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ABSTRACT A review of major ideas pertaining to the importance of the 
body size of animals. It discusses the size range of living organisms and the pos- 
sibilities and constraints that result from the design of animals and the materials 
used in their supporting structures. The change in size of similarly organized ani- 
mals is considered in the light of the principles of scaling, with examples chosen 
both from morphology and physiology. The mechanical consequences of body 
size in relation to locomotion is also discussed. 

The term Comparative Physiology im- 
plies that organisms are more or less alike 
and therefore can be compared. As a con- 
sequence, Comparative Physiology is con- 
cerned both with similarities and differ- 
ences. 

The study of biological similarities has 
been enormously fruitful; it has dominated 
biology for several centuries and it forms 
the foundation of modern biology. Let me 
mention some examples in the order they 
were formulated by some of the greatest 
biologists who have ever lived: (1) The 
natural system of classification (Linnaeus, 
1707-1778) which classified animals ac- 
cording to similarities, (2)  The principle 
of natural selection in evolution (Charles 
Darwin, 1809-1882) which established 
that small deviations from a given form 
constitute the major basis of evolutionary 
change, and ( 3 )  The formulation of the 
laws of inheritance (Gregor Mendel, 1822- 
1884) which again was concerned with 
the similarities between offspring and the 
parent generation. As we all know, these 
general principles have, with justification, 
completely dominated the development of 
biology as a science. 

During the last several decades entirely 
new fields of biological study have opened 
up, extending to the molecular level our 
knowledge of universal similarities in bio- 
logical systems. Let me mention some such 
similarities between organisms that are at 
the foundation of modern biology. ( 1 )  It 
was realized early in the last century that 
all animals and plants are made up of 
cells. The credit for the cell theory is com- 
monly given to the botanist Schleiden 
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(1804-1881) and the zoologist Schwann 
(1810-1882), although the concept of the 
cell actually evolved earlier. ( 2 )  In this 
century it has become clear that the energy 
metabolism of animals, the use of fuel, the 
metabolic enzymes and pathways, etc. uni- 
versally are based on the same general 
principles. ( 3 )  More recently, revolution- 
ary progress has been made with the revel- 
ation of striking similarities in the trans- 
mission of genetic information at  the mo- 
lecular leveL(4) Another area in which 
general biological similarity has been estab- 
lished is concerned with cell membranes, 
membrane potentials, action potentials, 
and the very active field of membrane 
transport processes. These areas, the cell 
concept, the biochemistry of energy metab- 
olism, the nature of genetic information, 
and the functional importance of mem- 
brane potentials are all examples of strik- 
ing, unifying principles of biological simi- 
larity of the greatest importance. 

However, one field that deserves more 
attention than usually given to it is con- 
cerned, not with similarities, but with dif- 
ferences. I have in mind the enormous dif- 
ferences that, in spite of similarities in 
function, exist in the size of living organ- 
isms. In view of its fundamental impor- 
tance, the size of organisms has received 
surprisingly meager attention. Perhaps this 
is because the study of similarities has 
been so important to the needs of biolo- 
gists. As a consequence, morphology, al- 
though often concerned with point-by- 
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point differences, takes its origin in the 
greater similarities which remain the un- 
derlying principle of classification. How- 
ever, in addition to its general design, the 
size of an organism affects it critically, 
both in structure and in function. Size has 
profound consequences for structure and 
imposes severe constraints on function. In  
this field we find great regularity of ob- 
served fact, but we often lack adequate 
interpretations or explanations. However, 
it is my hope that future generations of 
biologists will find adequate solutions to 
unsolved problems and clearly outline un- 
derlying unifying principles. 

THE SIZE OF ORGANISMS- 
SIZE LIMITS 

The immense differences in the size of 
organisms raise two fundamental ques- 
tions, (1) What are the size limits for a 
certain type of organism? and (2 )  For a 
given size, how must an  organism be 
designed? 

It is difficult to give answers to these 
questions, but we can examine available 
information, discuss some well known con- 
clusions, and raise many additional ques- 
tions. 

The enormous size range of living organ- 
isms is indicated in table 1. It ranges from 
the largest animal that has ever lived, the 
blue whale, which may exceed 100 tons, or 
lo* grams, to the smallest, the pleuro- 
pneumonia-like organism, or PPLO (Myco- 
plasma). PPLO is the smallest micro-organ- 
ism known that can live and reproduce 
in an  artifical medium, and thus is an in- 
dependent living organism rather than a 
virus. Its non-aqueous cell mass is less than 
lo-" gram, and its linear dimension less 
than 0.3 pm. It is reasonable to assume 

TABLE 1 

T h e  size range of living organisms, arranged 
with examples chosen to show a 

thousand-fold dif ference between 
each step 

Blue whale 
Human 
Hamster 
Bee 
Large amoeba 
Tetrahymena 
Malaria parasite 
PPLO (Mycoplasma)  

>lo0 tons >lo8  gram 
70 kg 105 

100 g 1 0 2  
100mg lo- '  
0.1 mg 
0.1 P g  10-7 
0.1 ng 10-10 

<o.i  pg <10-13 

that this organism is close to the lowest 
size limit for a living organism, for a cell 
must have sufficient size to house the meta- 
bolic equipment (notably enzymes) needed 
to carry on its metabolic processes, and 
it must also contain the necessary genetic 
information for the replication of the en- 
tire system. To illustrate the small size of 
the single PPLO organism, Morowitz ('66) 
calculated that, if the cell content is at 
pH 7, its volume is just sufficient to con- 
tain on the average a total of 2 hydrogen 
ions. 

Table 1 shows that the size range from 
the smallest to the largest living organism 
is in the ratio of 10". We know that this 
is a very large number, but most of US 
have difficulties in conceptualizing what 
exponential numbers really mean. Let US 
estimate the size of a hypothetical super- 
organism, larger than the blue whale by 
the same ratio, loz1. This hypothetical 
giant organism would have a size of 100 
times the volume of the earth. Perhaps an 
even more convincing way of illustrating 
the magnitude of the number 10" is to 
mention that the estimated total mass of 
the universe is loso grams. 

It has been suggested, and more or less 
accepted as fact, that the blue whale can 
reach its enormous size only because it is 
an aquatic animal whose weight is sup- 
ported by water, and that land mammals 
of a similar mass would collapse under 
their own weight. The largest living land 
mammal is the five-ton elephant, and the 
smallest is the shrew, which is lo6 times 
smaller, or about 5 grams. The enormous 
size of the large whales and the fact that 
they are aquatic have been used to support 
the contention that an animal much bigger 
than the elephant could not live on land, 
and that the extinct giant dinosaurs must 
have been semi-aquatic. The paleontologi- 
cal evidence for this statement, however, 
is poor. 

The size of the largest dinosuar, Brachio- 
saurus, was estimated by Colbert ('62) to 
be 78 tons, his calculations being based 
on estimates from scale models.2 The long- 
est dinosaur, Diplodochus, reached a length 
of 28.6 meters, but was not as heavy. Com- 
pared to these, the Brontosaurus was a 
midget, a mere 32 tons. Paleontologists 
have considered that "the long neck was an 
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Fig. 1 The largest extinct dinosaurs supposedly were so heavy that they were unable 
to move freely on land and therefore led a semi-aquatic life. When submerged as shown 
here, the animals would have difficulties in moving about, and in addition they would 
encounter serious difficulties in breathing (Gregory, ’51). 

adaptation for life in  deep waters,” and 
that “this greatly simplified the problems 
of support and locomotion” (Romer, ’66). 
This way of life is illustrated in figure 1, 
which shows the pleasant semi-aquatic life 
of dinosaurs grazing on underwater vegeta- 
tion and using their long necks as a 
snorkel. 

We have good reasons to doubt this pic- 
ture. One is that numerous fossil footprints 
of large dinosaurs exist which show a 
clarity of detail that indicates that they 
must have been made on land and not 
under water (Gregory, ’51 ). Anybody who 
has walked up to his neck in water knows 
that this does not exactly simplify the prob- 
lem of support and locomotion, and that he 
is unlikely to leave clear footprints in the 
mud. A physiologist also recognizes that 
breathing through a snorkel a t  a depth of 
5 meters requires the chest to support the 
enormous pressure of the surrounding 

water, which at that depth is 5000 kg per 
mz. A man can barely breathe through a 
snorkel at about one-half meter’s depth, 
and at 5 meters his chest would be crushed 
by the water pressure. We must conclude 
that the giant dinosaurs could not be semi- 
aquatic as shown, and that the claim that 
they were too heavy to move on land is 
unsupported by the evidence. Would it be 
possible for vertebrates the size of the dino- 
saurs to be terrestrial? Or is a terrestrial 
life a mechanical impossibility for these 
giant vertebrates? 

The largest land mammal that has ever 
lived is a herbivorous relative of the rhi- 
noceros, the Baluchitherium, from the 
Oligocene period (fig. 2). It stood over 5 
meters at the shoulder and weighed an  

ZColbert used for his estimate an assumed density 
of 0.9. However, it is more probable that the density 
of dinosaurs, as that of other vertebrates, was close to 
1.0, and that the estimate therefore was too low by 
about 10%. 
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Fig. 2 The largest land mammal that has ever lived, the Baluchitherium, was a relative 
of the modern rhinoceros. Its estimated body weight was about 30 tons (Gregory, '51). 

estimated 30 tons, or about 10 times as  
much as a medium-sized elephant (Granger 
and Gregory, ' 3 5 ) .  Was this enormous ani- 
mal too large to be safely supported by its 
skeleton? Figure 3 shows specimens of the 
metacarpal bone of Buluchitherium, com- 
pared to the same bone from a modern 
rhinoceros at the far left. The diameter 
of the largest metacarpal was about 140 
mm. Since the compressive strength of 
bone is known (1800 kg cm-2 [Wainwright 
et al., '75])3, it is easy to calculate that 
this metacarpal could withstand a load 
of about 280 tons. This gives a safety fac- 
tor of nearly 10 times the body weight, a 
figure which is amazingly close to the 
safety factor for the leg bones of humans, 
which also is about 10-fold. This may 
seem like a substantial safety margin, but 
we should realize that the greatest stresses 
on the bones do not occur when the animal 
stands still, but rather during activity when 
the forces of acceleration and deceleration 
far exceed the static loads. This is evident 
from the many pulled muscles, tendons, 
and sprained bones which occur in hu- 
mans when they participate in competitive 

Fig. 3 The metacarpal bones from three speci- 
mens of Baluchitherium, compared to the same 
bone from a modern rhinoceros (far left) .  The 
compressive strength of the largest metacarpal 
shown can be calculated from its dimensions. It 
would be about 280 tons, or nearly 10 times the 
body weight of the animal (Gregory, '51).  

3 The maximum compressive strength of bone must 
be considered a biological invariable. Vertebrate bone 
i s  a composite material consisting of hydroxyapatite 
crystals imbedded in a matrix of collagen, and neither 
the inherent mechanical characteristics of the com- 
ponent materials nor the composite structure can be 
sufficiently modified to give any drastic change in the 
compressive strength. 
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sports, an activity which brings the organ- 
ism close to or at times beyond the safe 
limits of its mechanical design. 

No paleontologist has seriously doubted 
that Baluchitherium was a plant-eating, 
land-living mammal. It was one-third the 
size of the largest dinosaur, and its exist- 
ence shows beyond doubt that land ani- 
mals much larger than the elephant are 
indeed quite feasible. 

Since the safety factor for Baluchithe- 
rium is more than adequate we can indeed 
imagine that even bigger animals would be 
structurally sound. What is the ultimate 
limit to the size of land animals? Unfortun- 
ately, we are unable to give an adequate 
answer, and we cannot study the question 
experimentally by building a bigger ele- 
phant. 

It could be suggested that food is a limi- 
tation to size, for all the very large land 
mammals are plant eaters, and plant ma- 
terial is bulky and cellulose digestion is a 
relatively slow process. In  this regard the 
whales are better off, for their food is 
found in a three-dimensional mass of 
water, the largest whales are plankton 
eaters which utilize a short food chain, 
their food has a high energy value, and the 
nature of the food permits a high rate of 
digestion. Again, we are not in a position 
to say how important these factors are in 
the evolution of the giant whales, for as 
in most evolutionary questions, we can 
examine available evidence but e x  post 
f ac to  experimentation is not feasible. 

ENGINEERING AND PROBLEMS 
O F  DESIGN 

Although we cannot experiment by con- 
structing elephants of super-size, we have 
a great deal to learn from the engineer who 
constantly encounters the problem of build- 
ing bigger structures, taller skyscrapers, 
longer bridges, bigger ships, and so on. 

The size of a brick house can be in- 
creased if the foundation and the walls are 
made heavier. There is, however, a limit 
to this avenue inherent in the limit to the 
compressive strength of brick. If the engi- 
neer wants to design a skyscraper, he 
changes to the use of steel, rather than 
brick, as the main supporting material. 
Another avenue is to change to a new 
design, for example, by changing from the 

use of compression elements to tension 
elements in the main supporting struc- 
tures. Brick and stcne are very strong in 
compression, but they are weak in  tension 
and break easily. Steel, on the other hand, 
has a high tensile strength, and by using 
relatively light tensile elements for sup- 
port, the engineer can span rivers more 
than a hundred times wider than is pos- 
sible with the use of compression elements 

We thus find three avenues open for the 
design of larger structures, (1) changed 
dimensions such as thicker walls, (2)  
changed materials such as brick to steel, 
and ( 3 )  changed designs such as from 
compression to tension elements. 

Also in biology we find that novel design 
is fundamentally linked to and essential 
for an increase in size. For example, 
ciliary or amoebic locomotion is used only 
by very small organisms, and larger organ- 
isms must use other propulsive mecha- 
nisms. Likewise, when the organism is too 
large to be adequately supplied with oxy- 
gen by diffusion alone, the novel principle 
of convection is added to speed up the sup- 
ply process. Convection in the external 
medium, whether water or air, is what we 
call ventilation, Convection of the body 
fluids to augment the transport of oxygen 
over distances where diffusion is inade- 
quate is what we call circulation. Added to 
this new principle of mass transport by 
convection we frequently find another 
novel design, an  increase in the oxygen 
capacity of the circulated fluid by respira- 
tory pigments such as hemoglobin or 
hemocyanin. Each such new invention in 
design alters the limiting constraints and 
extends the possible size range of the 
organism. 

In  regard to the internal transport of 
gases, insects have gone their own separate 
route. Rather than using convection in a 
fluid (blood) for improved gas transport, 
their respiratory system is based on diffu- 
sion in gas rather than in water. The 
tracheal system of insects extends through- 
out the body, and the fact that the diffu- 
sion coefficient in air is some 10,000 times 
higher than in  water insures the adequate 
distribution of oxygen without the aid of 
circulation. Even so, highly active insects 
use mass movement, or convection, for 

(fig. 4). 
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Fig. 4 Two different design principles used in bridge building. In the bridge supported 

by stone arch (bottom) the supporting elements are in compression. In the suspension 
bridge (top) the main supporting elements, the steel cables, are in tension. Stone has a 
high compressive but low tensile strength; steel, in contrast, has high tensile strength. 

renewal of air in their respiratory system. 
Active ventilation of the tracheal system 
is used to speed up the gas exchange when 
diffusion alone is insufficient. Even in an 
insect as small as the fruitfly, active ven- 
tilation of the thorax appears necessary to 
supply the flight muscles with oxygen at 
the required high rate (Weis-Fogh, '64). 

It has been suggested that the design 
of the respiratory system imposes a limit 
on the size that insects can attain but it 
appears that, when the larger tracheae are 
actively ventilated, the dimensions of the 
tracheal system are amply sufficient for the 
supply of oxygen even to the most active 
tissues. The body size of insects, therefore, 
is probably not limited by problems of 
oxygen supply. A more likely limitation on 
size is the fact that an  exoskeleton has 
some severe mechanical limitations. Al- 
though we do not fully understand the 
principles of skeletal design, we can con- 
sider some consequences and limitations. 

The exoskeleton of insects is both armor 
and support, and it must withstand both 
static loads, bending moments, and forces 
of impact. For a given amount of material, 
a hollow tube is stronger than a cylindri- 
cal rod made of the same material, but as 
the diameter of the tube is increased 

(keeping the amount of material constant), 
the wall thickness decreases until it is so 
thin that the whole structure buckles and 
collapses under its own weight. Similarly, 
the protective value of surface armor de- 
creases as the mass of the animal increases 
with the third power of linear dimensions, 
and the risk of puncture of even a good 
armor is vastly increased. For a large ani- 
mal it seems that, if dynamic forces are 
considered, the advantages of an exoskele- 
ton are reduced and may even disappear 
(Currey, '67). 

Another difficulty associated with an 
exoskeleton is that of growth; to increase 
in  a similarly distorted shape. This limita- 
sume a larger volume before the new 
cuticle hardens. While the new cuticle is 
still soft, the forces of gravity would dis- 
tort a very bulky insect, with the conse- 
quence that the new cuticle would harden 
in a similarly distorted shape. This limita- 
tion on size applies specifically to terres- 
trial animals. Aquatic arthropods, notably 
crustaceans, have their weight supported 
by water and thus are not subject to these 
gravitational limitations; witness the Jap- 
anese Spider Crab whose legs may span 
4 meters (Schmitt, '65). 

The two main groups of terrestrial ani- 
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mals, arthropods and vertebrates, have 
gone each their own way, one depending 
on exo- and the other on endoskeletons. 
Since evolution apparently does not permit 
major design changes in  mid-stream, we 
are now unable to say whether this dichot- 
omy is an historical accident, or is main- 
tained by the requirements and constraints 
imposed by the size of the animals, in  turn 
also limiting the possible size they can 
attain. 

Although we can point to some factors 
that may limit the size of insects, we can- 
not formulate a simple conclusive state- 
ment. Principles, to have general validity, 
should have predictive value, and we are 
again faced with the difficulty that we can 
establish observed fact, but we can no more 
build a beetle with an endoskeleton than 
a bigger elephant to verify our hypothesis. 
Nevertheless, we wish to understand the 
hows and whys in  biology, and we must 
explore other avenues in the search for 
general principles. Let me therefore turn 
to the subject that in engineering is known 
as scaling. 

SCALING -WHAT IS SCALING? 

Scaling is concerned with the effects or 
consequences of a change in size. When an 
engineer changes the size of a structure, 
he must consider the consequences, he 
must operate within constraints or limita- 
tions dictated by dimensions, materials, 
and design, and he can calculate the ulti- 
mate limits beyond which the size cannot 
be increased. 

The engineer faces problems of scaling 
when he builds taller buildings, bigger 
ships, or longer bridges. He starts with the 
desired size, he can select a suitable design, 
and for the chosen material he calculates 
the required dimensions. For the biologist 
the problem is reversed, he sees the final 
result, the size of the organism and its 
design, and he wants to understand the 
hows and whys of what makes this living 
animal viable and functional. 

What scale should the biologist apply 
when he measures the size of an organism? 
Two fundamental quantities that can be 
measured with relative ease are mass and 
linear dimension. Of these, the measure- 
ment of mass usually is much to be pre- 
ferred. If a linear measurement were 

chosen, which particular measurement is 
the most characteristic expression of the 
size of a n  organism? The problem is obvi- 
ous, and if organisms of widely different 
shapes and designs are to be compared, 
how can we find a suitable linear dimen- 
sion which provides the necessary basis 
for comparisons? In contrast, weighing 
can be carried cut with great accuracy and 
can be used for organisms of widely dif- 
ferent structure. Furthermore, mass is of 
fundamental importance because of con- 
sequences in regard to the strength of sup- 
porting materials (skeletons) the muscu- 
lar system (locomotion), and metabolic 
requirements in general. Furthermore, 
since the density of nearly all animals is 
close to 1.0, mass is an adequate measure 
of their volume as well. However, within 
limits, characteristic linear dimensions 
may provide a suitable or useful measure, 
and I shall later give an  example of the 
use of linear dimensions as  a more mean- 
ingful measure of scale than would be ob- 
tained by the use of mass. 

I shall now mention a few scaling 
effects, using an example from elementary 
geometry, a few from mammalian mor- 
phology, and then devote the remainder of 
this article to examples from physiology. 

Figure 5 shows a group of cubes, the 
eight small cubes at the right having a 
combined volume equal to the single cube 
at the left. This simple diagram illustrates 
the well known principle that the relative 
surface area of a body increases in the 
same proportion as a characteristic linear 
dimension decreases. This applies not only 
to cubes, but to all geometrically similar 
bodies, whatever their shape. Bodies that 
are geometrically similar, or isometric, are 
characterized by equality of linear propor- 
tions, i.e. a change in any one characteris- 
tic linear dimension is accompanied by a 
change in all other linear dimensions in  
exactly the same proportion. The essen- 
tials of isometric geometry, as they will be 
used in the following, can be summarized 
as follows: 

Surface a (Length)* 
Volume a (Length)3 
Surface a (Volume)2/3 

The last line above simply states that 
as the volume of a body is increased, its 
surface does not increase in the same pro- 
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Fig. 5 The eight small cubes at the right have a combined volume equal to the single 
cube at the left. The side of the small cubes is onehalf of that in the large one; the 
combined surface area of the small cubes is twice that of the large one. 

portion, but only in proportion to the two- 
thirds power of the volume, a fact so well 
known that I wish to apologize for restat- 
ing it here. 

Real organisms of different size, even 
when organized on a similar pattern, usu- 
ally are not isometric. Instead, certain 
proportions change in a regular fashion, 
and I shall soon mention some examples. 
Such non-isometric scaling is referred to 
as allometric (from the Greek alloios which 
means differerit). An amazing number of 
morphological and physiological variables 
are scaled, relative to body mass, accord- 
ing to allometric equations which are of 
the general form 

y = b x a  
01 log y = a . log x + log b 

This equation expresses the simple state- 
ment, thoroughly familiar to biologists, 
that when the two variables are plotted on 
logarithmic coordinates, the result is a 
straight line. A great variety of observa- 
tions that relate biological variables to body 
size conform to this general equation, in 
which the exponent a represents the slope 
of the straight line obtained in the loga- 
rithmic plot. 

EXAMPLES OF SCALING - 
MORPHOLOGY 

Animals within similarly organized 
groups, mammals for example, are similar 

but they are not alike. In this context we 
are not concerned with those characteristic 
point-by-point differences that are used to 
establish taxonomic groups, but rather 
with certain deviations from isometric 
scaling whose magnitude and direction can 
be highly informative. 

The first scientist to publish on the sub- 
ject of allometric scaling was probably 
Galileo Galilei (1637). In his Dialogues he 
discussed the necessary size and strength 
of the bones of large animals. He realized 
that the skeleton of a large mammal, such 
as the elephant, must have dimensions out 
of proportion to the increase in linear 
scale, for the mass of the animal increases 
with the third power of its linear dimen- 
sions, and the supporting skeleton must 
be sufficiently strong to support this in- 
crease in mass. Galileo’s discussion was 
accompanied by a drawing (fig. 6) ,  which 
incidentally reveals a mistake. The large 
bone, which shows a three-fold increase in 
length, is given a nine-fold increase in 
diameter. This gives a greater distortion 
than required by the increase in mass, 
which would call for an increase of, not 
3’, but 315 (or 5.2 x) .  

We can also trace to Galileo the thought 
that giant-sized. animals must be aquatic 
so that their enormous weight is supported 
by water. This he does by having Simplicio 
raise the question of “the enormous size 
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Fig. 6 Galileo was probably the first to point 
out that larger animals, for reasons of mechanical 
support, must have bones with dimensions out of 
proportion to their linear scale in order to sup- 
port their greater mass (Galilei, 1637). 

reached by certain fish, such as the whale 
which, I understand is 10 times as large as 
an elephant.” In his answer, Salviati points 
out that in spite of the enormous weight 
of their bones, these animals do not sink, 
and “The fact then that fish are able to 
remain motionless under water is a con- 
clusive reason for thinking that the ma- 
terial of their bodies has the same specific 
gravity as that of water; accordingly, if in 
their make-up there are certain parts which 
are heavier than water there must be others 
which are lighter for otherwise they would 
not produce equilibrium” (Galilei, 1637). 

The fact that the bones of large mam- 
mals are proportionately heavier than 
those of small mammals is familiar 
to all of us. Suppose that all mammals 
instead had the same proportion of their 
body weight as skeleton, say 10% of the 
total body weight. The skeleton weights 
would then fall on the dashed line in 
figure 7. This would be a case of simple 
proportionality, and the slope of the regres- 
sion line would be 1.0 (the dashed line). 
In  reality, the skeleton of the elephant is 
2.5 times heavier and makes up 25% of 
the elephant’s body weight, and the slope 
of the regression line that best fits the ob- 
served skeleton weights is 1.13. 

If the dimensions of the skeleton were 
scaled on the basis of its ability to support 
static loads, and if the safety factor should 
remain the same, the weight of the skele- 
ton should increase with body weight to 
the power 1.33. Obviously, the skeleton of 
the elephant, by this consideration, is not 

0.1 1 10 100 1000 10000 
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Fig. 7 The relative weight of the mammalian 
skeleton increases with increasing body size. The 
skeleton of the elephant makes up 25% of its 
body weight. If the mammalian skeleton were 
simply proportional to body weight, the values 
would fall along the dashed line, which is drawn 
to represent 10% of the body weight (data from 
Kayser and Heusner, ’64). 

scaled as an engineer might design it. The 
explanation is not that elephant bone is 
inherently stronger, for the maximum 
compressive strength of bone is an  invari- 
able, or non-scaleable, constant, based on 
the maximum strength of a composite ma- 
terial consisting of hydroxyapatite in a 
collagen matrix. Rather, the safety factor 
for static loads is probably unimportant. 
We must assume that the safety factor 
must be scaled according to the needs of 
the maximum forces that the skeleton must 
withstand, This occurs during rapid accel- 
eration and deceleration, such as  running 
and jumping. We would therefore predict 
that, in this sense, the skeleton of the ele- 
phant is under-dimensioned, for if an ele- 
phant could jump, its bones would prob- 
ably break on take-off and the animal 
collapse on impact. 

As I mentioced above, allometric scaling 
is a powerful tool that can lead to impor- 
tant generalizations. As a n  example, con- 
sider the poorly documented but frequently 
repeated statement that the giant dinosaurs 
relative to their body size had very small 
brains, and that this was a major reason 
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that they ultimately succumbed in compe- 
tition with larger-brained mammals. The 
range of brain size, relative to body size, 
for various vertebrate groups is shown in 
figure 8. It is obvious that the mean brain 
size of any vertebrate group is characteris- 
tic for that group and follows a regression 
line which shows that brain mass is ap- 
proximately proportional to the body mass 
to the two-thirds power. Jerison ('70) 
plotted the brain size of dinosaurs in a 
similar diagram (fig. 8, bottom). A brief 
inspection of his graph tells us that there 
is little support for the contention that the 
dinosaurs had disproportionately small 
brains. On the contrary, they fall within 
the expected range of brain size for reptiles 
as a group, including the most highly de- 
veloped of living reptiles which have sur- 
vived successfully in spite of having only 
reptilian-sized brains. 

Instead of graphs, we can use the equa- 
tions which arithmetically represent the 
best fitting regression lines for our data. 
Let us examine the brain size of mammals 
in this way (table 2) .  The first line in this 
tabIe shows that a typical mammal of 1 kg 
body size has an expected brain size of 10 
grams, and that the brain size is expected 
to increase in proportion to the body mass 
to the power 0.7. We note that the brain 
sizes of the various primate groups all vary 
with nearly the same power of the body 
mass, 0.67. When the numerical value of 
the exponent in these equations is the 
same, the factor preceding the exponential 
term directly expresses the relative magni- 
tude of the variable in question. By looking 
only at these factors we find that monkeys 
in general have brains two or three times 
as  large as typical mammals, that great 
apes have brains twice as large monkeys, 
and humans twice as large again. This in- 
formation, in  a nutshell, describes the 
essential differences in brain size between 
monkey and man, and we can make this 

TABLE 2 

Equations expressing brain size in relation to 
body mass  (M,in k g ) ,  f o r  mammals  and 

various groups of primates 

Mammals 0.01 X 

Great apes 0.03 to 0.04 X 
Humans 0.08 to 0.09 X 

Monkeys 0.02 to 0.03 x ~ 0 . 6 6  

comparison directly, although the two 
groups do not overlap in body size. Thus, 
we have arithmetically compared brain 
sizes in the same way that we used a 
graphical method to compare reptiles and 
mammals in figure 8. 

T H E  SCALING OF FUNCTION- 
PHYSIOLOGY 

The most universal feature of living 
organisms is their turnover of energy. Ani- 
mals, with few exceptions, obtain energy 
by the oxidation of organic compounds, 
and the rate of energy turnover, or the 
metabolic rate, is often measured by the 
rate of oxygen consumption. The fact that 
there is a regular relationship between the 
metabolic rate, or rate of oxygen consump- 
tion, and the body size of animals is thor- 
ougly familiar to  biologists. 

What is the basis for this regular rela- 
tionship? First of all, small and large ani- 
mals have cells that are roughly of the 
same size, within an  order of magnitude of 
10 pm (Teissier, '39). A large organism, 
therefore, is not made up of larger cells, 
but of a larger number of cells of roughly 
the same size. One might therefore predict, 
incorrectly, that a large animal should 
have a metabolic rate in direct proportion 
to the number of metabolizing cells, i.e. 
the same rate per unit mass. 

It has long been understood that this 
cannot be so. In the early part of the last 
century French scientists realized that the 
heat dissipation from warm-blooded ani- 
mals must be roughly proportional to their 
free surface, and since small animals have 
a larger relative surface, they must also 
have a higher relative rate of heat produc- 
tion than large animals (Sarrus and 
Rameaux, 1838-1839). This argument was 
taken up by Bergmann (1847), leading to 
the formulation of Bergmann's rule, which 
states that animals in colder climates are 
of larger body size (i.e. have smaller rela- 
tive external surface area) than their rela- 
tives from warmer climates. The validity 
of this rule has been questioned and has 
led to much controversy. 

About 100 years ago Rubner (1883) 
studied the metabolic rate of dogs of vari- 
ous size, and confirmed that their heat pro- 
duction was more closely related to body 
surface than to body mass. This resulted 
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in the acceptance of a "surface rule," 
which, although it misrepresents a mass of 
available data, for many years has domi- 
nated in  the analysis of metabolic rates. It 
is to the credit of Max Kleiber that he in- 
stead expressed the relationship between 
metabolic rates and body mass of mam- 
mals as  an allometric equation which ac- 
curately describes the available informa- 
tion (Kleiber '32). Further support for the 
use of allometric equations in metabolic 
studies was accumulated by distinguished 
investigators such as Brody and Procter 
('32), Brody ('45), Benedict ('38), Krebs 
( ' 5 0 ) ,  Zeuthen ('53), Hemmingsen ( '60) ,  
and many others. 

A tremendous amount of information 
has been accumulated and compiled, and 
we can now say with certainty that the 
metabolic rate of warm-blooded vertebrates 
is not scaled relative to body surface (body 
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mass to the power 0.67), but rather to the 
body mass to the power 0.75, a highly 
significant difference when we consider 
that the size range of the mammals studied 
is about one million-fold, from the shrew 
to the elephant. 

The best known such compilations usu- 
ally present some version of a plot known 
as the mouse-to-elephant curve. It shows 
that the rates of heat production or oxygen 
consumption of birds and mammals gen- 
erally are similar, and, when plotted 
against body weight on logarithmic co- 
ordinates, fall on a straight line (fig. 9) .  
A more detailed comparison of mammals 
and birds, based on extensive Compilations 
of data, was presented by Lasiewski and 
Dawson ('67). These investigators found 
that, if passerine and non-passerine birds 
are treated separately, their metabolic 
rates fall on lines with the same slope as 
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mammals, i.e. statistically indistinguish- 
able from the slope 0.75. 

The analysis of bird metabolism was 
further refined by Aschoff and Pohl (’70) 
who showed that if observations obtained 
during the night, or natural rest period 
(called rho-values), are treated separately 
from daytime observations (alpha-values, 
obtained at rest but during the normal 
period of activity), the scatter in the data 
is reduced and the statistical significance 
of the slope can be established with even 
higher accuracy. Since alpha-values are 
about 25% higher than rho-values, the in- 
evitable but unanswerable question is, 
which observations represent the “true” 
resting metabolic rate? 

The metabolic rate of marsupials shows 
a relationship to body size similar to that 
of the eutherian mammals, although the 
regression line for marsupials is somewhat 
lower (MacMillen and Nelson, ’69; Daw- 
son and Hulbert, ’70). 

The metabolic rates characteristic of 
each of the major groups of warm-blooded 
vertebrates can now be compared, each 
represented by the equation for the regres- 
sion line in the logarithmic plot of meta- 
bolic rate against body mass (table 3 ) .  
Since the value of the exponent in these 
equations is the same, the ratio of the nu- 
merical factors preceding the exponential 
term directly expresses the relative mag- 
nitude of the metabolic rate at any body 
weight. We see that marsupial mammals 
in general have lower metabolic rates than 
eutherian placentals, that non-passerine 
birds are siniilar to eutherian mammals, 
and that passerine birds tend to have meta- 
bolic rates nearly twice as high as other 
birds. This, in brief, is the essence of all 
accumulated information about the meta- 
bolic rates of warm-blooded vertebrates at 
rest. 

The common occurrence of the expo- 

TABLE 3 
The metabolic rates ( P ,  in  watts) relative to body 

mass ( M ,  i n  kg ) , of major groups of higher 
vertebrates, expressed as allometric 

equations 

Marsupial mammals P = 2.36 X M0.737 
Eutherian mammals P = 3.34 X MD.75 
Non-passerine birds P = 3.79 X M0.723 
Passerine birds P = 6.25 X M0.7z4 

nent 0.75 in these equations has led to 
much speculation, but until recently no 
adequate explanation had been proposed. 

It has long been obvious 
that the metabolic rates of mammals could 
not be proportional to their body mass, if 
for no other reason because of the require- 
ment of maintaining their normal body 
temperature. This was convincingly ex- 
pressed by Kleiber (’61) in the following 
way: If a steer were designed with the 
same weight-specific metabolic rate as a 
mouse, it would be able to dissipate heat 
at the rate it is produced only if its surface 
temperature were well above the boiling 
point. Conversely if a mouse had the same 
low weight-specific metabolic rate as a 
steer, to keep warm it would need to be in- 
sulated with fur  at least 20 cm thick. 
Obviously, a consideration of thermal prob- 
lems confirms that heat production cannot 
be directly related to body mass. 

A consideration of other physiological 
variables leads to similar conclusions. The 
supply of oxygen is a case in  point; oxygen 
uptake takes place across the alveolar 
membrane and the rate of uptake is 
directly related to the available surface 
area. This area in turn cannot increase as 
the third power of linear dimensions. Simi- 
lar considerations can be applied to the 
extensive data that have been accumulated 
on the scaling of lungs, circulatory system, 
size of the heart and its frequency, dimen- 
sions of the aorta and other blood vessels, 
linear velocity of the blood, oxygen capac- 
ity of the blood, unloading pressures for 
oxygen, capillary density and diffusion dis- 
tance in the tissues, and so on. Each of 
these variables can be analyzed to show 
that the scaling of metabolic rates in direct 
proportion to body mass would meet with 
insurmountable obstacles or constraints 
(e.g. Schmidt-Nielsen and Larimer, ’58; 
Tenney and Remmers, ’63; Stahl, ’67; 
Schmidt-Nielsen, ’70, ’72a). 

All these considerations lead to the sug- 
gestion that metabolic rate cannot be 
scaled in proportion to the third power of 
a linear dimension and must closely follow 
a second power relationship. However, the 
empirical data show that there are regular 
deviations from simple surface relation- 
ships, the slope of metabolic regression 
lines being, not 0.67 but rather 0.75, and 

Constraints. 
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the many related variables being scaled 
accordingly. These statistically highly sig- 
nificant deviations are repeated from ani- 
mal group to animal group, and are found 
also among many invertebrates where 
problems of heat dissipation are irrelevant. 

For many years the attempts at “explain- 
ing” the observed deviations from the sur- 
face-related exponent have suffered from 
a certain metaphysical quality. It was 
speculated that, although the scaling of 
metabolic rate to body size for a variety of 
reasons cannot deviate too much from a 
surface relationship, yet a “desire” of the 
larger animals to achieve a mass-related 
metabolic rate leads them to arrive at  a 
“compromise” exponent of about 0.75. 

Quite recently this problem was sub- 
jected to a more rational analysis by 
McMahon (‘73). McMahon started with the 
well-known fact that vertebrates are not 
geometrically similar or isometric. I have 
already mentioced the size of the skeleton 
and the brain as examples. McMahon sug- 
gested a model based on the analysis of 
functional requirements of elastic simi- 
larity between animals. This model, which 
is based on sound engineering principles, 
requires a distortion from geometric simi- 
larity whereby length dimensions of bones 
are multiplied by one factor and diameters 
by another as body size changes. McMahon 
presents cogent arguments that metabolic- 
ally related variables should be scaled 
according to elastic similarity with body 
weight raised to the power 0.75, and that 
biological frequencies should be scaled 
inversely as body weight to the power 0.25. 
As McMahon’s model is extended and ap- 
plied to the analyses of an increasing 
number of functional variables, notably in 
animal locomotion, the approach becomes 
increasingly convincing. 

ANIMAL ACTIVITY - T H E  DEMANDS 
OF LOCOMOTION 

For many years we have studied meta- 
bolic rates of animals sitting confined in  
various boxes or containers which we call 
metabolic chambers. At times darkness is 
used to ensure that the animal will be in- 
clined to remain inactive within the con- 
fined space. This interest in the animal at 
rest is reasonable, for it establishes a base 
with which other measurements can be 

compared. The concept that there is a 
“basal” level below which the metabolic 
rate will not fall has been thoroughly dis- 
credited, but the resting animal does main- 
tain a rather constant metabolic level 
which can be called the resting or main- 
tenance level. In the preceding I have 
alluded to the great body of metabolic in- 
formation that has been accumulated and 
to its analysis in the light of scaling prin- 
ciples. 

Animals, however, do not spend their 
lives sitting still, at rest, only maintaining 
themselves. Characteristically, they move 
about, feed, mate, pursue prey, and escape 
from predators. Indeed, locomotion is a 
most characteristic animal activity, and 
there is a premium on high speed, for the 
animal that is too slow won’t eat and will 
be eaten. 

The last few years have witnessed an 
upsurge in the interest in animal locomo- 
tion. Animals have been studied as they 
move in water (swimming), in air (soar- 
ing and flapping flight), and on land (walk- 
ing and running). It appears that the 
amount of energy used to move one unit 
body mass over one unit distance de- 
clines regularly with increasing body size, 
whether the animal moves in water, in air, 
or on land. Each kind of locomotion seems 
to have its characteristic scaling function, 
resulting in straight lines when the cost of 
locomotion is plotted against body size on 
logarithmic coordinates ( Schmidt-Nielsen, 
’72b). However, there are characteristic 
differences between the three kinds of 
locomotion, so that for a given body size, 
flying a certain distance requires less 
energy than walking or running, and swim- 
ming the same distance is cheaper than 
flying. The reasons for these differences 
are not fully understood, and are subject of 
intensive study. In the following I shall 
concern myself mostly with locomotion on 
land. 

The amount of energy that various mam- 
mals use when running was examined by 
Taylor and his collaborators (’70). Some 
of their observations on mammals running 
at various speeds are shown in figure 10. 
As expected, the oxygen consumption or 
energy expenditure, increases with the 
speed of running. This, of course, is some- 
thing that we already know from personal 
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Fig. 10 The oxygen consumption of running mammals increases with the speed of 
running. For each species the increase is linear, but the oxygen consumption increases 
more steeply for a small than for  a large animal (Taylor et al., '70). 

experience. It may be surprising, however, 
that the cost increases linearly with the 
running speed. The graph also shows that 
the cost increases much faster in a small 
animal (steeper slope) than in a large ani- 
mal. The slopes of the regression lines, in 
fact, indicate the cost of running, or more 
precisely, the energy used to move one unit 
of body weight over one unit distance, If 
we plot these slopes against the body size, 
we obtain the graph shown in figure 11. 
The units on the ordinate indicate how 
many ml of oxygen are consumed when 
the animal moves one gram of its body 
weight over one km, in other words, a sort 
of weight-related mileage cost of running. 

The graph shows that the cost of run- 

ning decreases regularly with increasing 
body size; i.e. the large animal moves about 
at less expense than the small animal. 
Data from man are represented by the open 
circles, which indicate that his cost of mov- 
ing is roughly twice that of a four-footed 
mammal of his size. Is bipedal locomotion 
always more expensive? 

Bipedal mammals are not very common, 
but birds run on two legs. Data for birds 
that have been collected by Fedak et al. 
('74) show a pattern similar to that for 
mammals. Thus, the cost of running for 
both birds and mammals is regularly scaled 
relative to body size, and the cost is of the 
same magnitude for the two groups. How- 
ever, the regression lines, relative to body 
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Fig. 11 The cost of running, expressed as the oxygen needed to transport one gram 
of body weight Over one km, decreases regularly with increasing body size. Data for man 
(bipedal running) fall above the line representing data from mammals running on all 
four legs (Taylor et al., '70). 

size have significantly different slopes, 
that for mammals being - 0.4 and for 
birds - 0.2. The two lines intercept at a 
body size of somewhat less than 1 kg, and 
birds and mammals of this size can be ex- 
pected to run at the same energy cost. A 
larger bird could be expected to run at a 
higher cost than a similarly sized mammal; 
the reverse would be true for small birds 
which could be expected to run at less ex- 
pense than mammals of the same body 
size. At the present time there is no satis- 
factory mechanical analysis of this con- 
sistent difference between birds and mam- 
mals. We therefore cannot say whether it 
is due to fundamental differences between 
birds and mammals and the way they solve 
the problems of terrestrial locomotion, or 
to inherent mechanical differences in bi- 
pedal and quadrupedal locomotion. 

The problem of whether bipedal and 
quadrupedal locomotion results in differ- 
ent costs of mcjving was recently examined 
by Taylor and Rowntree ('73), who chose 

two primates that can move about, either 
on two or on four legs, the capuchin mon- 
key and the chimpanzee. They found no 
significant difference in the energy cost, 
whether these animals moved on two or on 
four legs. However, both species are of 
intermediate size (3 .3  and 17.5 kg, respec- 
tively), and in this size range the regres- 
sion lines for birds and mammals (bipedal 
and quadrupedal running) run fairly close 
to each other. The question of whether bi- 
pedal and quadrupedal locomotion funda- 
mentally should differ in energy cost there- 
fore remains open. 

The difficulty in analyzing the cost of 
locomotion rests on the deficiencies in our 
knowledge of how energy is used when an 
animal runs. An animal that runs horizont- 
ally performs a trivial amount of external 
work, restricted to air resistance and to 
friction against the ground, which at most 
account for a few per cent of the total 
energy expended. The remainder of the 
energy is dissipated internally as heat. 
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Energy must be used to overcome friction 
in the joints and viscous resistances in 
muscles and other tissues. The movement 
of the limbs requires that kinetic energy is 
imparted to them on acceleration, and 
again removed. as they are decelerated and 
the motion is reversed. Also the up-and- 
down movement of the center of mass in 
the field of gravity implies a constant shift 
between potential and kinetic energy. We 
do not have, except for man, even an ap- 
proximate idea of how much of the kinetic 
energy can be stored in  elastic elements 
during one phase of the stride and can be 
recovered during other phases. 

An easily understood example of elastic 
storage of energy is provided by the jump- 
ing of the kangaroo. If a fast moving 
kangaroo were to make each stride as a 
separate standing jump, it would soon be 
exhausted. Instead, as the animal hits the 
ground at considerable speed, much of the 
kinetic energy is stored in elastic elements 
of muscles and tendons, to be recovered on 
the next jump, much as when a tennis ball 
bounces over the ground, This model is 
consistent with the studies of Dawson and 
Taylor ( '73) ,  who showed that the energy 
cost of the jumping kangaroo does not in- 
crease with increasing speed, once the 
speed of jumping has been attained. 

An early attempt at developing a model 
which would scale the energy cost of loco- 
motion to body size of mammals was made 
by the eminent British physiologist, A. V. 
Hill ('50). Hill made the correct assump- 
tions that maximum force per cross-sec- 
tional area of a muscle is a constant, and 
that the maximum work of a single con- 
traction per unit mass of muscle is also 
constant. His assumption that mammals 
are of isometric build, however is only an  
approximation. Hill's model predicted that 
stride length should be directly and stride 
frequency inversely related to the linear 
dimension of the animal (or body mass to 
the power 0.33). The conclusion was that 
all mammals should be able to run at the 
same top speed. 

Hill's model applied to top speed (i.e. 
maximum power output), and an  experi- 
mental test is therefore difficult to carry 
out. Not only is it difficult to determine top 
speed for a variety of animals, but meta- 
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bolic studies at  this speed meet with formi- 
dable technical obstacles. 

A rational approach to this difficulty was 
presented in a recent issue of Science by 
Taylor's group (Heglund et al., '74), who 
studied the stride frequencies of mam- 
mals of sizes from 9 to 500,000 grams. 
During walk or trot, the stride frequency 
increased linearly with speed, but once the 
animal started to gallop the frequency re- 
mained nearly constant as  the animal fur- 
ther increased its speed. In this sense gal- 
loping is reminiscent of the jumping 
kangaroo, which also alters its speed 
within a several-fold range without ap- 
preciably changing the jumping frequency 
(Dawson and Taylor, '73). 

The transition from trot to gallop was 
constant for each animal and showed the 
maximum sustained stride frequency for 
that animal. From species to species this 
maximum stride frequency decreased regu- 
larly with body size (fig. 12). The speed 
of transition can be considered as a func- 
tionally similar speed for animals of dif- 
ferent size, and once this transition point 
is defined, it can be used to refine the 
analysis of locomotion and how it is scaled 
relative to body size. It appears that each 
transition to a faster gait recruits addi- 
tional elements of the body for storage of 
elastic energy, so that in gallop the entire 
trunk is involved in elastic storage, This 
speculation needs confirmation, but it is 
in accord with McMahon's approach, using 
elastic similarity in the analysis of animal 
function as related to body size. It can be 
expected that the further analysis will lead 
to generalized rnodels of how animal loco- 
motion is scaled, thus providing a unifying 
principle which at the present time is 
lacking. 

So far, all the examples I have men- 
tioned have used body mass as the variable 
to which the scaling of function has been 
related. I do not wish to leave the impres- 
sion that body mass is the only funda- 
mental quantity that is useful in  problems 
of scaling, and I shall mention an  example 
where a function is more clearly under- 
stood if scaled against a linear dimension, 
rather than mass. This applies to the swim- 
ming speed of fish of different sizes. Fig- 
ure 13 shows the swimming speed of the 
small fresh water fish, the dace, as meas- 
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Fig. 12 The transition between trot and gallop for a running mammal takes place at a 
certain stride frequency, characteristic for each species. When the stride frequency at the 
transition point is plotted against body size on logarithmic coordinates, the points fall on 
a straight regression line (Heglund et al., '74). 

ured by Bainbridge ('58). As expected, the 
swimming speed increases with increasing 
frequency of tail beat. The fact that the 
increase is linear is an interesting but less 
predictable observation. The linearity ex- 
tends over a wide size range of the fish, 
but for any given tail beat frequency the 
swimming speed is higher for the larger 
fish. 

If instead we express the speed in  rela- 
tion to body length, i.e. the fraction of the 
body length that a fish moves in one sec- 
ond, the resulting graph (fig. 13, bottom) 
reveals a fundamental similarity between 
the different sized fish, The coordinates of 
this graph have the same dimensions, sec- 
ond to the power minus one. Thus the slope 
of the regression line is a non-dimensional 
number. In simple words, it expresses that, 
irrespective of the size of the fish, the dis- 
tance traveled for one beat of the tail is 
always the same fraction of its body 
length . 

Since the linear dimension of the fish 
is related to its mass (the small and large 

fish are virtually isometric), we could 
equally well use the body mass as the basis 
for our scaling as we so often do. How- 
ever, this would give a more complex ex- 
pression that in this case obscures the sim- 
plicity of the relationship. The use of the 
linear dimension, body length, is more re- 
vealing and makes the results intuitively 
understandable. 

There is presently a growing interest in 
studies of animals during activity, and the 
examination of a variety of species gives 
us an increasing appreciation of the im- 
portance of comparative physiology. In 

~ 

Fig. 13 The swimming speed of the dace 
(Leuciscus Zeuciscus) increases with the f r c  
quency of tail beat. At any given frequency, the 
swimming speed is greater for large fish than for 
small fish (top). However, if the data are com- 
bined by expressing the distance traveled in one 
second relative to body length of the fish, the 
resulting graph (bottom) reveals that the dis- 
tance traveled for each beat of the tail is the 
same fraction of the body length for all fish, 
irrespective of size (redrawn from Bainbridge, 
'58 ) . 
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particular, it is becoming more and more 
evident that the size of an animal is one 
of the most significant aspects of its en- 
dowment and involves both possibilities 
and limitations in regard to function. We 
have for so long focused our interests on 
similarities that we have tended to over- 
look one of the most fundamental differ- 
ences between animals, the size of their 
bodies. 
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