1016,05 кг			
1 центнер	hundred weight (cwt)	112 фунтов	50,8024 кг			
1 фунт	pound (lb)	16 торговых унции = 7000 английских гранов	0,4536 кг			
1 торговая унция 1 драхма ** 1 английский гран	drachm (dr)	16 драхм ** —	28,3495 г 1,77 г 64,79891 мг			

12.5.3. Производные английской системы мер

Единица	Сокращенное обозначение	Перевод в метрические меры		
Линейная скорость	l in/s l ft/s l yd/s узел (кп)	25,4 10 ⁻³ m/c 0,3048 m/c 0,9144 m/c 0,5144 m/c		

Единица	Сокращенное обозначение	Перевод в метрические меры		
Линейное ускорение	1 ft/s²	0,3048 m/c ²		
линеиное ускорение	1 vd/s ²	0,9144 m/c ²		
Плотность	1 lb/ft ³	16,0185 кг/м³		
IDIOTHOCIB	1 lb/in ³	27680 кг/м³		
	1 oz/ft ³	1,00116 kr/m³		
Удельный объем		0,062428 м³/кг		
э дельный оовст	1 ft ³ /oz	0,99885 м ³ /кг		
•	l in ³ /lb	$36,1272 \cdot 10^{-6} \text{ m}^3/\text{Kr}$		
Молярный объем	1 ft³/lb mole	0,062428 м3/кмоль		
молярный оовем	I yd3/lb mole	1,686 м ² /кмоль		
Массовый расход	1 tn/h	0,282 кг/с		
нассовый раскод	1 lb/s	0,454 кг/с		
	1 lb/h	126 ⋅ 10-6 кг/с		
	l oz/s	28,3 · 10 ⁻³ кг/с		
Объемный расход	1 vd3/s	0,765 м ³ /с		
Оовенным расход	1 ft ³ /s	28,3 · 10 ⁻⁶ м ³ /с		
	1 in ³ /s	16,4 · 10 ⁻⁶ м ³ /с		
Сила	lbf (фунт-сила)	4,44822 H		
	In f (тонна-сила)	9964,02 H		
	pdl (паундаль)	0,138255 H		
Динамическая вязкость	1 lbf · s/ft²	47,88 Па с		
Кинетическая вязкость	1 vd²/s	0,836 m ² /c		
Kille I il Icellan Bronco I B	1 ft ² /s	$0.0929 \text{ m}^2/\text{c}$		
	1 ft²/h	25,81 м ² /с		
Давлени е	1 lbf/in ²	6894,76 Па		
,	1 lbf/ft ²	47.88 Па		
	1 tnf/in²	15,4443 MITa		
	1 in H ₂ O	249,2 Па		
	l in Hg	3386 Па		
Работа и энергия	1 lbf · ft	1,35582 Дж		
	l lbf · in	0,113 Дж		
	1 British thermal	1055,06 Дж		
	unit — 1 Btu (бри-			
	танская единица			
	тепла)			
•	1 Pound centigrad	1899,1 Дж		
	unit — 1 Chu (Pcu)			
	(стоградусная еди-			
	ница тепла)	#		
Мощность	1 lbf — ft/s	1,356 Вт		
•	1 Btu/s	1055,06 Вт		
	1 Chu/s	1899 Вт		
Гепловая мощность и	1 Btu/h	0,293 Вт		
гепловой поток	1 Btu/s	1055,06 Вт		
Удельная теплота	1 Btu/lb	2326 Дж/кг		
	1 Chu/lb	4186,8 Дж/кг =		
		= 4,1868 кДж/кг		
Удельная теплоем-	1 Btu/(lb · deg F)	4186,8 Дж/(кг · К) =		
кость	1 Chu/(lb · deg F)	= 4,1868 кДж/(кг · В		

[•] Английские футы и дюймы тождественны русским, 1 галлон = 277,274 кубических дюйма.

• Аптекарские унции и драхмы больше английских торговых, а именно: 1 аптекарская унция = 8 аптекарским драхмам = 31,1035 г; 1 аптекарская драхма = 3 скрупулам = 3,888 г; 1 скрупул = 20 гранам = 1,29598 г.

Единица	Сокращенное обозначение	Перевод в метрические меры		
Удельная объемная	1 Btu/(ft3 · deg F)	67 · 10 ³ Дж/(м ³ · K) = = 67 кДж/(м ³ · K)		
теплоемкость Удельная энтропия	1 Btu/(lb·°R)	4186,8 Дж/(кг · K) =		
	1 Btu/(lb · mole · °R)	= 4,1868 кДж/(кг · K) 4,1868 кДж/(кмоль · K)= = 4186,8 Дж/(кмоль · K)		
Коэффициент тепло- обмена (теплоотда- чи), коэффициент	1 Btu/(ft2 · h · deg F)	5,68 BT/(M ² · K)		
теплопередачи Теплопроводность	1 Btu/(ft · h · deg F) 1 Btu/(in · h · deg F)	1,73 BT/(M·K) 20,8 BT/(M·K)		

12.5.4. Американская система мер

В общем в США принята английская система мер с некоторыми изменениями и дополнениями, которые приведены ниже

	Единица	Обозначение	Соотношение с дру- гими неметрическими единицами	Перевод в метри- ческие меры
1	американская миля	statute mi le (mi)	3 морские мили	4,827 км
1	тауншип	township	36 квадратных миль	93,236 км²
1	бушель	bushel (bu)	: 	35,2 393 дм ³
1	(винный) галлон	gallon	0,833 английских галлона	3,78543 дм ²
1	сухой галлон	gallon	` _	4,4047 дм ³
1	баррель нефтяной	barrel (bbl)	42 галлона	158,988 дм ⁸
1	баррель керосина	barrel	40 галлонов	151,404 дм ³
1	баррель пива	barrel	31 галлон	117,303 дм ³
1	баррель сухой	bbl dry	<u> </u>	115,628 дм ⁸
1	малая (судовая) тонна	short ton	2000 английских фунтов	0,907 т = = 907,183 кг
1	жидкая унция	fl. oz	- ' : .	29,5737 см ⁸

12.5.5. Перевод дюймов в миллиметры

							 -		
Дюймы	0,0		0,1		0,2	0,3		0,4	
0	0,000		2,54		5.08	7,6	2	10,16	
Ĭ	25,40		27,94		0,48	33,02		35,56	
	50,80		53,34		5.88	58,4	2	60,96	
2 3 4 5 6	3 76,20 78		78,74		1,28	83,8		85,36	
4	101,60		104,14		6,68	109,2	2	111,76	
. 5	127,01		129,54	13	2,08	134,6	2	137,16	
6	152,40		154,94	, 15	7,48	160,0	2^{\cdot}	162,56	
7	177,80		180,34		2,88	185,4	2	187,96	
8	203,20		205,74		8,28	210,8		213,36	
9	228,60		231,14		3,68	236,2		238,76	
10	254,00		256,54	25	9,08	261,6	52 	264;16	· ·
	· · · · · · · · · · · · · · · · · · ·	1		1		i	T		
Дюймы	0,5	,	0,6		0,7	0,	8	0,9	
0	12.70		15,24	1	7,68	20,	32	22,86	;
Ī	38,10		40,64	. 4	3,18		45,72		}
2	63,50		66,04	68,58		71,12		73,66	•
2 3	88,90		91,44		3,98	96,	52	99,0€	;
4	114,30		116,84	11	9,38	121,		124,46	
5	139,70		142,24	144,78		147,32		149,86	
5 6	165,10		167,64		0,18	172,72		175,26	
7	190,50		193,04	19	5,58	198,	12	200,66	
8	215,90		218,44	- 22			52	226,06	} ·
9	241,30		243,84	24	16,38	248,	92	251,46)
10	266,70	k	269,24	27	71,78.	274,	32	276,86	6
Дюймы	1	1	3	1	3	5	7.	1	3
	$\overline{2}$	4	4	8	8	8	8	16	16
MM	12,70	6,35	19,05	3,18	9,53	15,88	22,23	1,59	4,76
Дюймы	<u>5</u>	7	9	11	<u>i3</u>	15	1	1	
мм	16 7,94	16 11,11	16 14,29	16 17,46	16 22,64	16 23,81	$\begin{array}{c} \overline{32} \\ 0,794 \end{array}$	6 4 0,397	:
42.		•		йм — 25					•

12.6. ДРУГИЕ ЕДИНИЦЫ ИЗМЕРЕНИЯ

12.6.1. Пробы драгоценных металлов

В Советском Союзе драгоценные металлы оценивают по метрической системе; проба при этом показывает, сколько граммов драгоценного металла содержится в 1000 г изделия. Чистому металлу соответствует 1000-я проба.

В Англии и других государствах оценку проводят по каратной системе — стопроцентное содержание металла соответствует 24 каратам. Золотой карат эквивалентен 41,5 г по метрической системе. Он отличается от карата, который служит мерой веса драгоценных камней и равен 0,2 г.

В дореволюционной России проба оценивалась количеством зо-

лотников в фунте изделия.

	Проба драгоценных металлов по системе		
Назначение	каратной	золотни- ковой	метриче- ской
24 Химически чистые металлы — золото серебро, платина	24	96	1000
 Технические металлы — серебро и платина 			999,9
— Для золотых изделий в России до 1840 г		94	980
23 Высокопробные золотые изделия	23	92	958
 Изделия из платины 	_		950
22 Серебряные изделия, золотые вубопро тезные диски	22	88	916
 Золотой и серебряный стандарт моне и слитков 		- '-	900
21 Излелия из серебра	21	84	875
— То же из золота		-	800
18 Золотые и серебряные ювелирные изделия	- 18	72	750
14 Недорогие золотые изделия		56	583
12 Дешевые золотые изделия и разменны серебряные монеты «царской чеканки		48	500
- Самые дешевые золотые изделия		36	375

12.6.2. Оценка коррозионной стойкости

Скорость коррозии металлических материалов в различных средах определяют обычно по уменьшению массы образца (после удаления продуктов коррозии) на единицу поверхности в единицу времени и выражают в граммах на квадратный метр в час — $r/(m^2 \cdot q)$. Глубинный показатель коррозии выражают в линейных единицах, отнесенных к единице времени. При равномерной коррозии:

$$\Pi = \frac{8,76K}{\gamma},$$

где Π — глубинный показатель коррозии, мм/год; K — скорость коррозии, $r/(m^2 \cdot q)$; γ — плотность металла, r/cm^3 .

Коррозионную стойкость металлических материалов по

ГОСТ 5272-50 оценивают по десятибалльной системе.

Для изготовления оборудования используют металлы I и II групп стойкости; в отдельных случаях применяют материалы III и IV групп стойкости, сокращая срок службы оборудования и учитывая возможность загрязнения среды продуктами коррозии.

Стойкость неметаллических материалов оценивают по изменению в результате коррозии их физико-химических и механических свойств. Единой оценки не существует; применяют условные показатели: «стоек», «ограниченно стоек», «нестоек», «относительно стоек», «применим», «не применим».

Группа стойкости	.П. мм/год	Балл
I. Совершенно стойкие	< 0,001	1
II. Весьма стойкие	0,001-0,005	$ar{2}$
	0,005—0,01	3
III. Стойкие .	0,01—0,05	4
W. O	0,050,1	5
V. Относительно стойкие	0,10,5	6
V. Малостойкие	0,5—1,0 1,0—5,0	8
V. Manocionane	5,0—10,0	9
VI. Нестойкие	>10.0	10

12.6.3. Минералогическая шкала твердости [Мооса]

Набор 10 эталонных минералов для определения относительной твердости методом царапания; они расположены в порядке возрастающей твердости:

1 — тальк	6 — ортоклаз
2 — гипс	7 — кварц
3 — кальцит	8 — топаз
4— флюорит	9 — корунд
5— апатит	10 — алмаэ

Уточненные относительные атомные массы элементов

Порядковый номер элемента	Символ элемента	Название элемента	Относительная атомная масса элемента	Примеча- ние*
1	Н	Водород	1,00798 ± 0,00001	a
. 2	He	Гелий	$4,00260188 \pm 0,00000003$	б
3	Ŀi	Литий	$6,941 \pm 0,002$	а, б, в
4	Be	Бериллий	$9,012182 \pm 0,000003$	
5	В .	Бор	$10,811 \pm 0,002$	а, в
6	C	Углерод	$12,0110 \pm 0,0003$	a
7	N	Азот	$14,00672 \pm 0,00009$	•
8	O	Кислород	15,9993 ± 0,0003	a
9	F	Фтор	$18,998032 \pm 0,000009$	
10	Ne	Неон	$20,1800 \pm 0,0006$	В .
11	Na	Натрий	$22,989768 \pm 0,000006$	
12	Mg	Магний	$24,3051 \pm 0,0006$	б
13	A1	Алюминий	$26,981539 \pm 0,000005$	
14	Si .	Кремний	$28,0855 \pm 0,0002$	
15	P	Фосфор	$30,973762 \pm 0,000004$	
16	S	Сера	$32,064 \pm 0,002$	a
17	Cl	Хлор	$35,453 \pm 0,001$. 5
18	Ar	Аргон	$39,9477 \pm 0,0001$	а, б
19	K	Калий	$39,09830 \pm 0,00006$	
20	Ca	Кальций	$40,0780 \pm 0,0004$	δ `
21	Sc	Скандий	$44,955910 \pm 0,000009$	
22	Ti	Титан	$47,878 \pm 0,003$	
23	v	Ванадий	$50,94147 \pm 0,00002$	
24	Cr	Хром	$51,9961 \pm 0,0002$,

Порядковый номер элемента	Символ элемента	Названне элемента	Относительная атомная масса элемента	Приме ча - ние*
25	Mn	Марганец	$54,93805 \pm 0,00001$	
26	Fe	Железо	$55,847 \pm 0,002$	
27	Co	Кобальт	$58,93320 \pm 0,00001$	
28	Ni	Никель	$58,6879 \pm 0,0007$	
29	Cu	Медь	$63,5456 \pm 0,0004$	а
30	Zn	Цинк	$65,40 \pm 0,01$	
31	Ga	Галлий	$69,723 \pm 0,004$	
32	Ge	Германий	$72,63 \pm 0,02$	
33	As	Мышьяк	$74,92159 \pm 0,00002$:
34	Se	Селен	$78,99 \pm 0,02$	
35	Br	Бром	$79,904 \pm 0,001$	
36	Kr -	Криптон	$83,800 \pm 0,005$	б, в
37	Rb	Рубидий	$85,4678 \pm 0,0003$	б
38	Sr	Стронций	$87,6167 \pm 0,0004$	б
39	Y	Иттрий	$88,90585 \pm 0,00002$	
40	Zr	Цирконий	$91,2236 \pm 0,0008$	6
41	Nb	Ниобий	$92,90638 \pm 0,00002$	
42	Mo	Молибден	$95,931 \pm 0,002$	
43	Tc	Технеций,	98	Д
44	Ru	Рутений	$101,070 \pm 0,007$. б
45	Rh	Родий	$102,90550 \pm 0,00003$	
46	Pd	Палладий	$106,415 \pm 0,004$	6
47	Ag	Серебро	$107,8682 \pm 0,0001$. 6
4 8	Cd	Кадмий	$112,412 \pm 0,005$	б
49	In	Индий	$114,818 \pm 0,004$	б.
50	Sn	Олово	$118,710 \pm 0,005$	
51	Sb	Сурьма	$121,76 \pm 0.02$	
52	Te	Теллур	$127,5858 \pm 0,0009$	б
5 3	1	Иод	$126,90447 \pm 0,00003$	
54	Xe	Ксенон	$131,29 \pm 0,02$	б, в
55	Cs	Цезий	$132,90543 \pm 0,00005$	-
56	Ba	Барий	$137,327 \pm 0,001$	б
57	La	Лантан	$138,9054 \pm 0,0001$	б,
58	Се	Церий	$140,115 \pm 0,002$	б

Порядко- ый номер элемента	Символ элемента	Название элемента	Относительная атомная масса элемента	Примеча- ние*
59	Pr	Празеодим	$140,90765 \pm 0,00003$	
60	Nd	Неодим	$144,242 \pm 0,003$	б
61	Pm	Прометий	145	д
62	Sm	Самарий	$150,36 \pm 0,01$	б
6 3	Eu	Европий	$151,96 \pm 0,01$	· , 6
64	Gd	Гадолиний	$-157,252 \pm 0,002$	б
65	Tb	Тербий	$158,92534 \pm 0,00003$	
66	Dy	Диспрозий	$162,498 \pm 0,004$	
67	Но	Гольмий	$164,93032 \pm 0,00003$	•
68	Er	Эрбий	$167,256 \pm 0,004$	
69	Tm	Тулий	$168,93421 \pm 0,00003$	<i>*</i> ,
70	Yb	Иттербий	$173,034 \pm 0,007$	
71	Lu	Лютеций	$174,9667 \pm 0,0002$	
72	Hſ	Гафний	$178,4864 \pm 0,0003$	•
73	Ta	Тантал	$180,94787 \pm 0,00002$	
74	W	Вольфрам	$183,849 \pm 0,006$	
75	Re	Рений	$186,2067 \pm 0,0004$	
7 6	Os	Осмий	$190,24 \pm 0,01$	б
77	Ir	Иридий	$192,22 \pm 0,01$	
78	Pt	Платина	$195,080 \pm 0,009$	47.5
79	Au	Золото	$196,96654 \pm 0,00003$	***
80 .	Hg	Ртуть	$200,597 \pm 0,006$	
81	Ti	Таллий	$204,3833 \pm 0,0002$	
82	Pb	Свинец	$207,217 \pm 0,004$	а, б
83	Bi	Висмут	$208,98037 \pm 0,00003$	

Порядко- вый номер элемента	Символ элемента	Название элемента	Относительная атомная масса элемента	Примеча ние*
84	Po	Полоний	209	д
85	At	Астат	210	Д
86	Rn	Радон	222	Д
87	Fr	Франций	223	д
88	Ra	Радий	$226,0254 \pm 0,0001$	б, г
89	Ae	Актиний	$227,0278 \pm 0,0001$	
90	Th	Торий	$232,0381 \pm 0,0001$	б, г
91	Pa	Протактиний	$231,03588 \pm 0,00002$	Γ
92	U	Уран	$238,028910 \pm 0,000005$	б, в, г
93	Np	Нептуний	$237,0482 \pm 0,0001$	r
94	Pu	Плутоний	244	Д
95	Am	Америций	243	д
96	Cm	Кюрий	247	Д
97	Bk	Берклий	247	Д
98	Cf .	Калифорний	251	Д
9 9	Es	Эйнштейний	252	_ Д
100	Fm	Фермий	257	Д
101	Md	Менделевий	258	Д
102	No	Нобелий	259	Д
103	Lr	Лоуренсий	260	д
104	Ku	Курчатовий	261	Д
105	Ns	Нильсборий	262	. д
106		(Экаволь- фрам)	263	Д

^{*} Условные обозначения см. в тексте к табл. 1.1 (с. 16).

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

Алекин О. А. Основы гидрохимии. — Л.: Гидрометеоиздат, 1970. Алимарин И. П., Ушакова Н. Н. Справочные таблицы по аналитической химии. — М.: Изд-во Моск. ун-та, 1960.

Бабко А. К., Пилипенко А. Т. Колориметрический анализ. М.; Л.: Госхимиздат, 1951.

Бабко А. К., Пятницкий И. В. Количественный анализ. — М.: Высш. шк., 1962.

Базакуца В. А. Международная система единиц. — Харьков: Изд-во Харьк. ун-та, 1973.

Березовский В. М. Химия витаминов. — М.: Пищепромиздат, 1959. Бурдун Г. Д. Справочник по международной системе единиц. — М.: Изд-во стандартов, 1972.

Вайсбергер А. и др. Органические растворители. — М.: Изд-во иностр. лит., 1958.

Венкатараман К. Химия синтетических красителей. — Л.: Госхимиздат, 1957. — Т. 1—2. Воронцов И. И. Производство органических красителей. — М.: Гос-

химиздат, 1962. *Гисев Н. Т.* Справочник по радиоактивным излучениям и защите. —

М.: Медгиз, 1956.

Каррер П. Курс органической химии. — Л.: Госхимиздат, 1960. Карякин Ю. П. Кислотно-основные индикаторы. — М.; Л.: Госхимиз-

Кей Дж., Леби Г. Таблицы физических и химических постоянных.-М.: Физматгиз, 1962.

Кольтгоф И. М., Сендэл Е. Б. Количественный анализ. — М.: Госхимиздат, 1948.

Кольтгоф И. М., Стенгер В. А. Объемный анализ. — М.; Л.: Госхимиздат, 1950—1961.— Т. 1—3.

Краткая химическая энциклопедия: В 5 т. - М.: Сов. энцикл., 1961—1964.— T. 1—3.

Краткий справочник физико-химических величин/Сост. Н. М. Барон и др. — Л.: Госхимиздат, 1959.

Лурье Ю. Ю. Расчетные и справочные таблицы для химиков.— М.; Л.: Госхимиздат, 1947.

Лурье Ю. Ю. Справочник по аналитической химии. — 4 изд., перераб., и доп. - М.: Госхимиздат, 1962.

Машковский М. Д. Лекарственные средства. — М.: Медгиз, 1960. Мінеральні води Української РСР. К.: Вид М-ва торгівлі УРСР,

Некрасов Б. В. Курс общей химии. — М.; Л.: Госхимиздат, 1960.

Неницеску К. Д. Органическая химия. - М.: Изд-во иностр. лит. 1962—1963.— T. 1, 2.

Перельман В. И. Краткий справочник по химии. — 6 изд. — М: Госхимиздат, 1963.

Пиментель Дж., Мак-Клеллан О. Водородная связь. - М.: Мир, 1964. Сиборг Г., Перлман И., Холлендер Д. Таблицы изотопов. - М.; Л.: Изд-во иностр. лит., 1956. Сонгина О. А. Амперометрическое титрование в анализе минерального

сырья. — М.: Госгеолтехиздат, 1952.

Советская техническая энциклопедия. Справочник физических, химических и технологических величин: В 10 т. - М.: Сов. энцикл.. 1927—1936.

Справочник по растворимости: В 3 т. / Сост. в В. Т. Коган, В. М. Фрилман, В. В. Кафаров (отв. ред.). — М.; Л.: Изд-во АН СССР. 1961.— Кн. 1.

Справочник по свойствам, методам анализа и очистке воды: В 2 т./ Л. А. Кульский, И. Т. Гороновский, А. М. Когановский, М. А. Шевченко. — Киев: Наук. думка, 1980. — Т. 1-2.

Справочник химика. — 2 изд., перераб. и доп. / Под ред. Т. П. Никольского. — М.: Л.: Химия, 1964—1968. — Т. 1—7.

Справочник химика-энергетика. — М.; Л.: Госэнергоиздат, 1958-1960.— T. 1—2.

Чайлдс У. Физические постоянные. — М.: Физматгиз, 1961.

Чичибабин А. Е. Основные начала органической химии. — М.: Госхимиздат, 1957—1963.— Т. 1—2.

Шилов П. И., Яковлев Т. Н. Справочник по витаминам. — Л.: Медгиз,

Яцимирский К. Б. Кинетические методы анализа. - М.: Госхимиздат, 1963

Яцимирский К. Б., Васильев В. И. Константы нестойкости комплексных соединений. — М.: Изд-во АН СССР, 1959.

Справочное издание

ИГОРЬ ТРИФИЛЬЕВИЧ ГОРОНОВСКИЙ ЮРИЙ ПАВЛОВИЧ НАЗАРЕНКО ЕВГЕНИЙ ФЕДОРОВИЧ НЕКРЯЧ |

КРАТКИЙ СПРАВОЧНИК ПО ХИМИИ

Издание пятое, дополненное, переработанное

Печатается по рещению редакционной коллегии справочной литературы АН УССР

Редакторы Г. М. Ледяева, А. В. Янковская Сформление художника В. Г. Самсонова Художественный редактор А. В. Косяк Технические редакторы Т. С. Березяк, И. Н. Лукашенко Корректоры Р. С. Коган, Л. Г. Бузиашвили, Е. А. Михалая

ИБ № 8151

Сдано в набор 13.10.86. Подп. в печ. 13.08.87. БФ 24306. Формат 84×108/32. Бум. тип. № 3. Лит. гарн. Выс. печ. Усл. печ. л. 43,68. Усл. кр.-отт. 44,05. Уч.-изд. л. 49,03. Тираж 50 000 экз. Заказ 6-403. Цена 2 р. 70 к.

Издательство «Наукова думка». 252601 Киев 4, ул. Репина, 3

Книжная фабрика им. М. В. Фрунзе, 310057, Харьков 57, ул. Доиец-Захаржевского, 6/8.

Константа, условное обозначение	Значение	
Абсолютный нуль температуры	273,15 °C	
Атмосфера нормальная	101325 Па	
Атомная единица массы, а. е. м.	1,6605655(86) · 10 ⁻²⁷ Kr	
Гравитационная постоянная, G	$6.6720(41) \cdot 10^{-11} \text{ H} \cdot \text{m}^2/\text{kg}^2$	
Диэлектрическая постоянная вакуума, ϵ_0	8,85418782(7) \cdot 10 ^{-12°} Φ/M	
Длина волны комптоновского излучения нейтрона, λ_c , n	1,3195909(22) - 10-15 м	
Длина волны комптоновского излучения протона, λ_c , p	1,3214099(22) · 10 ⁻¹⁵ M	
Длина волны комптоновского излучения электрона, λ_c	2,4263089(49) · 10 ⁻¹² M	
Заряд электрона, <i>е</i>	1,6021892(46) · 10 ⁻¹⁹ Кл	
Заряд электрона удельный, e/m _e	1,7588047(49) - 1011 Кл/кг	
Классический радиус электрона, r_e	2,8179380(70) · 10 ⁻¹⁵ м	
Магнитный моме нт пр отона, μ _ρ	1,4106171(55) · 10 ⁻²⁶ Дж/Т	
Магнитный момент электрона, μ _е	9,284832(36) + 10-24 Дж/Т	
Масса поноя нейтрона, <i>т</i>	1,008665012(37) а. е. м.	
	1,6749543(86) - 10 ⁻²⁷ кг	
Macca покоя протона, $m_{\mathcal{D}}$	1,007276470(11) а. е. м. 1,6726485(86) · 10 ⁻²⁷ кг	

Константа, условное обозначение	Значение
Масса покоя электрона, m_e	5,4858026(21) · 10-4 а. е. м.
	0,9109534(47) · 10-30 Kr
Отношение массы протона к массе электрона, m_p/m_e	1836,151 52(70)
Молярная газовая постоянная, R	8,31441(26) Дж · моль-1 · К-1
Молярный объем идеального газа ($T_0=273,15~{ m K};P_0=101325~{ m \Pi a}$), V_m	0,02241383 (70) м ³ /моль
Постоянная Авогадро, $N_{oldsymbol{A}}$	6,022045(31) · 10 ²³ моль ⁻¹
Постоянная Больцмана, К	1,380662(44) · 10-23 Дж/К
Постоянная Планка, h	6,626176(36) · 10 ⁻³⁴ Дж · с
Постоянная излучения первая, c_1	3,741832(20) · 10 ⁻¹⁶ Вт · м ²
Постоянная излучения вторая, c_2	0,01438786(45) m · K
Постоянная Ридберга, $R_{f \infty}$	10973731,77(83) m ⁻¹
Постоянная Стефана — Больцмана, о	5,67032(71) · 10 ⁻⁸ Br/(M ² · K ⁴)
Радиус Бора (радиус) орбиты электрона в атоме водорода, $a_{\it o}$	0,52917706(44) · 10-10 м
Скорость света в вакууме, <i>с</i>	299792458(1, 2) м/с
Нисло Фарадея, <i>F</i>	96484,56 (27) Кл/моль
Гройная точка воды	273,16 K
	i,