Dep. of Pysiology and Biocemistry of Plants, Voronezh State University, Universitetskaya pl. 1, Boronezh 394693, Russia
Abstract
Light-determined activation of ferments of ascorbate-glutation cycle, ascorbate-oxidase in chloroplasts and cytosol is demonstrated as well as ascorbate-peroxidase, monodehydroascorbate-reductase, glutation-reductase and ascorbate-oxydase in mitochondria. On the other hands activity of mitochondrial dehydroascorbase-reductase increased on reduction of light most likely due to function of electron transport from glutation to dehydroascorbate in mitochondria. Glutation metabolism is proved to be endogenic catalytic process where the amount reconstructed glutation changes slowly with a delay and gradually follow light changes. Light dependable changes of glutation content in chloroplasts ensure resistance of ferment system again hydrogen peroxide and superoxide radicals that generate intensively at light.